
CS 798: Digital Forensics and Incident Response

Lecture 15 - Stealthy Malware

Diogo Barradas

Winter 2025

University of Waterloo



Malware analysis

• It is an essential part of digital forensics because it can help:
• Identify the source of an attack
• Determine the extent of damage
• Develop remediation strategies

2/60



Outline

1. Malware and exploits

2. Rootkits

3. Malware Analysis

3/60



Malware and exploits



Malware

• Any software intentionally designed to cause damage to a
computer, server or computer network

• Malware does the damage after it is implanted or introduced in
some way into a target’s computer

• Can take the form of executable code, scripts, active content,
and other software

4/60



Exploits

• Exploits are malicious programs that take advantage of
application software or OS vulnerabilities

• Exploits typically target productivity applications such as
Microsoft Office, Adobe applications, web browsers and
operating systems

• Not all exploits involve file-based malware (e.g.: null/default
system password exploits, DDoS attacks)

5/60



Attacks through exploit kits

• The most common method to distribute exploits and exploit
kits is through webpages, but exploits can also arrive in emails

• Exploit kits are more comprehensive tools that contain a
collection of exploits

6/60



Exploits leverage exiting vulnerabilities

• A vulnerability is a mistake in software code that provides an
attacker with direct access to a system or network

• Common Vulnerabilities and Exposures (CVE)
• Program launched in 1999 by MITRE to identify and catalog

vulnerabilities in software or firmware into a free “dictionary”
for organizations to improve their security

7/60



Vulnerability reporting in CVEs

• The dictionary’s main purpose is to standardize the way each
known vulnerability or exposure is identified

• Example: Shellshock is a malware class that exploits the
CVE-2014-6271 vulnerability reported in Bash

• Allows remote code execution via the Unix Bash shell

8/60



The Metasploit framework

• Metasploit is a software
platform for developing, testing,
and executing exploits

• It can be used to create
security testing tools and
exploit modules

• Can incorporate new exploits in
the form of modules (plug-ins)

9/60



Rootkits



Hide and seek

• The behavior of the operating system can be affected by the
presence of rootkits

• Enable access to a computer or areas of its software that is not
otherwise allowed (e.g., to an unauthorized user)

• Rootkits are a category of malware which has the ability to
hide itself and cover up traces of activities

10/60



Rootkit goals

1. Enable attacker to access the system in the future

2. Remove evidence of original attack and activity that led to
rootkit installation

3. Hide future attacker activity (files, net connections, processes)
and prevent it from being logged

4. Install tools to widen scope of penetration

5. Secure system so other attackers can’t take control of system
from original attacker

11/60



Example: Backdoor

• Install a backdoor on the compromised system
• Communication may happen via a covert channel

12/60



Backdoor programs

• A backdoor is an unauthorized way of gaining access to a
program, online service or an entire computer system

• Let attackers log in to the hacked system again

Examples Description
Login Backdoor Modify login.c to look for a backdoor password before the

stored password.
Telnetd Backdoor Trojaned the in.telnetd to allow an attacker to gain access

with a backdoor password.
Services Backdoor Replacing and manipulating services like ftp, rlogin, and even

inetd as backdoors to gain access.
Cronjob Backdoor Backdoors could also be added in crontab to run at specific

times, for example, from 12 midnight to 1 am.
Library Backdoors Shared libraries can be used as backdoors to perform malicious

activities, including providing root or administrator access.
Kernel Backdoors These backdoors essentially exploit the kernel.

13/60



Example: Keylogger

• Run a password logger on a compromised system
• Keystrokes may be exfiltrated using steganography

14/60



Rootkit tools: Sniffers and wipers

• Packet sniffers
• Programs and/or device that monitor data traveling over a

network, TCP/IP or other network protocol
• Used to steal valuable information off a network; many services

such as ftp and telnet transfer passwords in plaintext

• Log-wiping utilities
• Log file are the lists actions that have occurred, e.g., in UNIX,
wtmp logs time and date user log in into the system

• Log file enable admins to monitor, review system performance
and detect any suspicious activities

• Deleting intrusion records helps prevent detection

15/60



Rootkit tools: Miscellaneous attacker tools

• DDoS program
• To turn the compromised server into a DDoS client

• IRC program
• Connects to some remote server waiting for the attacker to

issue a command (e.g., to trigger a DDoS attack)

• System patch
• Attacker may patch the system after successful attack; this will

prevent other attacker to gain access into the system again

• Password cracker

• Vulnerability scanners
• Hiding utilities

• Utilities to conceal the rootkit files on compromised system

16/60



Rootkit stealth techniques

1. File masquerading

2. Hooking

3. Direct Kernel Object Manipulation (DKOM)

4. Virtualization

17/60



What’s wrong with this picture?

