# CS 798: Digital Forensics and Incident Response Lecture 12 - Network Traffic Analysis

Diogo Barradas

Winter 2025

University of Waterloo

### Evidence in network traffic



- What are the major sources of evidences from the network?
- Which techniques can be used to extract and analyze them?

## Network traffic analysis



- Allow us to collect information from network traces
- A network trace is a linearized bit-copy of collected data exchanged over the network
- Packet analysis, flow analysis, protocol analysis

# Why would we want to analyze traffic?

- Detection of potential / and actual attacks
  - e.g., port scans, denial of service attacks
- Reverse engineering of communication protocols
  - e.g., analysis of botnet chatter, or proprietary protocols
- Inspect the contents of communications
  - e.g., intercept message exchanges, carve out file transmissions
- Detect payload patterns
  - e.g., website fingerprinting, DRM-protected content, Tor traffic

## Outline

1. Packet analysis techniques

2. Flow analysis techniques

3. Protocol analysis techniques

Packet analysis techniques

### Packet sniffers and network traces

- Packet sniffing is the act of looking at packets as computers pass them over networks
- Packet sniffing is performed using packet sniffers
  - These programs are designed to capture raw data as it crosses the network and translate it into a human readable format for analysis
  - Can be used to capture only relevant packets
- Packet sniffers range from simple, command-line programs, like tcpdump, to complex programs with GUI

# Where packet sniffers are usually placed



# Packet sniffers: tcpdump

- tcpdump is the grandfather of open source packet sniffers
- Uses libpcap, which contains a set of system- independent functions for packet capture and network analysis
  - Also used by Wireshark



# Packet analysis

- Involves the examination of contents and/or metadata of one or more packets
- Conducted to identify packets of interest and develop a strategy for flow analysis or content reconstruction

- There are many tools available for packet analysis
  - e.g., Wireshark (and tshark), ngrep, ...



# Main packet analysis techniques

## • Parsing protocol fields

 Extract the contents of protocol fields within packets of interest (e.g., obtain TCP fields of packets)

### Packet filtering

 Separate packets based on the values of fields in protocol metadata (e.g., filter interesting conversation snippet)

### Pattern matching

• Identify packets of interest by matching specific values within the packet capture (e.g., keyword search)

## Pattern matching

- Search the packet capture for patterns of interest
- Pattern examples:
  - 1. String match
  - 2. Source/destination match
  - 3. Numerical properties

# Analysis by string matching

- String search in packet headers
  - 1. Many applications have pure textual identifiers
  - 2. Very easy if in a specific location within a packet
  - 3. Uniqueness not always guaranteed



# Analysis by string matching

- String search in packet payload
  - 1. Example: Packets containing string from some list

```
$ ngrep -I evidence01.pcap 'secret|recipe|Ann '
input: evidence01.pcap
match: secret|recipe|Ann
T 192.168.1.158:51128 -> 64.12.24.50:443 [AP]
*..a..... E4628778 .... Sec558user1 ........ Here 's
the secret
recipe ... I just downloaded it from the file server. Jus
t copy to a thumb drive and you 're good to go &gt::-) ....
T 192.168.1.158:51128 -> 64.12.24.50:443 [AP]
DEST
..... '.... recipe.docx.
```

