CS 798: Digital Forensics and Incident Response

Lecture 14 - Digital Stratigraphy & Memory Forensics

Diogo Barradas
Winter 2025

University of Waterloo

Temporal Analysis

e Now that we have all those OS-, network- and FS-related
artifacts, we want to establish a timeline of events:
e Help identify patterns, gaps, sequencing past actions, and lead
to other sources of evidence

File X executed Process running X opens network connection
File X downloaded FileY opened FileY is deleted

e Investigators resort to timestamps:
e From all sorts of sources: logs, file metadata, Registry, etc.

e Can we rely on timestamps? What if they have been tampered
with? Do we even have timestamps to start with?

2/54

1. Temporal Analysis
Time tracking
Timestomping
Digital Stratigraphy
2. Memory analysis
Memory analysis methodology

Recovery of memory artifacts

Memory acquisition techniques

3/54

Temporal Analysis

Temporal Analysis

e Forensic investigations usually require to know the time and
sequence of events

Fortunately, computers keep ample account of time

[)

e Temporal analysis consists in analyzing timing information
from digital artifacts

e File systems, in particular, are rich in maintaining timestamps

File X executed Process running X opens network connection

ry

File X downloaded FileY opened FileY is deleted

4/54

Computer timekeeping

Real Time Clock (RTC)

e Battery powered; keeps time while computer is shut down

e Used as basis for determining time when computer boots

System clock

e SW clock set from the RTC at boot plus HW timer
Network Time Protocol (NTP)

e Protocol for reliable synchronization of computer clocks
Network Identity and Time Zone (NITZ)

e Method to obtain time info from GSM network
Global Positioning System (GPS)

e Device sets its clock based on signals received from GPS

5/54

Time tracking in file systems

e MACtimes: three time attributes attached to any file or
directory in UNIX, Windows, and other systems
e atime: Last time the file or directory was accessed
e mtime: changes when a file's contents are modified
e ctime: keeps track of when the contents or meta-data about
the file has changed: owner, group, file permissions, etc.

e Sometimes this information is enriched with creation time

6/54

TSK tools for timestamp analysis

e TSK has several tools: mactime, fls, icat

e Example of mactime output:

Columns:
Date/Time size Activity Unix User Group inode File Name
(Bytes) Type Permissions Id Id
Example:
(oocd)
Thu Aug 21 2003 01:20:38 512 m.c - /-ruxrwxrwx 0 0 4 /filel.dat
900 m.c - /~TWXrWXIWX 0 0 8 /file3.dat
Thu Aug 21 2003 01:21:36 512 m.c. —/~TWXIWXTWX 0 0 12 /_ILES.DAT (deleted)
Thu Aug 21 2003 01:22:56 512 .a.. - /~rWXrwXrwx 0 0 4 /filel.dat
tooo))
MAC Meaning by File System
File System m a c b
Ext4 Modified Accessed || Changed Created
Ext2/3 Modified Accessed || Changed N/A M = Modified
FAT Written Accessed || N/A Created A = Accessed
C = Changed
NTFS File Modified || Accessed || MFT Modified || Created B = Created (Birth ed)

7/54

Access time patterns may emerge

e Check the two access time patterns below in two cases

Access Timestamp Updates for:

Copying a Folder Routine Access
1. 9:13:01 AM & Pfoject Aurora & ProjectAurora 1. 9:13:01 AM
2. 9:13:01 AM = & Engineering - > Engineering 2. 9:13:03 AM
3. 9:13:01 AM = (= Design == Design
Blueprint.dwg Blueprint.dwg 6. 9:21:47 aM
5. 9:13:03 AM = > Tests 3 Tests 3. 9:13:04 AM
Heat.xls Heat.xls
Vibration.xls Vibration.xls 4. 9:13:06 AM
8. 9:13:05 AM == Vendors == Vendors
McarthySmith.doc McarthySmith.doc 5. 9:17:25 aM
TBAC-Systems.doc TBAC-Systems.doc

e Access patterns may disclose past activities
e Useful in intellectual property theft — date-time stamps may
show what files were copied and when!