How can there be two .. directories?

18/60



What’s wrong with this picture?

How can there be two .. directories?

18/60



How did this happen?

• This is actually:
• mkdir <dot><dot><backslash><space><enter>

• It creates a directory named “dot-dot-space”

19/60



What’s in this mysterious directory?

• Nice simple trick to hide malicious files in plain sight

20/60



1. File masquerading

• Replace system files (or directories) with malicious versions
that shared the same name and services as the original

• Or create files (or dirs) that resemble legitimate files (or dirs)

• Installation concealment:
• Use spaces to make filenames look like

expected dot files: “.” and “..”
• Use dot files, not shown in ls output
• Use a subdirectory of a system dir. like
/dev, /etc, /lib, or /usr/lib

• Use names the system might use (e.g.,
/dev/hdd if no 4th IDE disk exists)

• Delete rootkit install directory once
installation is complete

21/60



1. File masquerading (cont.)

• Change system commands:
• To suppress bad news, silence the messenger
• The table shows examples of typical command-level rootkit

modifications

22/60



2. Hooking

• The next step in evolution of rootkits was to redirect system
calls to malicious code, a technique known as hooking

• Hooking is when a given pointer to a given resource or service
is redirected to a different object

• E.g., instead of replacing the file containing the ls command,
a system call can be redirected to a custom dir command in
memory space that filters out the malicious files and folders

• Basically, hooking achieves the same effect as file
masquerading, but is more difficult to detect

• Does not require changing executable files
• Integrity checks are ineffective when validating executable files

23/60



Where does hooking happen

• Hooking can be performed at several layers in the operating
system, primarily libraries and kernel

Hardware

Operating System

System Library

Executable Programs

Process-level

System-level

24/60



Library-level hooking

• Instead of replacing system utilities, rootkits can hide their
existence by making changes at the next level down in the
system architecture: the system run-time library

• A good example is redirecting the open() and stat() calls
• The purpose of these modifications is to fool

file-integrity-checking software that examines executable file
contents and attributes

• By redirecting the open() and stat() calls to the original file,
the rootkit makes it appear as if the file is still intact

• However, execve() executes the subverted file

25/60



Example of library-level subversion

• Redirect specific open() system calls
• real_syscall3() is a macro (not entirely shown) that

modifies the standard _syscall13() macro
• real_syscall3 is defines our real_open() function that

invokes the Sys_open system call

26/60



Kernel-level hooking

• Just like user-level rootkits, kernel-level rootkits are installed
after a system’s security has been breached

• Kernel-level rootkits compromise the kernel
• Kernel runs in supervisor processor mode
• Thus, the rootkit gains complete control over the machine

• Advantage: stealthiness
• Runtime integrity checkers cannot see rootkit changes
• All programs in the system can be affected by the rootkit
• Open backdoors/sniff network without running processes

27/60



Methods to inject rootkit code into a kernel

1. Loading a kernel module into a running kernel
• Use official LKM interface, hence it’s easier to use
• Hide module names from external (/proc/ksyms)
• Intercept syscalls that report on status of kernel modules

2. Injecting code into the memory of a running kernel that has no
support for module loading

• Write new code to unused kernel memory via /dev/kmem and
activating the new code by redirecting, e.g., a system call

3. Injecting code into the kernel file or a kernel module file
• These changes are persistent across boot, but require that the

system is rebooted to activate the subverted code

28/60



Early kernel rootkit architecture

• Based on system-call interposition: Early kernel rootkits
subvert syscalls close to the process-kernel boundary

29/60



Rootkit interposition code

• To prevent access to a hidden file, process, and so on, rootkits
redirect specific system calls to wrapper code

• To prevent rootkit disclosure, syscalls that produce lists of
files, etc., are intercepted to suppress info to be hidden

30/60



Routine patching

• Modify the code of a system routine to cause the execution
path to jump to malicious code which may live either in
memory or on disk

• Modern Windows-based rootkits may embed a JMP instruction
within the system binary to redirect the execution path

• This can be performed against the system binaries stored in the
OS file system, or against executing code loaded in memory

• Detection:
• If the modification was performed on the file system, this can

be easily detected by file integrity monitoring systems
• Run-time modification can be detected by applications such as

Kernel Path Protection, which is provided by the 64-bit
versions of Windows

31/60



Filter drivers

• The Windows driver stack
architecture was designed in a
layered manner

• This feature enables rootkit authors
to inject their malicious code to
interrupt the flow of I/O Requests
and perform activities such as
keystroke logging or filtering the
results that are returned to
anti-malware applications

• Rootkit authors can perform
hooking of drivers, patch driver
routines, or create an ew driver and
insert it into a driver stack 32/60



Potential hooking locations in Windows

• There are several different
locations along the way that can
be hooked to perform malicious
activities

• These locations include:
• Userland hooks in the Import

Address Tables (IAT)
• The Interrupt Descriptor

Table (IDT)
• The System Service Dispatch

Table (SSDT)
• Device drivers via I/O

Request Packets

33/60



3. Direct Kernel Object Manipulation (DKOM)

• The third generation of rootkits used a technique known as
Direct Kernel Object Manipulation (DKOM)

• DKOM can manipulate kernel data structures to hide
processes, change privileges, etc.