## Analysis by source/destination

• Example: Packets from 117.17.199.20 to 239.192.152.143

```
■ D:₩유틸리티₩포렌식 둘₩ngrep-1.45-win32-bin₩Debug₩ngrep.exe
 117.17.199.20 -> 239.192.152.143 22:0
 fe80::fc1d:c37d:13ef:f5fe -> ff02::16
 117.17.198.98:57200 -> 239.255.255.250:3702
 <?xml version="1.0" encoding="utf-8"?\timessoap:Envelope xmlns:soap="http://www</pre>
  .w3.org/2003/05/soap-envelope" xmlns:wsa="http://schemas.xmlsoap.org/ws/200
 4/08/addressing" xmlns:wsd="http://schemas.xmlsoap.org/ws/2005/04/discovery
 "×soap: Header×wsa: To>urn; schemas-xmlsoap-org; ws; 2005; 04; discover√/wsa; To
 ×wsa: Action>http://schemas.xmlsoap.org/ws/2005/04/discovery/Resolve</wsa: A
 ction~wsa: Message ID>urn: uuid: a2d628ca-9862-40c3-b9cd-35b4cf2f868f</wsa: Mes
 sage ID×/soap: Header×soap: Body×wsd: Reso I ve×wsa: EndpointReference×wsa: Ad
 dress>urn:uuid:1c852a4d-b800-1f08-abcd-2c59e5b40196</wsa:Address×/wsa:Endp
 ointReference×/wsd: Resolve×/soap: Bodv×/soap: Envelope>
 117.17.199.20:58794 -> 239.192.152.143:6771
 BT-SEARCH * HTTP/1.1.. Host: 239.192.152.143:6771.. Port: 6881.. Infohash: cbd
 97ea543c18c7aa11af92968e1c2840517a9c3..cookie: 9dee7ac6.....
```

# Analysis by numerical properties

- One can look beyond content and focus on metadata:
  - 1. Packet size
  - 2. Payload/message length
  - 3. Position within packet
- Statistics: on average payload size is between X to Y
  - 1. Very effective analysis when applications use encryption



## Use Case #1: Inspecting individual packets



# Packet network layers

- Packets are encoded according to network layers
  - Each layer plays a role in abstracting out details of lower levels



## Wireshark lets us navigate across each layer



## Ethernet frame of an IP packet



Data

(46 - 1500 bytes)

(4 bytes)

MAC Header

(14 bytes)

#### The Internet Protocol





## Parsing the IP packet payload



#### The TCP Protocol





## **HTTP Request**



Hypertext Transfer Protocol (http), 478 bytes Packets: 3674 · Displayed: 3674 (100.0%) · Load time: 0:0.36 Profile: Default

# Use Case #2: Detection of port scans

- Port scan attacks: aim to detect whether or not there is a service listening on a specific port
- Main techniques
  - SYN scan
  - ACK scan
  - UDP scan

#### TCP review: TCP header



# TCP review: TCP 3-way handshake

- Client sends a SYN to the server. Client sets the segment's sequence number to rand value m
- Server replies with a SYN-ACK. The ack number is set to m+1, and the sequence number that the server chooses for the packet is
- Client sends an ACK back to the server



## TCP review: Connection setup



#### SYN scan

- One of the most common scans out there today
  - If there is a service, then that would elicit a SYN/ACK
  - If the result is RST/ACK then there is no service listening
- SYN scan to 192.168.1.100 on port 80

```
14:08:49.973455 IP (tos 0x8, ttl 64, id 64574, offset 0, flags [none], length: 40) 192.168.1.102.2640 > 192.168.1.100.80: S [tcp sum ok] 1104445670(0) win 512 0x0000: 4508 0028 fc3e 0000 4006 fa6e c0a8 0166 E..(.>.@..n...f 0x0010: c0a8 0164 0a50 0050 41d4 80e6 4ad4 27ec ...d.P.PA...J.'. 0x0020: 5002 0200 e9ac 0000 P.....
```

#### **UDP** scan

- Useful for discovering UDP based services such as DNS
  - If computer has a service listening you will get nothing back
  - Otherwise, you will get an ICMP port unreachable message
- UDP scan to 192.168.1.100 on port 53

```
14:27:09.947037 IP (tos 0x10, ttl 64, id 22934, offset 0, flags [none], length: 28) 192.168.1.102.2695 > 192.168.1.100.53: [udp sum ok] [|domain] 0x0000: 4510 001c 5996 0000 4011 9d10 c0a8 0166 E...Y...@.....f 0x0010: c0a8 0164 0a87 0035 0008 7107 ...d...5..q.
```