8/54

How reliable are timestamps?

e Several factors influence the accuracy of timekeeping on
computers and the interpretation of timestamps:
e System clock implementation
e Clock configuration
e Tampering

Synchronization protocol

Misinterpretation of timestamps

Bugs in software

9/54

Time and date issues in forensic investigation

o Clock skew

e The amount of time units (often seconds or milliseconds) by
which a clock deviates from the “real” time

e Unnormalized timestamps

e Represent timestamps taken in different time zones

10/54

Detection of clock skew

e In any investigation, it is important to assert if the device's
system clock was registering the correct time
e Compare with the time of an NTP-synced computer
e When the device is still operational

e Compare with external timestamps
e Generated outside the investigated device

e e.g., call logs, network logs, etc.

11/54

Normalization of timestamps

e Requires proper understanding of the various formats and time
zones in which timestamps are stored
e Ext2 timestamps in Unix time = total number of seconds since
01-01-1970 00:00:00 UTC
e If timestamps of different time zones, translate them into a
common time zone, e.g., UTC

12/54

Time forgery analysis and timestamp resolution

e Timestamps are not meant to be manipulated by the end user
e Mostly generated by OS (e.g., FS updates) and applications
(e.g., email)

e However, resourceful users can modify these timestamps using
various methods: this is called timestomping

e Criminals leverage timestomping so that file accesses /
modifications do not appear conspicuous to investigators

e Can we determine that timestomp programs have been used
for anti-forensic purposes?

13/54

Example date forgery analysis scenario

e Consider the following file, with local (PT) timestamps
e On the left, File Properties shows timestamps with

second-precision

e On the right, after using a time modification tool to change

timestamps
Sample.ba Properties ﬁ
General | Securty | Detais | Previous Versions |
[somplere
Type of fle: Text Document (bd)
Openswih: 7] Notepad Change.

Location: Z\.
Size: 1.06 KB (1.086 bytes)
Szeondisk: 4.00 KB (4,09 bytes)

Created Friday, January 31. 2014, 10:29:24 AM
Modfied: Frday. January 31, 2014, 10:38:17 AM

Accessed: Tuesday, March 25, 2014, 25027 PM

Agrbues: [~ Readonly [Hidden Advanced

[0] _coe | com |

—_—

Sample.txt Properties x|

General | Securty | Detais | Previous Versions |

Sample b

Type of fle: Text Document (bx)

Opens with: 7] Notepad Change.

Location: Z\.
Size: 1.06 KB (1.086 bytes)
Size ondisk: 4,00 KB (4,096 bytes)

Created Tuesday. August 20, 2013, 9:27:14 AM .

Modfied: Fiday, January 31, 2014, 10:38:17 AM

Accessed: Tuesday, March 25, 2014, 2:50:27 PM

Advanced.

Agrbutes: [~ Readonly [Hidden

| e |

14/54

NTFS timestamp resolution

e In NTFS, timestamps are stored as 8-byte file time values

e Represent the number of 100-nanosecond intervals that have
elapsed since 12:00 A.M. January 1, 1601
e NTFS timestamps have 100 nanosecond precision

e Below, the creation time before timestamp modification

Time value:“01 CFIEB25D98BDC8” >
01/31/2014 18:29:24.0336840 (UTC)

T 1z 3 1567
46 49 4C 45 30 00 03 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
EB 68 BA 44 ED BO CF 01
00 00 00 00 79 05 00 00
00 00 00 00 00 00 05 00
81 2C D4 9B B3 1E CF 01
3E 04 00 00 00 00 00 00
74 00 78 00 74 00 67 00
00 00 00 00 00 00 00 00
3E 04 00 00 00 00 00 00

TS A F D ET
CA EA 18 BS 9D 00 00 00
06 00 00 00 5C 34 01 00
48 00 00 00 18 00 00 00
ES 32 94 3B 74 48 CF 01
00 00 00 00 00 00 00 00
56 00 00 00 18 00 01 00
€7 D5 68 00 E4 BO CF 01
20 00 00 00 00 00 00 00
50 00 00 00 48 00 00 00
40 00 00 00 00 00 00 00
41 01 55 BD FO 00 00 00

