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The Discrete Logarithm Problem

2

h = gx , find x
It’s supposed to be 
hard to find x

I bet we can use that

But don’t forget about me



Groups?

3
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Groups - Sets with specific properties
A group is a set of elements (usually numbers) that are 
related to each other according to well-defined operations.

● Consider a multiplicative group 𝑍!∗

● This boils down to the set of non-zero integers between 1 and p-1 modulo p à A finite group

● For p = 5, we have group 𝑍!∗ = {1,2,3,4} ->  i.e., the order n of 𝑍!∗ is 4

● In this group, operations are carried out mod 5: 
● 3 * 4 = 12 mod 5 = 2

● 23 = 2 * 2 * 2 = 8 mod 5 = 3

4
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Group axioms
To be a group, these sets should respect some axioms

● Closure
● Identity existence
● Associativity
● Inverse existence

● Groups can also be commutative and cyclic (up next)

5

Let’s take a look at some of these axioms (using multiplication as the operation)



CS459 Spring 2025 

Closure
● For every x,y in the group, x * y is in the group

○ i.e., the multiplication of two group elements falls within the group too

● Example:

○ in 𝑍!∗, 2* 3 = 6 mod 5 = 1

6
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Identity Existence
● There is an element e such that e * x = x * e = x

○ i.e., has an element e such that any element times e outputs the element itself

● Example:

○ In any 𝑍#∗ , the identity element is 1

○ For 𝑍!∗ ∶ 1 * 3 = 3 mod 5 = 3

7
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Associativity
● For any x, y, z in the group, (x * y) * z = x * (y * z)

● Example:

○ For 𝑍!∗ ∶ (2 * 3) * 4 = 1 * 4 = 2 * (3 * 4) = 2 * 2 = 4

8
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Inverse Existence

9

● For any x in the group, there is a y such that x * y = y * x = 1

● Example:
○ For 𝑍!∗ ∶ 2 * 3 = 1 , 3 * 2 = 1 ( 2 and 3 are inverses)

○ 4 * 4 = 16 mod 5 = 1 (4 is its own inverse)
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Abelian Groups

10

● Abelian groups are groups which are commutative
● This means that x * y = y * x for any group elements x and y

● Example:
○ For 𝑍!∗ ∶ 3 * 4 = 2 , 4 * 3 = 2 
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Cyclic groups
● A group is called cyclic if there is at least one element g

such that its powers (g1, g2, g3, …) mod p span all distinct 
group elements.
o g is called the “generator” of the group

• Example:
○ For 𝑍!∗, there are two generators (2 and 3):

■ 21 = 2, 22 = 4, 23 = 3, 24 = 1
■ 31 =3, 32 = 4, 33 = 2, 34 = 1

11
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Cyclic subgroups
● We can have cyclic subgroups within larger finite groups

• Example:
○ The order of any cyclic subgroup of 𝑭𝟔𝟎𝟕∗ must divide n = |𝑭𝟔𝟎𝟕∗ | = 606
○ Thus, 𝑭𝟔𝟎𝟕∗ has subgroups of orders {1, 2, 3, 6, 9, 18, 101, 202, 303, 606}

● Important for later:
○ The subgroup of order 101 is a subset of 𝑭𝟔𝟎𝟕∗ . All calculations involving its 

generator g must take place in 𝑭𝟔𝟎𝟕∗ , which uses modulo 607 arithmetic. 

○ Even though the subgroup has order n=101, its elements are still numbers in 
𝑭𝟔𝟎𝟕∗ , and their operations are also defined modulo 607.

12



Discrete Logarithm Problem
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The Discrete Logarithm Problem

14

h = gx , find x
It’s supposed to be 
hard to find x

I bet we can use that

But don’t forget about me
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The Discrete Logarithm Problem

15

h = gx , find x

Discrete: we are dealing with integers instead of real numbers

Logarithm: we are looking for the logarithm of x base g

o e.g., log2 256 = 8 , since 28 = 256
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The Discrete Logarithm Problem
Given (g,h) ∈ G x G, find x ∈ Zp* such that:

h = gx

Here, G is a multiplicative group, just like we saw during the examples. 
(But p is thousands of bits long)

16
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Solutions to the Discrete Logarithm Problem?

If there’s one solution, there are infinitely many 

(thank you Fermat’s little theorem and modular arithmetic “wrap-around”)

17
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How to solve DLP in cyclic groups of prime order?
● Is the group cyclic, finite, and abelian?

18

Baby-step/Giant-step 
algorithms!!!

