
CS459/698
Privacy, Cryptography,

Network and Data Security

Spring 2025, Monday/Wednesday 2:30pm-4:00pm

Discrete Logarithm, Diffie-Hellman, ElGamal

CS459 Spring 2025

The Discrete Logarithm Problem

2

h = gx , find x
It’s supposed to be
hard to find x

I bet we can use that

But don’t forget about me

Groups?

3

CS459 Spring 2025

Groups - Sets with specific properties
A group is a set of elements (usually numbers) that are
related to each other according to well-defined operations.

● Consider a multiplicative group 𝑍!∗

● This boils down to the set of non-zero integers between 1 and p-1 modulo p à A finite group

● For p = 5, we have group 𝑍!∗ = {1,2,3,4} -> i.e., the order n of 𝑍!∗ is 4

● In this group, operations are carried out mod 5:
● 3 * 4 = 12 mod 5 = 2

● 23 = 2 * 2 * 2 = 8 mod 5 = 3

4

CS459 Spring 2025

Group axioms
To be a group, these sets should respect some axioms

● Closure
● Identity existence
● Associativity
● Inverse existence

● Groups can also be commutative and cyclic (up next)

5

Let’s take a look at some of these axioms (using multiplication as the operation)

CS459 Spring 2025

Closure
● For every x,y in the group, x * y is in the group

○ i.e., the multiplication of two group elements falls within the group too

● Example:

○ in 𝑍!∗, 2* 3 = 6 mod 5 = 1

6

CS459 Spring 2025

Identity Existence
● There is an element e such that e * x = x * e = x

○ i.e., has an element e such that any element times e outputs the element itself

● Example:

○ In any 𝑍#∗ , the identity element is 1

○ For 𝑍!∗ ∶ 1 * 3 = 3 mod 5 = 3

7

CS459 Spring 2025

Associativity
● For any x, y, z in the group, (x * y) * z = x * (y * z)

● Example:

○ For 𝑍!∗ ∶ (2 * 3) * 4 = 1 * 4 = 2 * (3 * 4) = 2 * 2 = 4

8

CS459 Spring 2025

Inverse Existence

9

● For any x in the group, there is a y such that x * y = y * x = 1

● Example:
○ For 𝑍!∗ ∶ 2 * 3 = 1 , 3 * 2 = 1 (2 and 3 are inverses)

○ 4 * 4 = 16 mod 5 = 1 (4 is its own inverse)

CS459 Spring 2025

Abelian Groups

10

● Abelian groups are groups which are commutative
● This means that x * y = y * x for any group elements x and y

● Example:
○ For 𝑍!∗ ∶ 3 * 4 = 2 , 4 * 3 = 2

CS459 Spring 2025

Cyclic groups
● A group is called cyclic if there is at least one element g

such that its powers (g1, g2, g3, …) mod p span all distinct
group elements.
o g is called the “generator” of the group

• Example:
○ For 𝑍!∗, there are two generators (2 and 3):

■ 21 = 2, 22 = 4, 23 = 3, 24 = 1
■ 31 =3, 32 = 4, 33 = 2, 34 = 1

11

CS459 Spring 2025

Cyclic subgroups
● We can have cyclic subgroups within larger finite groups

• Example:
○ The order of any cyclic subgroup of 𝑭𝟔𝟎𝟕∗ must divide n = |𝑭𝟔𝟎𝟕∗ | = 606
○ Thus, 𝑭𝟔𝟎𝟕∗ has subgroups of orders {1, 2, 3, 6, 9, 18, 101, 202, 303, 606}

● Important for later:
○ The subgroup of order 101 is a subset of 𝑭𝟔𝟎𝟕∗ . All calculations involving its

generator g must take place in 𝑭𝟔𝟎𝟕∗ , which uses modulo 607 arithmetic.

○ Even though the subgroup has order n=101, its elements are still numbers in
𝑭𝟔𝟎𝟕∗ , and their operations are also defined modulo 607.