• The first known rootkit to perform DKOM was the FU rootkit,
which modified the EPROCESS doubly linked list in Windows
to “hide” the rootkit processes

34/60



4. Virtualization-based

• Leverage virtualization techniques to hide their presence
“under” the native operating system

• e.g., the (particularly evil) Blue Pill rootkit
• Uses hw-virtualization to install itself as a resident malicious

hypervisor and run the original OS as a VM

35/60



Are we doomed?

35/60



Detection of file masquerading

1. If a rootkit listens for connections, the network port will be
visible to an external network port scanner

2. Some tools can reveal the names of all directory entries,
including hidden or deleted files

3. Corrupted versions of ps and similar hide malware processes,
but these can still be found using, e.g., the /proc file system

4. Deleted login/logout records in the wtmp file leave behind
holes that can be detected using an appropriate tool

5. ifconfig might report that a network interface is not in
sniffer mode, but we can query the kernel for its status

6. CRC checksums reported by compromised cksum, can be
detected using MD5 or SHA1

7. Examining a low-level copy of the file system on a trusted
machine reveals all hidden files and modifications

36/60



Detection of kernel-level hooking

• Kernel rootkits may be exposed because they introduce little
inconsistencies into a system

• Some may show up externally, in the results from system calls
that manipulate processes, files, kernel modules, etc.

• Others show up internally, within kernel data structures
• e.g., hidden objects occupy some storage even though the

storage does not appear in kernel symbol tables

37/60



Inconsistencies that may reveal kernel rootkits

• Output of tools that bypass the file system can reveal
information that is hidden by compromised FS code

• e.g., TSK

• Unexpected behavior of some system calls
• e.g., when the Adore rootkit is installed, setuid() - change

process privileges - will report success for some parameter
value even though the user does not have sufficient privileges

• e.g., when the Knark rootkit is installed, settimeofday() -
set the system clock - will report success for some parameter
values even though is should always fail when invoked by an
unprivileged user

• Inconsistencies in the results from process-manipulating system
calls and from the /proc file system

• e.g., in reporting a process as “not found”

38/60



Inconsistencies that may reveal kernel rootkits (cont.)

• Modifications to kernel tables, such as system call table or the
virtual FS table

• May be detected after the fact by reading kernel memory via
/dev/kmem

• Or by examining kernel memory from inside with a forensic
kernel module such as Carbonite

• Modifications to kernel tables or kernel code may be detected
using a kernel module that samples critical data structures
periodically

39/60



Malware Analysis



Why analyze malware?

• To assess damage
• To discover indicators of compromise
• To determine sophistication level of an intruder
• To identify a vulnerability
• To catch criminals
• To answer a few more questions...

40/60



A few more questions...

Operational questions

• What is the purpose of the
malware?

• How did it get here?

• Who is targeting us and how
good are they?

• How can I get rid of it?

• What did they steal?

• How long has it been here?

• Does it spread on its own?

Technical questions

• Network indicators?

• Host-based indicators?

• Persistence mechanism?

• Date of compilation?

• Date of installation?

41/60



Static analysis techniques

• Hash the file
• Virus scan

• Someone else may have already
discovered and documented it

• List properties and type of file
• e.g.,file (in Linux)

• List strings inside the binary
• e.g.,strings (in Linux)

• Inspect raw bytes of the binary
• e.g., hexdump (in Linux)

• List symbol info
• e.g., nm (in Linux)

• View linked shared objects
• e.g., ldd (in Linux) 42/60



Static analysis techniques

• Disassembly: Take machine
code and “reverse” it to a
higher-level

• Many tools can
disassemble x86

• e.g., Objdump, Python
w/ libdisassemble, IDA
Pro

• Manual examination of
disassembled code can be
quite hard

43/60



Static analysis techniques (cont.)

• Decompilation: Take an
executable file and create a
high-level source file

• i.e., reverse of a compiler

44/60



Categorizing malware

• Investigators will identify unique patterns and strings within a
given piece of malware

• This allows for identifying the sample’s malware family
• YARA helps investigators describe these patterns

• Through rules that look for certain characteristics

45/60



Dynamic analysis

• Static analysis will reveal some immediate information

• Exhaustive static analysis could theoretically answer any
question, but it is slow and difficult

• Usually you care more about “what” malware is doing than
“how” it is doing it

• Dynamic analysis is conducted by observing and manipulating
malware as it runs

46/60



Creating a safe environment for dynamic analysis

• Rule of thumb: Do not run malware on your computer!
• Create a safe environment for dynamic analysis!