A —
myﬁmmmmm
T oo
e
Falealonaioefoncalod
e
SRRl
I ma
L
T
e

6 19 1A 15 1C 10 1E IF
58 01 00 00 00 04 00 00
10 00 00 00 60 00 00 0O
81 2C D4 9B B3 1E CF 01
00 00 00 00 00 00 00 00
30 00 00 00 70 00 00 00
8 BD 98 5D B2 1E CF 01
00 10 00 00 00 00 00 00
70 00 6C 00 65 00 2E 00
00 00 00 00 00 00 00 00
3E 04 00 00 00 00 00 00
2D 2D 2 20 20 20 20 20

FILEO B W P
\:

" B
enegict d2vsent
v B.. 0
v £ Bt
1,65 1 Gon &Y &2*;eHE
sample.
txcge
]

> A VM8 9999,96 oo

Raw data from MFT file record showing creation time from $STANDARD_INFORMATION attribute

15/54

Gather information about the root partition

e After the timestamp manipulation, the updated creation
timestamp has lost its resolution beyond seconds

o2 Show File Timestamps A=l a2 Show File Timestamps =l

IZ.\SampIe bt |Z"-.Samp\e bt
Creation Date (UTC) 01/31/2014 18:29:24.0336840 Creation Date (UTC) 08/20/2013 16:27:14|0000000)
Creation Date (Local) 01/31/2014 10:29:24.0336840 Creation Date (Local) 08/20/2013 09:27:14}0000000)

Last Modification Date (UTC) 01/31/2014 18:38:17.9386497 Last Modification Date (UTC) 01/31/2014 18:38:17.9386497

Last Modification Date (Local) 01/31/2014 10:38:17.9386437 Last Modification Date (Local)
Last Accessed Date (UTC) 03/25/2014 21:50:27.0008037

Last Accessed Date (Local) 03/25/2014 14:50:27.0008037

01/31/2014 10:38:17.9386497
Last Accessed Date (UTC) 03/25/2014 21:50:27.0008037
Last Accessed Date (Local) 03/25/2014 14:50:27.0008037

Original After modification
16/54

Some strategies for timestomping detection

e Anomalies in timestamp format (ending in zeros)

e Relies on the limitation of tools that are used to modify the
timestamp; the timestamp resolution stops at second level and
everything else (all the way to the last 100ns) is set to zero

e Inconsistencies with other timing sources

e e.g., compared with the Windows Event log

17/54

Digital stratigraphy

o Useful when time markers are obliterated

e Stratigraphy: The study of rock layers

e Predicts the age of natural
artifacts based on the

Youngest
sedimentary
layer

principle that upper layers
are younger than the layers

underneath

Oldest
sedimentary
layer

e The idea is to employ a
similar approach in the
digital realm

Law of Superposition T

18/54

Establishing a time order

e Digital stratigraphy studies file system traces and writing
patterns to infer time-related facts
e Let's showcase two representative techniques with a challenge:
e Consider files A and B — was A written earlier or later than B?
e In both techniques, the idea is to establish a time order
between both these files, but using different “digital layers”

19/54

1. Based on how data was overwritten

e Suppose file A was first created and fits into one block

File A

e Then, A was deleted and that block was unallocated

o Later file B was created, the OS reallocated the same block,
but B is a smaller file that A

File B (old) File A

20/54

Breaking it down

e This is what the forensic analyst will be able to retrieve

File B (old) File A

T
File slack space

e We can conceptualize this into two different layers:

Layer | File B

Layer 0 FileA

e So, even if we do not have timestamp info about B, but we
have about A, then we can still say that B is likely more recent
than A

21/54

Additional considerations

e May need to look for other time reference points
e Date-time info exists in Word files, directory entries, cookie
files, Internet- related files, event logs, etc.
e The insight was based on knowledge on how the OS reallocates
blocks of formerly deleted files and effect of slack space
e Once deleted, these files form an underlying layer of
time-related data upon which newer files are saved
e But this principle can be more broadly applied, e.g., layers
preserved after disk formatting
e e.g., computer running Linux was found with numerous
Windows files in unallocated space that contain hardware
specific info (e.g., NIC address)
o It is likely that the computer was running Windows before!