12

Discrete Logarithm Problem

13

CS459 Spring 2025

The Discrete Logarithm Problem

14

h = gx , find x
It’s supposed to be
hard to find x

I bet we can use that

But don’t forget about me

CS459 Spring 2025

The Discrete Logarithm Problem

15

h = gx , find x

Discrete: we are dealing with integers instead of real numbers

Logarithm: we are looking for the logarithm of x base g

o e.g., log2 256 = 8 , since 28 = 256

CS459 Spring 2025

The Discrete Logarithm Problem
Given (g,h) ∈ G x G, find x ∈ Zp* such that:

h = gx

Here, G is a multiplicative group, just like we saw during the examples.
(But p is thousands of bits long)

16

CS459 Spring 2025

Solutions to the Discrete Logarithm Problem?

If there’s one solution, there are infinitely many

(thank you Fermat’s little theorem and modular arithmetic “wrap-around”)

17

CS459 Spring 2025

How to solve DLP in cyclic groups of prime order?
● Is the group cyclic, finite, and abelian?

18

Baby-step/Giant-step
algorithms!!!

Has a generator that
spans all elements

Has a limited
number of elements

Multiplication is
commutative

CS459 Spring 2025

Baby-Step/Giant-Step Algorithm?
● A cyclic group G = <g> which has prime order n
● h ∈ G, Goal: find x (mod n) such that h = gx

● Every element x ∈ G can be written as: x = i + j*⌈sqrt(n)⌉
o For integers m, i, j satisfying 0 ≤ i, j ≤ m.

o m = ⌈sqrt(n)⌉

Then:
h = gi + j*⌈sqrt(n)⌉

gi = h . (g-⌈sqrt(n)⌉)j

19

Ah, more
rewriting tricks

Math exploit!

CS459 Spring 2025

Baby-Step/Giant-Step Algorithm? Notation.
● logg x mod n is obtained by comparing two lists:

gi = h . (g-⌈sqrt(n)⌉)j

When we find a coincidence, the equality holds and then x = i + j*⌈sqrt(n)⌉

20

Can we divide
and conquer?

CS459 Spring 2025

Baby-step/Giant-Step Algorithm
1. x = i + j*⌈sqrt(n)⌉

21

gi = h . (g-⌈sqrt(n)⌉)j

CS459 Spring 2025

Baby-step/Giant-Step Algorithm
1. x = i + j*⌈sqrt(n)⌉

2. 0≤ i, j < ⌈sqrt(n)⌉

22

Since 0≤x≤n, …

gi = h . (g-⌈sqrt(n)⌉)j

CS459 Spring 2025

Baby-step/Giant-Step Algorithm
1. x = i + j*⌈sqrt(n)⌉

2. 0≤ i, j < ⌈sqrt(n)⌉

3. Baby-step: gi ⟵ gi for 0≤ i < ⌈sqrt(n)⌉

23

gi = h . (g-⌈sqrt(n)⌉)j

Let’s build some tables!

CS459 Spring 2025

Baby-step/Giant-Step Algorithm
1. x = i + j*⌈sqrt(n)⌉

2. 0≤ i, j < ⌈sqrt(n)⌉

3. Baby-step: gi ⟵ gi for 0≤ i < ⌈sqrt(n)⌉

24

Produces pairs: (gi,i)

gi = h . (g-⌈sqrt(n)⌉)j

CS459 Spring 2025

Baby-step/Giant-Step Algorithm
1. x = i + j*⌈sqrt(n)⌉

2. 0≤ i, j < ⌈sqrt(n)⌉

3. Baby-step: gi ⟵ gi for 0≤ i < ⌈sqrt(n)⌉

4. Giant-step: hj ⟵h*g–j ⌈sqrt(n)⌉ , for 0 ≤ j < ⌈sqrt(n)⌉

25

Produces pairs: (hj,j)

gi = h . (g-⌈sqrt(n)⌉)j

CS459 Spring 2025

Baby-step/Giant-Step Algorithm
1. x = i + j*⌈sqrt(n)⌉

2. 0≤ i, j < ⌈sqrt(n)⌉

3. Baby-step: gi ⟵ gi for 0≤ i < ⌈sqrt(n)⌉

4. Giant-step: hj ⟵h*g–j ⌈sqrt(n)⌉ , for 0 ≤ j < ⌈sqrt(n)⌉

26

Produces pairs: (hj,j)

