
CS 798: Digital Forensics and Incident Response

Lecture 14 - Digital Stratigraphy & Memory Forensics

Diogo Barradas

Winter 2025

University of Waterloo



Temporal Analysis

• Now that we have all those OS-, network- and FS-related
artifacts, we want to establish a timeline of events:

• Help identify patterns, gaps, sequencing past actions, and lead
to other sources of evidence

• Investigators resort to timestamps:
• From all sorts of sources: logs, file metadata, Registry, etc.

• Can we rely on timestamps? What if they have been tampered
with? Do we even have timestamps to start with?

2/54



Outline

1. Temporal Analysis

Time tracking

Timestomping

Digital Stratigraphy

2. Memory analysis

Memory analysis methodology

Recovery of memory artifacts

Memory acquisition techniques

3/54



Temporal Analysis



Temporal Analysis

• Forensic investigations usually require to know the time and
sequence of events

• Fortunately, computers keep ample account of time

• Temporal analysis consists in analyzing timing information
from digital artifacts

• File systems, in particular, are rich in maintaining timestamps

4/54



Computer timekeeping

• Real Time Clock (RTC)
• Battery powered; keeps time while computer is shut down
• Used as basis for determining time when computer boots

• System clock
• SW clock set from the RTC at boot plus HW timer

• Network Time Protocol (NTP)
• Protocol for reliable synchronization of computer clocks

• Network Identity and Time Zone (NITZ)
• Method to obtain time info from GSM network

• Global Positioning System (GPS)
• Device sets its clock based on signals received from GPS

5/54



Time tracking in file systems

• MACtimes: three time attributes attached to any file or
directory in UNIX, Windows, and other systems

• atime: Last time the file or directory was accessed
• mtime: changes when a file’s contents are modified
• ctime: keeps track of when the contents or meta-data about

the file has changed: owner, group, file permissions, etc.

• Sometimes this information is enriched with creation time

6/54



TSK tools for timestamp analysis

• TSK has several tools: mactime, fls, icat

• Example of mactime output:

7/54



Access time patterns may emerge

• Check the two access time patterns below in two cases

• Access patterns may disclose past activities
• Useful in intellectual property theft – date-time stamps may

show what files were copied and when!

8/54



How reliable are timestamps?

• Several factors influence the accuracy of timekeeping on
computers and the interpretation of timestamps:

• System clock implementation
• Clock configuration
• Tampering
• Synchronization protocol
• Misinterpretation of timestamps
• Bugs in software

9/54



Time and date issues in forensic investigation

• Clock skew
• The amount of time units (often seconds or milliseconds) by

which a clock deviates from the “real” time

• Unnormalized timestamps
• Represent timestamps taken in different time zones

10/54



Detection of clock skew

• In any investigation, it is important to assert if the device’s
system clock was registering the correct time

• Compare with the time of an NTP-synced computer
• When the device is still operational

• Compare with external timestamps
• Generated outside the investigated device

• e.g., call logs, network logs, etc.

11/54



Normalization of timestamps

• Requires proper understanding of the various formats and time
zones in which timestamps are stored

• Ext2 timestamps in Unix time = total number of seconds since
01-01-1970 00:00:00 UTC

• If timestamps of different time zones, translate them into a
common time zone, e.g., UTC

12/54



Time forgery analysis and timestamp resolution

• Timestamps are not meant to be manipulated by the end user
• Mostly generated by OS (e.g., FS updates) and applications

(e.g., email)

• However, resourceful users can modify these timestamps using
various methods: this is called timestomping

• Criminals leverage timestomping so that file accesses /
modifications do not appear conspicuous to investigators

• Can we determine that timestomp programs have been used
for anti-forensic purposes?