• Tried and tested way
• Shove several PCs in a room on isolated network, create disk

images, re-image a target machine to return to pristine state
• Better: Use virtualization to make things fast and safe

• Xen, VMWare, VirtualBox, etc.
• Mandiant’s FLARE VM: VM for Windows malware analysis

47/60



Creating a safe environment for dynamic analysis

• It is easier to perform analysis if you allow the malware to “call
home”, however:

• The attacker might change their behavior by allowing the
malware to connect to a control server

• Your IP might become the target for additional attacks
• You may end up attacking other people

• Therefore, investigators usually do not allow malware to touch
the real network, but may establish realistic services (DNS,
Web, etc) on the host OS or other VMs

48/60



Virtualization considerations

• Our virtualization software is not perfect

• Malicious code can detect that it is running in a VM
• It can then remain dormant, or worse...
• It can use a 0-day exploit and escape the sandbox

49/60



Dynamic analysis techniques

• Call Traces
• e.g., strace, ltrace

• The GNU debugger
• Stop program execution
• Control program flow
• Examine data structures
• Disassemble, etc...

• Memory analysis
• Dump the process’ RAM and analyze it

50/60



A popular malware sandbox

• Cuckoo Sandbox is an advanced, modular, and automated
malware analysis system, which can:

• Analyze many different malicious files
• Trace API calls and general behavior of the file
• Dump and analyze network traffic
• Perform advanced memory analysis of the infected virtualized

system through Volatility and YARA

51/60



A recap on analysis methods

52/60



Malware analysis checklist

Dynamic 
Analysis

Static 
Analysis

53/60



Challenges for malware analysis

• Some tools are designed to protect binary files and may help
miscreants protect malware (e.g., BurnEye), via:

• Obfuscation: scrambles the code in the executable
• Encryption: encrypts the program’s code
• Fingerprint matching: only runs on certain computers

• Skype was known for applying some of these techniques

54/60



Anti-static analysis techniques

• De-synchronize disassembly:
• Prevent the disassembly from finding the correct starting

address for one or more instructions. Forcing the disassembler
to lose track of itself

• Dynamically compute target addresses:
• Address to which execution will flow is computed at run-time

55/60



Anti-static analysis techniques (cont.)

• Obfuscate opcodes:
• Encode or encrypt the actual instructions when the executable

file is being created (self modification)

• Obfuscate imported functions:
• To avoid leaking information about potential actions that a

binary may perform, make it difficult for investigators to
determine which shared libraries and library functions are used
within an obfuscated binary

• Targeted attacks on analysis tools

56/60



Anti-dynamic analysis techniques

• Detecting virtualization:
• Detection of virtualization-specific software and hardware
• Detection of virtual machine-specific behaviors
• Detection of processor-specific behavioral changes

• Detecting instrumentation (Sysinternals tools, etc.)
• Check loaded drivers, scan active processes or windows titles

• Detecting debuggers
• API functions such as the Windows IsDebuggerPresent(),
NtQueryInformationProcess() or OutputDebugStringA()

• Lower-level checks for memory or processor artifacts resulting
from the use of a debugger

• SoftIce, a Windows kernel debugger, can be detected through
the presence of the .\NTICE device (named pipe), which is
used to communicate with the debugger

57/60



Anti-dynamic analysis techniques (cont.)

• Preventing debugging
• Intentionally generate various exceptions when a SEH

(Structured Exception Handler) is set
• Confuse the debugger by introducing spurious breakpoints,

clearing hardware breakpoints, hindering selection of
breakpoint addresses or preventing the debugger from
attaching to a process

• Calling GetTickCount() at regular intervals
• Suspend threads
• And many more...

58/60



Takeaways

• Many attacks to operating systems are performed through
rootkit software

• Depending on the rootkit, the forensic analyst needs to employ
different rootkit-detection techniques

• Malware analysis allows for determining the behavior of
malicious binaries and usually entails the adoption of static
and dynamic analysis techniques

59/60



Pointers

• Textbook:
• Casey – Chapter 13.5, Luttgens – Chapter 15

• Other resources:
• Blue Pill

• Acknowledgements:
• Slides adapted from Nuno Santos’s Forensics Cyber-Security

course at Técnico Lisbon

60/60

https://www.sciencedirect.com/science/article/pii/changeMe
https://syssec.dpss.inesc-id.pt/people/Nuno_Santos.html

	Malware and exploits
	Rootkits
	Malware Analysis