Overall time and space O(sqrt(n))

gi = h . (g-⌈sqrt(n)⌉)j

CS459 Spring 2025

Baby-step/Giant-Step Algorithm
1. x = i + j*⌈sqrt(n)⌉

2. 0≤ i, j < ⌈sqrt(n)⌉

3. Baby-step: gi ⟵ gi for 0≤ i < ⌈sqrt(p)⌉

4. Giant-step: hj ⟵h*g–j ⌈sqrt(p)⌉ , for 0 ≤ j < ⌈sqrt(n)⌉

27

Produces pairs: (hj,j)

Overall time and space O(sqrt(n))

Note: For DLP in group G to be

“difficult enough” (e.g., 2
128

operations), needs prime order

subgroup of size greater than 2256

CS459 Spring 2025

DLP Example, 182 = 64x(mod 607)
● Consider the subgroup of prime order 101 (n = 101) in 𝑭𝟔𝟎𝟕∗ , generated by g=64

28

i 64i (mod 607) i “ ”

0 6

1 7

2 8

3 9

4 10

5 -

Take that we know this…

Focusing on the subgroup ensures that every
element in the problem is generated by the known
g=64, making it possible to solve the DLP.

CS459 Spring 2025

DLP Example, 182 = 64x(mod 607)
● Consider the subgroup of prime order 101 (n = 101) in 𝑭𝟔𝟎𝟕∗ , generated by g=64

29

i 64i (mod 607) i “ ”

0 6

1 7

2 8

3 9

4 10

5 -

Focusing on the subgroup ensures that every
element in the problem is generated by the known
g=64, making it possible to solve the DLP.

This tells us x is in the range 0 ≤ x < 101 because
the subgroup has order 101.

Take that we know this…

CS459 Spring 2025

DLP Example, 182 = 64x(mod 607)
● Consider the subgroup of prime order 101 (n = 101) in 𝑭𝟔𝟎𝟕∗ , generated by g=64

30

i 64i (mod 607) i “ ”

0 6

1 7

2 8

3 9

4 10

5 -

Focusing on the subgroup ensures that every
element in the problem is generated by the known
g=64, making it possible to solve the DLP.

This tells us x is in the range 0 ≤ x < 101 because
the subgroup has order 101.

Take that we know this…

But recall we’re operating in mod 607 due to 𝑭𝟔𝟎𝟕∗

CS459 Spring 2025

DLP Example, 182 = 64x(mod 607)
● Consider the subgroup of prime order 101 (n = 101) in 𝑭𝟔𝟎𝟕∗ , generated by g=64

31

i 64i (mod 607) i “ ”

0 6

1 7

2 8

3 9

4 10

5 -

Baby-step: gi⟵ gi for 0≤ i < ⌈sqrt(n)⌉

g = 64
m = ⌈sqrt(n)⌉ = 11

CS459 Spring 2025

DLP Example, 182 = 64x(mod 607)

32

i 64i (mod 607) i “ “

0 1 6 330

1 64 7 482

2 454 8 498

3 527 9 308

4 343 10 288

5 100 -

Baby-step: gi⟵ gi for 0≤ i < ⌈sqrt(n)⌉

g = 64
m = ⌈sqrt(n)⌉ = 11

CS459 Spring 2025

DLP Example, 182 = 64x(mod 607)

33

i 182* 64-11*j (mod 607) i

0 6

1 7

2 8

3 9

4 10

5 -

Giant-step: hj⟵h*g–j ⌈sqrt(n)⌉

g = 64
m = ⌈sqrt(n)⌉ = 11

CS459 Spring 2025

DLP Example, 182 = 64x(mod 607)

34

i 182* 64-11*j (mod 607) i

0 182 6 60

1 143 7 394

2 69 8 483

3 271 9 76

4 343 10 580

5 573 -

Giant-step: hj⟵h*g–j ⌈sqrt(n)⌉

g = 64
m = ⌈sqrt(n)⌉ = 11

CS459 Spring 2025

DLP Example, 182 = 64x(mod 607)

35

i i 64i (mod 607)

0 1 6 330

1 64 7 482

2 454 8 498

3 527 9 308

4 343 10 288

5 100 -

j j 182* 64-11*j (mod 607)

0 182 6 60

1 143 7 394

2 69 8 483

3 271 9 76

4 343 10 580

5 573 -

Collision?