13/54



Example date forgery analysis scenario

• Consider the following file, with local (PT) timestamps
• On the left, File Properties shows timestamps with

second-precision
• On the right, after using a time modification tool to change

timestamps

14/54



NTFS timestamp resolution

• In NTFS, timestamps are stored as 8-byte file time values
• Represent the number of 100-nanosecond intervals that have

elapsed since 12:00 A.M. January 1, 1601
• NTFS timestamps have 100 nanosecond precision

• Below, the creation time before timestamp modification

15/54



Gather information about the root partition

• After the timestamp manipulation, the updated creation
timestamp has lost its resolution beyond seconds

Original After modification
16/54



Some strategies for timestomping detection

• Anomalies in timestamp format (ending in zeros)
• Relies on the limitation of tools that are used to modify the

timestamp; the timestamp resolution stops at second level and
everything else (all the way to the last 100ns) is set to zero

• Inconsistencies with other timing sources
• e.g., compared with the Windows Event log

17/54



Digital stratigraphy

• Useful when time markers are obliterated

• Stratigraphy: The study of rock layers

• Predicts the age of natural
artifacts based on the
principle that upper layers
are younger than the layers
underneath

• The idea is to employ a
similar approach in the
digital realm

18/54



Establishing a time order

• Digital stratigraphy studies file system traces and writing
patterns to infer time-related facts

• Let’s showcase two representative techniques with a challenge:
• Consider files A and B – was A written earlier or later than B?

• In both techniques, the idea is to establish a time order
between both these files, but using different “digital layers”

19/54



1. Based on how data was overwritten

• Suppose file A was first created and fits into one block

• Then, A was deleted and that block was unallocated

• Later file B was created, the OS reallocated the same block,
but B is a smaller file that A

20/54



Breaking it down

• This is what the forensic analyst will be able to retrieve

• We can conceptualize this into two different layers:

• So, even if we do not have timestamp info about B, but we
have about A, then we can still say that B is likely more recent
than A

21/54



Additional considerations

• May need to look for other time reference points
• Date-time info exists in Word files, directory entries, cookie

files, Internet- related files, event logs, etc.

• The insight was based on knowledge on how the OS reallocates
blocks of formerly deleted files and effect of slack space

• Once deleted, these files form an underlying layer of
time-related data upon which newer files are saved

• But this principle can be more broadly applied, e.g., layers
preserved after disk formatting

• e.g., computer running Linux was found with numerous
Windows files in unallocated space that contain hardware
specific info (e.g., NIC address)

• It is likely that the computer was running Windows before!

22/54



2. Based on data positioning

• Suppose now that A uses 3 blocks when created

• Now, file B is created in block #1, and it keeps increasing
until it requires 5 blocks:

• The OS will typically try to find contiguous blocks but, in this
case, fragmentation will occurr

23/54



Breaking it down

• This is what the forensic analyst will be able to retrieve

• We can conceptualize this into two different layers:

• So, even if we do not have timestamp info about neither of
files, we may likely infer that B is likely more recent than A

24/54



Additional considerations

• The insight was based on knowledge on how the OS allocates
blocks to files and effect of fragmentation

• Two pieces of a file located in blocks on either side of a large,
contiguous file

• It is likely that the contiguous file is older

• However, these techniques are not infalible because there
might be other effects taking place

• Thus, it is always important to look for other potential sources
for supporting or dispelling these hypotheses

25/54



Takeaways (I)

• Temporal analysis is fundamental in digital forensics for
establishing a timeline of events

• In performing temporal analysis, we may have to deal with
several challenges, including timestomping, and may leverage
emerging stratigraphy techniques

26/54



Pointers (I)

• Textbook:
• Casey – Chapters 16.6, 17.1.2–4, Carrier – Chapters 11–12,

Luttgens – Chapter 12.1

27/54



We talked a lot about file systems...

• Is it possible to recover formerly deleted files?
• How to recover deleted files when no metadata is available?

28/54



Memory analysis



Memory forensics: Dump & analyze

• Dump physical memory (RAM)

• Lots of potentially relevant data
• Current running processes and terminated processes
• Open TCP/UDP ports/raw sockets/active connections
• Memory mapped files: executable image, shared libs,

modules/drivers, text files
• Caches: Web addresses, typed commands, passwords,

clipboards, SAM database, edited files
• Hidden data, encryption keys and many more

• Analyze the RAM
• Enumerate different program structures, signature based

carving, find text strings, virus scans, network connections, etc.