22/54

2. Based on data positioning

e Suppose now that A uses 3 blocks when created

| 2 3 4 5 6 7 8 9 10

e Now, file B is created in block #1, and it keeps increasing
until it requires 5 blocks:

| 2 3 4 5 6 7 8 9 10

e The OS will typically try to find contiguous blocks but, in this

case, fragmentation will occurr

23/54

Breaking it down

e This is what the forensic analyst will be able to retrieve

| 2 3 4 5 6 7 8 9 10

e We can conceptualize this into two different layers:

Layer | | 2 3 4 5 6 7 8 9 10

Layer 0 | 2 3 4 5 6 7 8 9 10

e So, even if we do not have timestamp info about neither of
files, we may likely infer that B is likely more recent than A

24/54

Additional considerations

e The insight was based on knowledge on how the OS allocates
blocks to files and effect of fragmentation

e Two pieces of a file located in blocks on either side of a large,
contiguous file
e It is likely that the contiguous file is older

e However, these techniques are not infalible because there
might be other effects taking place

e Thus, it is always important to look for other potential sources

for supporting or dispelling these hypotheses

25/54

Takeaways (1)

e Temporal analysis is fundamental in digital forensics for
establishing a timeline of events

e In performing temporal analysis, we may have to deal with
several challenges, including timestomping, and may leverage
emerging stratigraphy techniques

26/54

Pointers (1)

e Textbook:

e Casey — Chapters 16.6, 17.1.2-4, Carrier — Chapters 11-12,
Luttgens — Chapter 12.1

27/54

We talked a lot about file systems...

Application
Analysis

Database
Analysis

File System
Analysis

/

\Volume Analysis|

\ Physical Storage Media Analysis\ \Network Analysis

Source: ,File System Forensic Analysis”, Brian Carrier

e |s it possible to recover formerly deleted files?
e How to recover deleted files when no metadata is available?

28/54

Memory analysis

Memory forensics: Dump & analyze

e Dump physical memory (RAM)
e Lots of potentially relevant data
e Current running processes and terminated processes
e Open TCP/UDP ports/raw sockets/active connections
e Memory mapped files: executable image, shared libs,
modules/drivers, text files
e Caches: Web addresses, typed commands, passwords,
clipboards, SAM database, edited files
e Hidden data, encryption keys and many more

e Analyze the RAM

e Enumerate different program structures, signature based
carving, find text strings, virus scans, network connections, etc.

29/54

Example: Dump and analyze RAM memory

e We are analyzing a Windows workstation, suspected to be
infected by malware
e Look for evidence of that program residing in memory
e First, make a dump of physical memory inside the workstation
e mdd.exe copies the contents of a computer’s physical memory
to a file

cv C:\WINDOWS\system32\cmd.exe

IC:\>mdd.exe —o memdump.raw
-> mdd

ManTech Physical Memory Dump Utility

Copyright <(C> 2088 ManTech Security & Mission Assurance

This program comes th ABSOLUTELY NO WARRANTY; for details use option °
This software, and you are welcome to redistribute it
under certain conditions; use option ‘-c’ for details.

Dumping 199.48 MB of physical memory to file ’memdump.raw’ .

58717 map operations succeeded <8.99>
351 map operations failed

took 23 seconds to write
MD5 is: 9f5e984clbcef8675ee@hf ?h439098h1

N>

30/54

Evaluate gathered evidence

e The volatility framework helps interpret kernel data structures
from the memory dump

e First, check if the malware was communicating with external

server by displaying active connections

e enisa@enisa-VirtualBox: ~/enisa/forensic2

enisa@enisa-VirtualBox: i ic2$ vol.py -f memdump.raw connections
Volatile Systems Volatility Framework 2.1

Offset(V) Local Address Remote Address Pid

0x811d0680 192.168.0.44:1044 172.27.128.9:
enisa@enisa-VirtualBox:~/eni forensic2$ I

e The computer had an active connection with IP
172.27.128.9:80 (the suspect malicious server)

e Next, follow the lead of the associated PID

31/54

Evaluate gathered evidence

e Use volatility to list which windows process ID (PID) has
opened the connections: 236

o enisa@enisa-VirtualBox: ~/enisa/forensic2

entsagentisa-VirtualBox:~/ fo 25 vol.py -f memdump.raw pslist
Volatile Systems Volatility Framework 2.1
offset(V) Name P! Wow64 Start