CS459 Spring 2025

DLP Example, 182 = 64x(mod 607)

36

i i 64i (mod 607)

0 1 6 330

1 64 7 482

2 454 8 498

3 527 9 308

4 343 10 288

5 100 -

j j 182* 64-11*j (mod 607)

0 182 6 60

1 143 7 394

2 69 8 483

3 271 9 76

4 343 10 580

5 573 -

Collision?

CS459 Spring 2025

DLP Example, 182 = 64x(mod 607)

37

i i 64i (mod 607)

0 1 6 330

1 64 7 482

2 454 8 498

3 527 9 308

4 343 10 288

5 100 -

j j 182* 64-11*j (mod 607)

0 182 6 60

1 143 7 394

2 69 8 483

3 271 9 76

4 343 10 580

5 573 -

Collision?

Match when i=4 and j=4.
(i is not necessarily equal to j, but it happened on this run ¯_(ツ)_/¯

CS459 Spring 2025

DLP Example, 182 = 64x(mod 607)

38

i i 64i (mod 607)

0 1 6 330

1 64 7 482

2 454 8 498

3 527 9 308

4 343 10 288

5 100 -

j j 182* 64-11*j (mod 607)

0 182 6 60

1 143 7 394

2 69 8 483

3 271 9 76

4 343 10 580

5 573 -

Collision?

Recall: x = i + j*⌈sqrt(n)⌉
So: x = 4 + 4*11 = 48.

x = i + j*⌈sqrt(n)⌉

CS459 Spring 2025

DLP Example, 182 = 64x(mod 607)

39

i i 64i (mod 607)

0 1 6 330

1 64 7 482

2 454 8 498

3 527 9 308

4 343 10 288

5 100 -

j j 182* 64-11*j (mod 607)

0 182 6 60

1 143 7 394

2 69 8 483

3 271 9 76

4 343 10 580

5 573 -

Collision?

Recall: x = i + j*⌈sqrt(n)⌉
So: x = 4 + 4*11 = 48.

Verify: 6448 (mod 607) = 182

Diffie-Hellman

40

CS459 Spring 2025

Diffie-Hellman Key Exchange
A public-key protocol published in 1976 by Whitfield Diffie and
Martin Hellman

Allows two parties that have no prior knowledge of each other to
jointly establish a shared secret key over an insecure channel

Key used to encrypt subsequent communications using a
symmetric key cipher

41

CS459 Spring 2025

Diffie-Hellman Key Exchange

42

● Used for establishing a shared secret (lacks authentication; we’ll see why this is bad)

● Assume as public parameters generator g and prime p
● Alice (resp. Bob) generates private value a (resp. b)

CS459 Spring 2025

Diffie-Hellman Key Exchange

43

● Used for establishing a shared secret (lacks authentication; we’ll see why this is bad)

● Assume as public parameters generator g and prime p
● Alice (resp. Bob) generates private value a (resp. b)

Ba = (gb)a = gba

(B = gb mod p)

(A = ga mod p, g, p)

Ab = (ga)b = gab

Alice and Bob can derive the same value by exchanging
public values and combining them with their private ones!