29/54



Example: Dump and analyze RAM memory

• We are analyzing a Windows workstation, suspected to be
infected by malware

• Look for evidence of that program residing in memory
• First, make a dump of physical memory inside the workstation

• mdd.exe copies the contents of a computer’s physical memory
to a file

30/54



Evaluate gathered evidence

• The volatility framework helps interpret kernel data structures
from the memory dump

• First, check if the malware was communicating with external
server by displaying active connections

• The computer had an active connection with IP
172.27.128.9:80 (the suspect malicious server)

• Next, follow the lead of the associated PID

31/54



Evaluate gathered evidence

• Use volatility to list which windows process ID (PID) has
opened the connections: 236

32/54



Evaluate gathered evidence

• Under normal circumstances, explorer.exe should not make
any external connections

• Hypothesis: check whether the binary has been modified or if
other process injected malicious code into one of explorer’s
threads

• Test by checking if API hooking was used for modifying a
program at runtime

• Run volatility to extract the API hooks used by the application
for making system calls

33/54



Evaluate gathered evidence

• Let’s find what processes memory space contained API hooks
with something registered:

• Let’s check the explorer.exe hook reported inside
apihooks.out:

34/54



Evaluate gathered evidence

• Extract the memory space of explorer.exe from the
computer memory image:

• Continue with the investigation looking for evidence of
malicious code injected into explorer.exe process . . .

35/54



Primer on memory organization

• Processors with MMU
(Memory Management Unit)
support the concept of
virtual memory

• However, it has limitations
in general case:

• Page tables are set up by
the kernel to map virtual
addresses to physical
addresses

36/54



Virtual address translation

• Programs operate on virtual
memory regions

• Volatile storage is organized
into units called pages

• Size of pages is 4 KB on x86
platforms

• Two level approach to
reference a page

37/54



Memory address space layout

• In Microsoft Windows, each
process has its own private
virtual address space

• 32 bit x86 user is equipped
with 2 GB of virtual memory

• In 64-bit Windows, the
theoretical amount of
virtual address space is
264 bytes (16 exabytes),
but only a small portion
of this range is used.

• Size of pages is 4 KB on x86

• Kernel space is shared
among system components 38/54



Interpretation of physical memory dumps

• Once a memory dump has been performed, it is necessary to
interpret the raw memory contents

• Main approaches to memory reconstruction:
• Tree and list traversal (data structure traversal)

• Memparser, KnTTools and KnTList, WMFT

• Object fingerprint / pattern searches
• PTFinder / PoolFinder

• Both methods (modern tools)
• Volatility, Mandiant Memoryze

39/54



Tree / list traversal basics

• Find index into lists and tables of interesting structure, and
follow them through to reconstruct the data

• EPROCESS linked list is a common example, with pointers to:
• _ETHREAD structures
• Security identifier (SID) of starting user
• Start time, PID and other metadata in PEB (Process

Environment Block)
• Process virtual memory pages 40/54



Fingerprint / pattern searching basics

• Search for relevant patterns in memory

• Scan for sufficiently unique structure signatures
• e.g., PoolFinder parses kernel pool memory (pre-allocated 4k

memory pool pages)
• e.g., PTFinder works with EPROCESS and ETHREAD structs

(_DISPATCHER_HEADER)

• Perform basic sanity checks on data to weed out corrupt
records, duplicates etc.

41/54



Pros and cons

Pros

• List traversal
• Can stitch together more

related records from
kernel perspective

• Pattern search
• Find unlinked, dead

structures (warm reboot)
• Can work with imperfect

dumps

Cons

• List traversal
• Can miss unlinked, dead

structures

• Pattern search
• Less context without

following related
structures/objects

• Susceptible to rubbish

42/54



Volatility: a memory analysis framework

• Volatility modules (Python)
• Functionality can be

extended w/ plugins

• Implements the methods
outlined before

• Framework
• Suitable for high degree

forensic tasks
• Requires expertise
• Aimed at academic

researchers and
professionals 43/54



Acquisition of volatile memory

• Several tradeoffs when choosing the acquisition technique:
• Time of installation: prior to incident or post incident
• Access to system: local or remote
• Access to main memory: pure hardware vs. software
• Required privileges: user vs. administrator
• Impact on system: live vs. post mortem