Has a generator that 
spans all elements

Has a limited 
number of elements

Multiplication is 
commutative
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Baby-Step/Giant-Step Algorithm? 
● A cyclic group G = <g> which has prime order n
● h ∈ G, Goal: find x (mod n) such that h = gx

● Every element x ∈ G can be written as: x = i + j*⌈sqrt(n)⌉
o For integers m, i, j satisfying 0 ≤ i, j ≤ m.

o m = ⌈sqrt(n)⌉

Then:
h = gi + j*⌈sqrt(n)⌉

gi = h . (g-⌈sqrt(n)⌉)j

19

Ah, more 
rewriting tricks

Math exploit!
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Baby-Step/Giant-Step Algorithm? Notation.
● logg x mod n is obtained by comparing two lists: 

gi = h . (g-⌈sqrt(n)⌉)j

When we find a coincidence, the equality holds and then x = i + j*⌈sqrt(n)⌉

20

Can we divide 
and conquer?
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Baby-step/Giant-Step Algorithm
1. x = i + j*⌈sqrt(n)⌉

21

gi = h . (g-⌈sqrt(n)⌉)j
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Baby-step/Giant-Step Algorithm
1. x = i + j*⌈sqrt(n)⌉

2. 0≤ i, j <  ⌈sqrt(n)⌉

22

Since 0≤x≤n, …

gi = h . (g-⌈sqrt(n)⌉)j
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Baby-step/Giant-Step Algorithm
1. x = i + j*⌈sqrt(n)⌉

2. 0≤ i, j <  ⌈sqrt(n)⌉

3. Baby-step: gi ⟵ gi for 0≤ i < ⌈sqrt(n)⌉

23

gi = h . (g-⌈sqrt(n)⌉)j

Let’s build some tables!
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Baby-step/Giant-Step Algorithm
1. x = i + j*⌈sqrt(n)⌉

2. 0≤ i, j <  ⌈sqrt(n)⌉

3. Baby-step: gi ⟵ gi for 0≤ i < ⌈sqrt(n)⌉

24

Produces pairs: (gi,i)

gi = h . (g-⌈sqrt(n)⌉)j
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Baby-step/Giant-Step Algorithm
1. x = i + j*⌈sqrt(n)⌉

2. 0≤ i, j <  ⌈sqrt(n)⌉

3. Baby-step: gi ⟵ gi for 0≤ i < ⌈sqrt(n)⌉

4. Giant-step: hj ⟵h*g–j ⌈sqrt(n)⌉ , for 0 ≤ j < ⌈sqrt(n)⌉

25

Produces pairs: (hj,j)

gi = h . (g-⌈sqrt(n)⌉)j
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Baby-step/Giant-Step Algorithm
1. x = i + j*⌈sqrt(n)⌉

2. 0≤ i, j <  ⌈sqrt(n)⌉

3. Baby-step: gi ⟵ gi for 0≤ i < ⌈sqrt(n)⌉

4. Giant-step: hj ⟵h*g–j ⌈sqrt(n)⌉ , for 0 ≤ j < ⌈sqrt(n)⌉

26

Produces pairs: (hj,j)

Overall time and space O(sqrt(n))

gi = h . (g-⌈sqrt(n)⌉)j



CS459 Spring 2025 

Baby-step/Giant-Step Algorithm
1. x = i + j*⌈sqrt(n)⌉

2. 0≤ i, j <  ⌈sqrt(n)⌉

3. Baby-step: gi ⟵ gi for 0≤ i < ⌈sqrt(p)⌉

4. Giant-step: hj ⟵h*g–j ⌈sqrt(p)⌉ , for 0 ≤ j < ⌈sqrt(n)⌉

27

Produces pairs: (hj,j)

Overall time and space O(sqrt(n))

Note: For DLP in group G to be 

“difficult enough” (e.g., 2
128

operations), needs prime order 

subgroup of size greater than 2256
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DLP Example,  182 = 64x(mod 607)
● Consider the subgroup of prime order 101 (n = 101) in 𝑭𝟔𝟎𝟕∗ , generated by g=64

28

i 64i (mod 607) i “ ”

0 6

1 7

2 8

3 9

4 10

5 -

Take that we know this…

Focusing on the subgroup ensures that every 
element in the problem is generated by the known
g=64, making it possible to solve the DLP.
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DLP Example,  182 = 64x(mod 607)
● Consider the subgroup of prime order 101 (n = 101) in 𝑭𝟔𝟎𝟕∗ , generated by g=64

29

i 64i (mod 607) i “ ”

0 6

1 7

2 8

3 9

4 10

5 -

Focusing on the subgroup ensures that every 
element in the problem is generated by the known
g=64, making it possible to solve the DLP.