©x8132b020 System
0x81231C60 sSmss.exe
0x8119b698 csrss.exe
winlogon. exe
0 services.exe
1sass.exe
VBoxService.exe
svchost.exe
svchost.exe
svchost.exe
svchost.exe
svchost.exe
spoolsv.exe
explorer.exe
® VBoxTray.exe
exffa7b280 msmsgs.exe 12
oxffa7a660 emneo.exe 2 0 ----e-- - 2013-08-26 15:32:13
oxffodedes alg.exe 6
oxffbb7228 wscntfy.exe
taskmgr . exe
0 cnd.exe
wpabaln.exe
dd . exe

sa@enisa-VirtualBox:~/enisa

32/54

Evaluate gathered evidence

e Under normal circumstances, explorer.exe should not make
any external connections
e Hypothesis: check whether the binary has been modified or if
other process injected malicious code into one of explorer’s
threads
e Test by checking if API hooking was used for modifying a
program at runtime

e Run volatility to extract the APl hooks used by the application
for making system calls

enisa@enisa-VirtualBox: ~/enisa/forensic2

enisa@enisa-virtualBox: fo ic2$ vol.py -f memdump.raw apihooks > data/apihooks.out

33/54

Evaluate gathered evidence

e Let's find what processes memory space contained API hooks

with something registered:

[x) enisa@enisa-VirtualBox: ~/enisa/forensic2/data
lenisa@enisa-VirtualBox:~/enisa/forens data$ cat apihooks.out | grep Process | sort -u
: 1356 (wpabaln.exe)
1432 (cmd.exe)
200 (wscntfy.exe)

236 (explorer.exe)
288 (VBoxTray.exe)
340 (taskmgr.exe)
744 (mdd.exe)
lenisa@enisa-VirtualBox:~/enisa

e Let's check the explorer.exe hook reported inside

apihooks.out:

T O e
Hook mode: Usermode

Hook type: Inline/Trampoline

Process: 236 (explorer.exe)

victim module: ntdll.dll (0x7c900000 - ©x7c9b0OOO)

Function: ntdll.dll!NtCreateThread at 0x7c90d7d2

Hook address: ©x1246989

Hooking module: <unknown>

Plain Text ~ Tab width: 8 Ln1,Col1 INS

34/54

Evaluate gathered evidence

e Extract the memory space of explorer.exe from the

computer memory image:

(x] enisa@enisa-VirtualBox: ~/enisa/forensic2

enisa@enisa-VirtualBox:~/ rensic2$ vol.py -f memdump.raw memdump -p 236 -D data/
Volatile Systems Volatility Framework 2.1

e e e ek o ok ko ko ok ko ok ko ok ok ok ok ok ko ko ok ok ok ok ok ok ok ok ok ok ok ke ko

Writing explorer.exe [236] to 236.dmp

enisa@enisa-VirtualBox:~/ rensic2$

e Continue with the investigation looking for evidence of

malicious code injected into explorer.exe process . ..

35/54

Primer on memory organization

2 |sm
B Physical
g Heap addressees
g Daza
e Processors with MMU 7| o
(Memory Management Unit) S PO 1 S
Process #2
support the concept of .
| Code
virtual memory 2 |5 ke
g Eeap : 0S Kernel
e However, it has limitations 3
in general case: [R
» -
05 Kernel
e Page tables are set up by oxon00
the kernel to map virtual -
addresses to physical
addresses 3
B
5P - Stack Dointer (the address hold by ZSDP register. 36/54

EC - Program counter.

Virtual address translation

e Programs operate on virtual

memory regions me‘ ™3 H e ‘

index index index
e Volatile storage is organized [el
into units called pages ‘
Irdex Irckex d [~ Desired page
. . noex
e Size of pages is 4 KB on x86 L L T
platforms PDE——T PN \—— Desire byte
m——T
C TWO IeVel approaCh to Pagg directory Pagetables Physkal address
ona per process, 1024 entries) {upto 512 per pracess space
reference a page phsup 512 s

1024 entries per table)

37/54

Memory address space layout

e In Microsoft Windows, each
process has its own private
virtual address space

e 32 bit x86 user is equipped
with 2 GB of virtual memory

e |n 64-bit Windows, the
theoretical amount of
virtual address space is
264 bytes (16 exabytes),
but only a small portion
of this range is used.