## Analysis by source / destination

- Port scan using TCP ports from a user-defined list
  - From host holmes to host watson (responses not shown)

```
13:21:45.010117 holmes.4033 > watson.220: S 93266:93266(0) win 8192
13:21:45.011128 holmes.4003 > watson.ftp: S 92918:92918(0) win 8192
13:21:45.012014 holmes.4005 > watson.telnet: S 92946:92946(0) win 8192
13:21:45.013095 holmes.4004 > watson.22: S 92932:92932(0) win 8192
13:21:45.014107 holmes.4019 > watson.110: S 93094:93094(0) win 8192
13:21:45.015865 holmes.4010 > watson.63: S 93016:93016(0) win 8192
13:21:45.016763 holmes.4021 > watson.nntp: S 93106:93106(0) win 8192
13:21:45.018001 holmes.4016 > watson.80: S 93076:93076(0) win 8192
13:21:45.018091 holmes.4017 > watson.92: S 93154:93154(0) win 8192
13:21:45.018997 holmes.4031 > watson.396: S 93288:93288(0) win 8192
13:21:45.019562 holmes.4031 > watson.215: S 93238:93238(0) win 8192
13:21:45.020017 holmes.40002 > watson.17: S 92912:92912(0) win 8192
```

- Site scan for any Web servers (listening on port 80)
  - Host foo.example.net hits hosts on 192.168.77.0 subnet

```
13:21:45.012014 foo.example.com.1090 > 192.168.77.27.80: S 92946:92946(0) win 8192 13:21:45.013095 foo.example.com.1092 > 192.168.77.28.80: S 92932:92932(0) win 8192 13:21:45.014107 foo.example.com.1093 > 192.168.77.28.80: S 93094:93094(0) win 8192 13:21:45.015865 foo.example.com.1095 > 192.168.77.30.80: S 930916:93016(0) win 8192 13:21:45.01563 foo.example.com.1095 > 192.168.77.31.80: S 93106:93106(0) win 8192 13:21:45.018001 foo.example.com.1097 > 192.168.77.31.80: S 93076:93076(0) win 8192 13:21:45.018001 foo.example.com.1100 > 192.168.77.32.80: S 93076:93076(0) win 8192 13:21:45.018097 foo.example.com.1100 > 192.168.77.34.80: S 93280:93280(0) win 8192
```

## Use case #3: Detection of DDoS attacks

- UDP flood
  - Flood random ports on a remote host with UDP packets
- ICMP flood
  - Overwhelm the target with ICMP Echo Request (ping) packets
- Smurf attack
  - Send ICMP packets with the victim's spoofed source IP
- SYN flood
  - Send multiple SYN requests, but either does not respond to SYN-ACK response, or sends SYN requests from a spoofed IP
- Amplification
  - e.g., exploit publically-accessible NTP servers to overwhelm the targeted server with UDP traffic
- HTTP flood
  - Seemingly-legitimate HTTP GET or POST requests to attack a web server or application

Flow analysis techniques

#### Go with the flow

- In RFC 3679, a flow is defined as:
  - "a sequence of packets sent from a particular source to a particular unicast, anycast, or multicast destination that the source desires to label as a flow"
- A flow can consist of all packets in a specific transport connection or a media stream
  - But, not necessarily 1:1 mapped to a transport connection
  - Can be constructed upon other L4 protocols, including UDP

# Flow analysis

- Flow analysis consists in examination of sequences of related packets (i.e., flows)
- Conducted to identify traffic patterns, isolate suspicious activity, analyze higher-layer protocols, or extract data
- Examples of flow analysis tools: Wireshark, tcpflow, pcapcat



# Summary of flow analysis techniques

#### 1. List flows

 List all flows within a packet capture, or only specific flows based on their characteristics

#### 2. Export a flow

- Isolate a flow, or multiple flows, and store the flow(s) of interest to disk for further analysis
- 3. File and data carving
  - Extract files or other data of interest from reassembled flow

#### 1. List flows

- Listing conversations (TCP streams) using tshark
  - 192.168.1.158 on TCP port 5190
  - host involved in the conversation was 192.168.1.159
  - 1,042 bytes were transferred