This tells us x is in the range 0 ≤ x < 101 because 
the subgroup has order 101.

Take that we know this…
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DLP Example,  182 = 64x(mod 607)
● Consider the subgroup of prime order 101 (n = 101) in 𝑭𝟔𝟎𝟕∗ , generated by g=64

30

i 64i (mod 607) i “ ”

0 6

1 7

2 8

3 9

4 10

5 -

Focusing on the subgroup ensures that every 
element in the problem is generated by the known
g=64, making it possible to solve the DLP.

This tells us x is in the range 0 ≤ x < 101 because 
the subgroup has order 101.

Take that we know this…

But recall we’re operating in mod 607 due to 𝑭𝟔𝟎𝟕∗
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DLP Example,  182 = 64x(mod 607)
● Consider the subgroup of prime order 101 (n = 101) in 𝑭𝟔𝟎𝟕∗ , generated by g=64

31

i 64i (mod 607) i “ ”

0 6

1 7

2 8

3 9

4 10

5 -

Baby-step: gi⟵ gi for 0≤ i < ⌈sqrt(n)⌉

g = 64
m = ⌈sqrt(n)⌉ = 11
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DLP Example,  182 = 64x(mod 607)

32

i 64i (mod 607) i “ “ 

0 1 6 330

1 64 7 482

2 454 8 498

3 527 9 308

4 343 10 288

5 100 -

Baby-step: gi⟵ gi for 0≤ i < ⌈sqrt(n)⌉

g = 64
m = ⌈sqrt(n)⌉ = 11
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DLP Example,  182 = 64x(mod 607)

33

i 182* 64-11*j (mod 607) i

0 6

1 7

2 8

3 9

4 10

5 -

Giant-step: hj⟵h*g–j ⌈sqrt(n)⌉

g = 64
m = ⌈sqrt(n)⌉ = 11
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DLP Example,  182 = 64x(mod 607)

34

i 182* 64-11*j (mod 607) i

0 182 6 60

1 143 7 394

2 69 8 483

3 271 9 76

4 343 10 580

5 573 -

Giant-step: hj⟵h*g–j ⌈sqrt(n)⌉

g = 64
m = ⌈sqrt(n)⌉ = 11
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DLP Example,  182 = 64x(mod 607)

35

i i 64i (mod 607)

0 1 6 330

1 64 7 482

2 454 8 498

3 527 9 308

4 343 10 288

5 100 -

j j 182* 64-11*j (mod 607)

0 182 6 60

1 143 7 394

2 69 8 483

3 271 9 76

4 343 10 580

5 573 -

Collision?
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DLP Example,  182 = 64x(mod 607)

36

i i 64i (mod 607)

0 1 6 330

1 64 7 482

2 454 8 498

3 527 9 308

4 343 10 288

5 100 -

j j 182* 64-11*j (mod 607)

0 182 6 60

1 143 7 394

2 69 8 483

3 271 9 76

4 343 10 580

5 573 -

Collision?
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DLP Example,  182 = 64x(mod 607)

37

i i 64i (mod 607)

0 1 6 330

1 64 7 482

2 454 8 498

3 527 9 308

4 343 10 288

5 100 -

j j 182* 64-11*j (mod 607)

0 182 6 60

1 143 7 394

2 69 8 483

3 271 9 76

4 343 10 580

5 573 -

Collision?

Match when i=4 and j=4. 
(i is not necessarily equal to j, but it happened on this run ¯\_(ツ)_/¯
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DLP Example,  182 = 64x(mod 607)

38

i i 64i (mod 607)

0 1 6 330

1 64 7 482

2 454 8 498

3 527 9 308

4 343 10 288

5 100 -

j j 182* 64-11*j (mod 607)

0 182 6 60

1 143 7 394

2 69 8 483

3 271 9 76

4 343 10 580

5 573 -

Collision?

Recall: x = i + j*⌈sqrt(n)⌉
So: x = 4 + 4*11 = 48.  

x = i + j*⌈sqrt(n)⌉
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DLP Example,  182 = 64x(mod 607)

39

i i 64i (mod 607)

0 1 6 330

1 64 7 482

2 454 8 498

3 527 9 308

4 343 10 288

5 100 -

j j 182* 64-11*j (mod 607)

0 182 6 60

1 143 7 394

2 69 8 483

3 271 9 76

4 343 10 580

5 573 -

Collision?

Recall: x = i + j*⌈sqrt(n)⌉
So: x = 4 + 4*11 = 48.  