e Size of pages is 4 KB on x86

e Kernel space is shared
among system components

User

00000000

A ddres:
Space
(26G8)
TFFFFEFF
7FFFFO00
64-KB o access ares
80000000
Kermel and exeus
HAL
Baot drivers
C0000000
Symem Process page bles
Addus C0400000
Space
e Hyperspace
(26G8) C0800000
System cache
Paged pool
Nonpaged pool
FFC00000
Aeserved for
HAL usage
FFFFFFFF

Interpretation of physical memory dumps

e Once a memory dump has been performed, it is necessary to
interpret the raw memory contents

Main approaches to memory reconstruction:
e Tree and list traversal (data structure traversal)
e Memparser, KnTTools and KnTList, WMFT

Object fingerprint / pattern searches
e PTFinder / PoolFinder

Both methods (modern tools)
e Volatility, Mandiant Memoryze

39/54

Tree / list traversal basics

e Find index into lists and tables of interesting structure, and
follow them through to reconstruct the data

EPROCESS EPROCESS EPROCESS
_LIST_ENTRY { _LIST_ENTRY { _LIST_ENTRY {
Flink +| Flink #| Flink
Blink } |- Blink } [*+— Blink ¥

e EPROCESS linked list is a common example, with pointers to:
e ETHREAD structures
e Security identifier (SID) of starting user
e Start time, PID and other metadata in PEB (Process
Environment Block)
e Process virtual memory pages 40/54

Fingerprint / pattern searching basics

e Search for relevant patterns in memory
e Scan for sufficiently unique structure signatures
e e.g., PoolFinder parses kernel pool memory (pre-allocated 4k
memory pool pages)
e e.g., PTFinder works with EPROCESS and ETHREAD structs
(_DISPATCHER HEADER)
e Perform basic sanity checks on data to weed out corrupt
records, duplicates etc.

41/54

Pros and cons

Pros
Cons

e List traversal :

_ e List traversal

e Can stitch together more
related records from

kernel perspective

e Can miss unlinked, dead
structures

e Pattern search
e Pattern search
e Find unlinked, dead
structures (warm reboot)
e Can work with imperfect

e Less context without
following related
structures/objects

e Susceptible to rubbish
dumps

42/54

Volatility: a memory analysis framework

e Volatility modules (Python)

e Functionality can be
extended w/ plugins

e Implements the methods
outlined before
e Framework
e Suitable for high degree
forensic tasks
e Requires expertise
e Aimed at academic
researchers and
professionals

Table A.

- Integral modules of the volatility memo:

forensics framework

Module name

Description

connections

connscan?

dlllist

files

getsids

hivelist

Locates the _TCETable hash table in the
tcpip.sys driver file and traverses the
singly linked list of _TCeT_0BJECT entries
to open network l

on the target system (see Section 4.4).
Scans the non-paged pool of the operating
system for allocations that contain
information about open network
connections (see Section 4.4).

Retrieves the base address, size, and path
of all dynamically loaded libraries (DLLs)
that are referenced by a running
application. For this operation, the Ldr
structure of the Process Environment Block
(PEB) is parsed. It stores three doubly
linked lists of _LOR_DATA_TABLE_ENTRY
types that hold the respective information
(see Section 4.5).

Retrieves thelistof open file handles thatis
maintained by a process (see Section 4.5).
Reconstructs the security context of

a process to retrieve the list of user and
group SIDs (Security Identifiers) the
application is associated with (see Section
46)

Prints the virtual address and name of 43 /54
hive that i

Y 1 WP S MR S S

Acquisition of volatile memory

e Several tradeoffs when choosing the acquisition technique:
e Time of installation: prior to incident or post incident
e Access to system: local or remote
e Access to main memory: pure hardware vs. software
e Required privileges: user vs. administrator
e Impact on system: live vs. post mortem

e Two main factors can be used to help make a decision:

e Atomicity: how close to the present memory state can the
forensic memory snapshot be retrieved

e Availability: whether the tools necessary to perform memory
acquisition are available or not