#### 2. Export a flow

| 29 HewlettP_45:a4:bb | Dell_4d:4f:ae                                                                       | ARP                                                                                                                                        | 192.168.1.158 is at 00:12:79:45:a4:bb                                                                          |
|----------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|                      |                                                                                     |                                                                                                                                            |                                                                                                                |
| 25 192.168.1.159     | 192.168.1.158                                                                       | TCP                                                                                                                                        | cspmlockmgr > aol [SYN] Seq=0 Win=64240 Len=0 MSS=1460                                                         |
| 30 192.168.1.158     | 192.168.1.159                                                                       | TCP                                                                                                                                        | aol > cspmlockmgr [SYN, ACK] Seq=0 Ack=1 Win=5840 Len=0 MSS=1460                                               |
| 60 192.168.1.159     | 192.168.1.158                                                                       | TCP                                                                                                                                        | cspmlockmgr > aol [ACK] Seq=1 Ack=1 Win=64240 Len=0                                                            |
| 84 192.168.1.158     | 192.168.1.159                                                                       | TCP                                                                                                                                        | aol > cspmlockmgr [PSH, ACK] Seq=1 Ack=1 Win=5840 Len=256                                                      |
|                      | 192.168.1.158<br>160 192.168.1.159<br>184 192.168.1.158<br>2 bytes on wire, 62 byte | 00 192,168.1,158 192,168.1,159<br>00 192,168.1,159 192,168.1,159<br>004 192,168.1,158 192,168.1,159<br>2 bytes on wire, 62 bytes captured) | 90 192.168.1.158 192.168.1.159 TCP<br>90 192.168.1.159 192.168.1.158 TCP<br>90 192.168.1.158 192.168.1.159 TCP |

- Frame #109 is part of the TCP stream of interest
  - 192.168.1.158 -192.168.1.159 on TCP port 5190



 "Follow TCP Stream" function to isolate TCP stream, and select direction which appears to contain OFT2 file

#### 3. File / data carving

- Carve a file out of the captured network traffic
  - A .docx file has the "magic number" 0x50 0x4B



 To determine the file ending, add the file size number determined from the OFT header (omitted here)

### **Netflow logs**

- Technology by Cisco that collects and categorizes IP traffic as it passes through the supported network devices
- Built into the supported devices, NetFlow does not collect the entire payload of the network packets
  - It creates a cache on the router for each new flow



# Netflow logs and its benefits to forensics

- NetFlows logs flows, not TCP connections!
- For each TCP connection, NetFlow records two flows
- Benefits:
  - Greatly reduce the amount of data needed to be analyzed
  - Simpler to identify any suspicious traffic for future investigation

# Which packets belong to individual flows?

- As IP packets come into a supported device interface, NetFlow scans them for the following seven fields:
  - 1. Source IP address
  - 2. Destination IP address
  - 3. Source port number
  - 4. Destination port number
  - 5. IP protocol
  - 6. Type-of-service (ToS) byte
  - 7. Input logical interface
- If these fields match an existing flow the byte count for the flow entry is incremented within the device cache
  - Else the packet is part of new flow

#### NetFlow listing example



# Protocol analysis techniques

#### Protocol analysis

- Aim to understand how a particular communication protocol works, what it's used for, how to identify it, how to dissect it
- Many protocols are deliberately kept secret:
  - By their inventors to protect intellectual property, keep out competition, or security and covert communications
  - By attackers to bypass IDS (Intrusion Detection Systems) firewall rules, smuggle data in strange places, and generally create mayhem

# Where to get information on protocols

- IETF Request for Comments (RFC)
  - Perhaps the most well known public repository of documented protocols
  - RFC: any thought, suggestion, etc. related to the Internet network
- Other standard bodies
  - Institute of Electrical and Electronics Engineers Standards Association (IEEE-SA)
  - International Organization for Standardization (ISO)
- Vendors
  - Cisco: RFC2784
  - Microsoft: communications protocols used by Window server, clients
- Researchers
  - Russian researcher Alexandr Shutko has published his "Unofficial" OSCAR (ICQ v7/v8/v9) protocol documentation

# Protocol identification techniques

- 1. Search for common binary/hexadecimal/ASCII values that are typically associated with a specific protocol
- 2. Leverage information in the encapsulating protocol
- Leverage the TCP/UDP port number, many of which are associated with standard default services
- 4. Analyze the function of the source or destination server (specified by IP address or hostname)
- 5. Test for the presence of recognizable protocol structures
- 6. Check metadata for matches with known protocols