Verify: 6448 (mod 607) = 182



Diffie-Hellman

40
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Diffie-Hellman Key Exchange
A public-key protocol published in 1976 by Whitfield Diffie and 
Martin Hellman

Allows two parties that have no prior knowledge of each other to 
jointly establish a shared secret key over an insecure channel

Key used to encrypt subsequent communications using a 
symmetric key cipher

41



CS459 Spring 2025 

Diffie-Hellman Key Exchange

42

● Used for establishing a shared secret (lacks authentication; we’ll see why this is bad)

● Assume as public parameters generator g and prime p
● Alice (resp. Bob) generates private value a (resp. b)
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Diffie-Hellman Key Exchange

43

● Used for establishing a shared secret (lacks authentication; we’ll see why this is bad)

● Assume as public parameters generator g and prime p
● Alice (resp. Bob) generates private value a (resp. b)

Ba = (gb)a = gba

(B = gb mod p)

(A = ga mod p, g, p) 

Ab = (ga)b = gab

Alice and Bob can derive the same value by exchanging 
public values and combining them with their private ones!



CS459 Spring 2025 

Diffie-Hellman Key Exchange

44

● Used for establishing a shared secret (lacks authentication; we’ll see why this is bad)

● Assume as public parameters generator g and prime p
● Alice (resp. Bob) generates private value a (resp. b)

Ba = (gb)a = gba

B = gb mod p

A = ga mod p 

Ab = (ga)b = gab

Resist keying temptation: the shared value should not 
immediately be used as a key. Gab is a random element 
inside a group, but not necessarily a random bit string
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Diffie-Hellman Key Exchange – Visualization

45
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Diffie-Hellman relies on the DLP

DH can be broken by recovering the private value 
a from the public value ga

(or b from gb)

46

The adversary must not be able to solve the DLP
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The Decisional Diffie-Hellman Problem

Given g, ga, gb distinguish gab from random gc

47

● An adversary should NOT be able to learn anything about the secret gab

after observing public values ga and gb

o Assume gab and gc occur with the same probability
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The Decisional Diffie-Hellman Problem

Given g, ga, gb distinguish gab from random gc

48

● An adversary should NOT be able to learn anything about the secret gab

after observing public values ga and gb

o Assume gab and gc occur with the same probability

ElGamal relies on the DDH assumptionUseful assumption beyond DH key exchange!



ElGamal

49
● 1985 by Taher ElGamal
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ElGamal Public Key Cryptosystem
● Let p be a prime such that the DLP in (Zp

*,.) is infeasible
● Let α be a generator in Zp

* and a a secret value
● PubK ={(p,α, β): β≡αa (mod p)}

● For message m and secret random k in Zp-1: 
○ eK(m,k) = (y1, y2),  where y1 = αk mod p and y2 = mβk mod p

● For y1, y2 in Zp
*:

o dK(y1, y2)= y2(y1
a)-1 mod p

50
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ElGamal: The Keys
1. Bob picks a “large” prime p and a generator α. 

a. Assume message m is an integer 0 < m < p

2. Bob picks secret integer a

3. Bob computes β≡αa (mod p)

51
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ElGamal: The Keys
1. Bob picks a “large” prime p and a generator α. 

a. Assume message m is an integer 0 < m < p

2. Bob picks secret integer a

3. Bob computes β≡αa (mod p)

4. Bob’s public key is (p, α, β)

52
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ElGamal: The Keys
1. Bob picks a “large” prime p and a generator α. 

a. Assume message m is an integer 0 < m < p

2. Bob picks secret integer a

3. Bob computes β≡αa (mod p)

4. Bob’s public key is (p, α, β)

5. Bob’s private key is a

53
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ElGamal: Encryption

54

I choose secret integer k

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a
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ElGamal: Encryption

55

I choose secret integer k

Compute y1 ≡ αk (mod p)  

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a
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ElGamal: Encryption

56

I choose secret integer k

Compute y1 ≡ αk (mod p)  

Compute y2≡ βk m (mod p)  

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a
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ElGamal: Encryption

57

I choose secret integer k

Compute y1 ≡ αk (mod p)  

Compute y2≡ βk m (mod p)  

Send y1 and y2 to Bob

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a
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ElGamal: Decryption

58

I choose secret integer k

Compute y1 ≡ αk (mod p)  

Compute y2≡ βk m (mod p)  

Send y1 and y2 to Bob

Compute y1y2
-a ≡ m (mod p)

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a
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ElGamal: Decryption

59

I choose secret integer k

Compute y1 ≡ αk (mod p)  