44/54

Software acquisition methods: User level applications

e Based on user-level applications for memory dumping

e Acquire copy of physical memory (e.g., avml)

e Attach to target process or read from OS-provided interface
(e.g., /dev/mem, /dev/crash, /proc/kcore)

e Strengths of this technique:

e Good for incident scenarios

e Capturing forensic image even in situations with little time
e Weaknesses of this technique:

e May only work on specific operating systems

e Applications must be loaded into memory before execution

e Depends on functions of the operating system (rootkit may

deny access to physical memory or modify the RAM)

45/54

Software acquisition levels: Kernel level applications

e Leverage a kernel driver / module to access physical memory
without restrictions (e.g., LIME)
e For incidents involving Linux, fmem kernel module, e.g., allows
for dumping the target's memory
e To use fmem, compile the module and then load it into the
running kernel
e This operation creates a new /dev/fmem pseudodevice
e After loading fmem, use dd to dump the memory to a file

dd if=/dev/fmem of=memory.dd bs=1MB count=512]

e Downsides: this process causes changes in the system state

4654

Software acquisition levels: Software crash dumps

Microsoft Windows dumps files to hard disk in case of failure

Preserves the contents of processor registers

Dump files can be opened

e Debugging Tools
e Manually

System services may be interrupted

e Third party application
e Built-in CrashOnCtrlScroll

If explicitly triggered, this acquisition is more invasive

47/54

Software acquisition methods: Warm and cold boots

e RAM retains memory as long as power is provided
e Warm boots refer to reboot methods in which power is never
removed from the memory module (e.g., press reset button)
e Tools like msramdump or afterlife act like minimal OS-es
that can save memory to disk
e When the RAM is cleared by the BIOS, replacing the BIOS
can be an option
e Cold boot refers to reboot methods in which power is removed
from the memory module (e.g., pull the plug and reboot)

o RAM retains contents for 2-3 seconds

e Retention time can be extended for up to an hour
by cooling the memory chip

48/54

Software acquisition methods: More methods

e Operating system injection

e Injects OS into the subverted kernel of target machine
e Hibernation file

e Windows Hibernation file: hiberfil.sys

e Virtual machine imaging

e If the target is a virtual machine running on a VM monitor
(e.g, Xen, QEMU, VirtualBox, etc.), collect memory image by:

e Pause / stop the system and collect the image into a file
(downside the VM is offline), or
e Live dump a memory image (e.g., QEMU's pmemsave)

49/54

Hardware acquisition methods: Dedicated hardware card

Use of special hardware card to obtain the
forensic image of a computer's RAM
e Uses Direct Memory Access (DMA)

e Hardware Card is installed as a dedicated
PCl device and is capable of saving
volatile information

e Limitation: prior installation of PCI card
before its use
e Beneficial when installed on critical servers

50/54

Hardware acquisition methods: Special hardware bus

e Alternative to PCI cards, several authors suggest reading
volatile memory via IEEE 1394 bus - Firewire

e Firewire devices have direct access to the computer’'s memory
e Rarely used: random system crashes and reliability problems

IEEE 1394(AKA Firewire, I-Link)
6-pin

=TABLEAU

Solutions for the Digital Evidence Lifecycle®

T9 FireWire Forensic Bridge

51/54

Decision Matrix

e Decision matrix helps

Availability
. . . high
investigators in o R
. e Cold Booting G/E
choosing a specific 2
Kernel Level

Applications

memory acquisition ——
o o
technique r——
Atomicity Technique

@
e An ideal acquisition o
method is 6%@
characterized by both
a high atomicity and G\\,@

availability

O

Operating
System Injection

high

52/54

e Volatile memory contains a wealth of valuable information

e Memory forensics deals with obtaining a memory dump and

performing analysis of relevant artifacts therein contained

e There are several memory acquisition techniques that can be
adopted offering different tradeoffs between availability and
atomicity

53/54

e Textbook:

e Casey — Chapter 13.3
e Luttgens — Chapters 7.5, 7.6, 12.7

e Acknowledgements:

e Slides adapted from Nuno Santos’s Forensics Cyber-Security
course at Técnico Lisbon

54/54

https://syssec.dpss.inesc-id.pt/people/Nuno_Santos.html

	Temporal Analysis
	Time tracking
	Timestomping
	Digital Stratigraphy

	Memory analysis
	Memory analysis methodology
	Recovery of memory artifacts
	Memory acquisition techniques