### 1. Search values associated w/ specific protocol

- Search for common binary/hexadecimal/ASCII values that are typically associated with a specific protocol
  - Most protocols contain sequences of bits
  - Present in packets associated with that protocol, in predictable places
  - Hexadecimal sequence 0x45 0x00 often marks the start of an IPv4 packet

### 2. Information in the encapsulating protocol

- Leverage information in the encapsulating protocol
  - Protocols often contain info that indicates the type of encapsulated protocol
  - OSI model, lower-layer protocol fields typically indicate the higher-layer protocol that may be encapsulated, to facilitate proper processing



# 3. Leverage the TCP/UDP port number

- Examine the TCP or UDP port number in use
  - Many of which are associated with standard default services

| Internet Protocol (IP)<br>Port(s) | Protocol(s) | Description                                                                                                                                                           |
|-----------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 80                                | TCP         | HTTP, commonly used for Web servers                                                                                                                                   |
| 443                               | TCP         | Hypertext Transfer Protocol Secure<br>sockets (HTTPS) for secure Web<br>servers.                                                                                      |
| 53                                | UDP and TCP | Domain Name Server/Service (DNS)<br>for resolving names to IP addresses                                                                                               |
| 25                                | TCP         | Simple Mail Transfer<br>Protocol(SMTP), used for sending<br>e-mail                                                                                                    |
| 22                                | TCP         | The Secure Shell (SSH) protocol                                                                                                                                       |
| 23                                | TCP         | Telnet, an insecure administration protocol                                                                                                                           |
| 20 and 21                         | TCP         | An insecure Fire Transfer Protocol (FTP)                                                                                                                              |
| 135–139 and 445                   | TCP and UDP | Windows file sharing, login, and<br>Remote Procedure Call (RPC)                                                                                                       |
| 500                               | UDP         | Internet Security Association and<br>Key Management Protocol<br>(ISAKMP) key negotiation for<br>Secure Internet Protocol (IPSec) vir-<br>tual private networks (VPNs) |
| 5060                              | UDP         | Session Initiation Protocol (SIP) for some VoIP uses                                                                                                                  |
| 123                               | UDP         | Network Time Protocol (NTP) for<br>network time synchronization                                                                                                       |

#### Example using port identification

 Wireshark automatically associates the UDP port, 123, with its IANA-assigned default service, NTP



#### Limitations of port-based identification

- Servers can be configured to use nonstandard port numbers for services
  - Wireshark automatically associates TCP port 443 with its IANA-assigned default service: HTTPS
- But this is INCORRECT:
  - Packet contents not encrypted



#### 4. Analyze the function of source / destination

 Server hostnames and domains provide clues as to their functions, which can help identify likely protocols in use

```
$ whois 64.12.24.50
                                                               It would be
                                                                reasonable to
NetRange: 64.12.0.0 - 64.12.255.255
CTDR: 64.12.0.0/16
                                                               hypothesize that
                                                               the traffic
OrgName: America Online , Inc.
                                                               associated with
OrgId: AMERIC -158
                                                               this server could
Address: 10600 Infantry Ridge Road
                                                               be traffic
City: Manassas
                                                               commonly used
StateProv: VA
                                                               to support
PostalCode: 20109
                                                               AOL's services.
Country: US
RegDate: 1999 -12 -13
                                                               such
Updated: 1999 -12 -16
                                                               as HTTP or AIM
Ref: http://whois.arin.net/rest/org/AMERIC -158
```

#### **Takeaways**

- Traffic analysis enables forensic investigators to determine the history of events involved in network communications
- Such analysis is based on specific evidence that can can be acquired using protocol, packet, and flow analysis techniques
- It is up to the forensic investigator to select the best technique(s) to use according to the investigative scenario

#### **Pointers**

#### Textbook:

• Casey - Chapters 24.4, 24.5 , Luttgens - Chapter 9.4

#### Others:

- Introducing Network Analysis
- Gary Kessler, On teaching TCP/IP Protocol Analysis to Computer Forensic Examiners

#### Acknowledgements:

 Slides adapted from Nuno Santos's Forensics Cyber-Security course at Técnico Lisbon