Compute y2≡ βk m (mod p)  

Send y1 and y2 to Bob

Compute y1y2
-a ≡ m (mod p)

Bob can decrypt since:
y2y1-a ≡ βk m (αk)-a ≡ (αa)k m (αk)-a ≡ αak m α-ak ≡ m (mod p)

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a
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ElGamal Informal Summary
● The plaintext m is “hidden” by multiplying it by βk to get y2

60

I receive ct = (y1,y2)
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ElGamal Informal Summary
● The plaintext m is “hidden” by multiplying it by βk to get y2

● The ciphertext includes αk so that Bob can compute βk

from αk (because Bob knows a)

61

I receive ct = (y1,y2)
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ElGamal Informal Summary
● The plaintext m is “hidden” by multiplying it by βk to get y2

● The ciphertext includes αk so that Bob can compute βk

from αk (because Bob knows a)
● Thus, Bob can “reveal” m by dividing y2 by βk

62

I receive ct = (y1,y2)
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ElGamal Informal Summary
● The plaintext m is “hidden” by multiplying it by βk to get y2

● The ciphertext includes αk so that Bob can compute βk

from αk (because Bob knows a)
● Thus, Bob can “reveal” m by dividing y2 by βk

63

I receive ct = (y1,y2)

Let’s see an example!
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Example
● Let p=2579 , α = 2 , β = 2765 mod 2579 = 949

64

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a = 765
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Example
● Let p=2579 , α = 2 , β = 2765 mod 2579 = 949

65

I want to send m=1299 to Bob. I 
choose k = 853 for my random integer

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a = 765
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Example
● Let p=2579 , α = 2 , β = 2765 mod 2579 = 949

66

I want to send m=1299 to Bob. I 
choose k = 853 for my random integer

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a = 765

y1 ≡ αk (mod p) 

y2≡ βk m (mod p) 
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Example
● Let p=2579 , α = 2 , β = 2765 mod 2579 = 949

● y1 = 2853 mod 2579 = 435
● y2= 949853 * 1299 mod 2579 = 2396

67

I want to send m=1299 to Bob. I 
choose k = 853 for my random integer

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a = 765

y1 ≡ αk (mod p) 

y2≡ βk m (mod p) 

Send y1, y2 to Bob
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Example
● Bob now has y1 and y2

o y1 = 2853 mod 2579 = 435
o y2=1299*949853 mod 2579 = 2396

68

I received y = (435, 2396)

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a = 765
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Example
● Bob now has y1 and y2

o y1 = 2853 mod 2579 = 435
o y2=1299*949853 mod 2579 = 2396

● m = 2396 * 435-765 mod 2759 = 1299

69

I received y = (435, 2396)

y2y1
-a ≡ βk m (αk)-a ≡ m (mod p)

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a = 765
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Example
● Bob now has y1 and y2

o y1 = 2853 mod 2579 = 435
o y2=1299*949853 mod 2579 = 2396

● m = 2396 * 435-765 mod 2759 = 1299

70

I received y = (435, 2396)

y2y1
-a ≡ βk m (αk)-a ≡ m (mod p)

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a = 765

Nice! That’s the plaintext I 
wanted to send.
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Example
● Bob now has y1 and y2

o y1 = 2853 mod 2579 = 435
o y2=1299*949853 mod 2579 = 2396

● m = 2396 * 435-765 mod 2759 = 1299

71

I received y = (435, 2396)

y2y1
-a ≡ βk m (αk)-a ≡ m (mod p)

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a = 765

Nice! That’s the plaintext I 
wanted to send.

Insecure if the adversary 
can compute a=logαβ
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Example
● Bob now has y1 and y2

o y1 = 2853 mod 2579 = 435
o y2=1299*949853 mod 2579 = 2396

● m = 2396 * 435-765 mod 2759 = 1299

72

I received y = (435, 2396)

y2y1
-a ≡ βk m (αk)-a ≡ m (mod p)

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a = 765

Nice! That’s the plaintext I 
wanted to send.

Insecure if the adversary 
can compute a=logαβ

To be secure, DLP must be 
infeasible in Zp*
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But… We had RSA, why do we need ElGamal?

73

● Extensions
○ ElGamal supports Elliptic Curve Cryptography (ECC)

○ Stronger security with smaller keys compared to RSA

● Probabilistic Encryption
○ Adds semantic security with randomization (different ciphertexts for the same plaintext).

● Homomorphic properties
○ Additive homomorphism vs. RSA’s multiplicative homomorphism



Network Security - Next class

74