• Two main factors can be used to help make a decision:
• Atomicity: how close to the present memory state can the

forensic memory snapshot be retrieved
• Availability: whether the tools necessary to perform memory

acquisition are available or not

44/54



Software acquisition methods: User level applications

• Based on user-level applications for memory dumping
• Acquire copy of physical memory (e.g., avml)

• Attach to target process or read from OS-provided interface
(e.g., /dev/mem, /dev/crash, /proc/kcore)

• Strengths of this technique:
• Good for incident scenarios
• Capturing forensic image even in situations with little time

• Weaknesses of this technique:
• May only work on specific operating systems
• Applications must be loaded into memory before execution
• Depends on functions of the operating system (rootkit may

deny access to physical memory or modify the RAM)

45/54



Software acquisition levels: Kernel level applications

• Leverage a kernel driver / module to access physical memory
without restrictions (e.g., LiME)

• For incidents involving Linux, fmem kernel module, e.g., allows
for dumping the target’s memory

• To use fmem, compile the module and then load it into the
running kernel

• This operation creates a new /dev/fmem pseudodevice
• After loading fmem, use dd to dump the memory to a file

dd if=/dev/fmem of=memory.dd bs=1MB count=512

• Downsides: this process causes changes in the system state

46/54



Software acquisition levels: Software crash dumps

• Microsoft Windows dumps files to hard disk in case of failure

• Preserves the contents of processor registers

• Dump files can be opened
• Debugging Tools
• Manually

• System services may be interrupted
• Third party application
• Built-in CrashOnCtrlScroll

• If explicitly triggered, this acquisition is more invasive

47/54



Software acquisition methods: Warm and cold boots

• RAM retains memory as long as power is provided

• Warm boots refer to reboot methods in which power is never
removed from the memory module (e.g., press reset button)

• Tools like msramdump or afterlife act like minimal OS-es
that can save memory to disk

• When the RAM is cleared by the BIOS, replacing the BIOS
can be an option

• Cold boot refers to reboot methods in which power is removed
from the memory module (e.g., pull the plug and reboot)

• RAM retains contents for 2-3 seconds

• Retention time can be extended for up to an hour
by cooling the memory chip

48/54



Software acquisition methods: More methods

• Operating system injection
• Injects OS into the subverted kernel of target machine

• Hibernation file
• Windows Hibernation file: hiberfil.sys

• Virtual machine imaging
• If the target is a virtual machine running on a VM monitor

(e.g, Xen, QEMU, VirtualBox, etc.), collect memory image by:

• Pause / stop the system and collect the image into a file
(downside the VM is offline), or

• Live dump a memory image (e.g., QEMU’s pmemsave)

49/54



Hardware acquisition methods: Dedicated hardware card

• Use of special hardware card to obtain the
forensic image of a computer’s RAM

• Uses Direct Memory Access (DMA)
• Hardware Card is installed as a dedicated

PCI device and is capable of saving
volatile information

• Limitation: prior installation of PCI card
before its use

• Beneficial when installed on critical servers

50/54



Hardware acquisition methods: Special hardware bus

• Alternative to PCI cards, several authors suggest reading
volatile memory via IEEE 1394 bus - Firewire

• Firewire devices have direct access to the computer’s memory
• Rarely used: random system crashes and reliability problems

51/54



Decision Matrix

• Decision matrix helps
investigators in
choosing a specific
memory acquisition
technique

• An ideal acquisition
method is
characterized by both
a high atomicity and
availability

52/54



Takeaways

• Volatile memory contains a wealth of valuable information

• Memory forensics deals with obtaining a memory dump and
performing analysis of relevant artifacts therein contained

• There are several memory acquisition techniques that can be
adopted offering different tradeoffs between availability and
atomicity

53/54



Pointers

• Textbook:
• Casey – Chapter 13.3
• Luttgens – Chapters 7.5, 7.6, 12.7

• Acknowledgements:
• Slides adapted from Nuno Santos’s Forensics Cyber-Security

course at Técnico Lisbon

54/54

https://syssec.dpss.inesc-id.pt/people/Nuno_Santos.html

	Temporal Analysis
	Time tracking
	Timestomping
	Digital Stratigraphy

	Memory analysis
	Memory analysis methodology
	Recovery of memory artifacts
	Memory acquisition techniques