CS459 Spring 2025

Diffie-Hellman Key Exchange

44

● Used for establishing a shared secret (lacks authentication; we’ll see why this is bad)

● Assume as public parameters generator g and prime p
● Alice (resp. Bob) generates private value a (resp. b)

Ba = (gb)a = gba

B = gb mod p

A = ga mod p

Ab = (ga)b = gab

Resist keying temptation: the shared value should not
immediately be used as a key. Gab is a random element
inside a group, but not necessarily a random bit string

CS459 Spring 2025

Diffie-Hellman Key Exchange – Visualization

45

CS459 Spring 2025

Diffie-Hellman relies on the DLP

DH can be broken by recovering the private value
a from the public value ga

(or b from gb)

46

The adversary must not be able to solve the DLP

CS459 Spring 2025

The Decisional Diffie-Hellman Problem

Given g, ga, gb distinguish gab from random gc

47

● An adversary should NOT be able to learn anything about the secret gab

after observing public values ga and gb

o Assume gab and gc occur with the same probability

CS459 Spring 2025

The Decisional Diffie-Hellman Problem

Given g, ga, gb distinguish gab from random gc

48

● An adversary should NOT be able to learn anything about the secret gab

after observing public values ga and gb

o Assume gab and gc occur with the same probability

ElGamal relies on the DDH assumptionUseful assumption beyond DH key exchange!

ElGamal

49
● 1985 by Taher ElGamal

CS459 Spring 2025

ElGamal Public Key Cryptosystem
● Let p be a prime such that the DLP in (Zp

*,.) is infeasible
● Let α be a generator in Zp

* and a a secret value
● PubK ={(p,α, β): β≡αa (mod p)}

● For message m and secret random k in Zp-1:
○ eK(m,k) = (y1, y2), where y1 = αk mod p and y2 = mβk mod p

● For y1, y2 in Zp
*:

o dK(y1, y2)= y2(y1
a)-1 mod p

50

CS459 Spring 2025

ElGamal: The Keys
1. Bob picks a “large” prime p and a generator α.

a. Assume message m is an integer 0 < m < p

2. Bob picks secret integer a

3. Bob computes β≡αa (mod p)

51

CS459 Spring 2025

ElGamal: The Keys
1. Bob picks a “large” prime p and a generator α.

a. Assume message m is an integer 0 < m < p

2. Bob picks secret integer a

3. Bob computes β≡αa (mod p)

4. Bob’s public key is (p, α, β)

52

CS459 Spring 2025

ElGamal: The Keys
1. Bob picks a “large” prime p and a generator α.

a. Assume message m is an integer 0 < m < p

2. Bob picks secret integer a

3. Bob computes β≡αa (mod p)

4. Bob’s public key is (p, α, β)

5. Bob’s private key is a

53

CS459 Spring 2025

ElGamal: Encryption

54

I choose secret integer k

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a

CS459 Spring 2025

ElGamal: Encryption

55

I choose secret integer k

Compute y1 ≡ αk (mod p)

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a

CS459 Spring 2025

ElGamal: Encryption

56

I choose secret integer k

Compute y1 ≡ αk (mod p)

Compute y2≡ βk m (mod p)

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a

CS459 Spring 2025

ElGamal: Encryption

57

I choose secret integer k

Compute y1 ≡ αk (mod p)

Compute y2≡ βk m (mod p)

Send y1 and y2 to Bob

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a

CS459 Spring 2025

ElGamal: Decryption

58

I choose secret integer k

Compute y1 ≡ αk (mod p)

Compute y2≡ βk m (mod p)

Send y1 and y2 to Bob

Compute y1y2
-a ≡ m (mod p)

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a

CS459 Spring 2025

ElGamal: Decryption

59

I choose secret integer k

Compute y1 ≡ αk (mod p)

Compute y2≡ βk m (mod p)

Send y1 and y2 to Bob

Compute y1y2
-a ≡ m (mod p)

Bob can decrypt since:
y2y1-a ≡ βk m (αk)-a ≡ (αa)k m (αk)-a ≡ αak m α-ak ≡ m (mod p)

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a

CS459 Spring 2025

ElGamal Informal Summary
● The plaintext m is “hidden” by multiplying it by βk to get y2

60

I receive ct = (y1,y2)

CS459 Spring 2025

ElGamal Informal Summary
● The plaintext m is “hidden” by multiplying it by βk to get y2

● The ciphertext includes αk so that Bob can compute βk

from αk (because Bob knows a)

61

I receive ct = (y1,y2)

CS459 Spring 2025

ElGamal Informal Summary
● The plaintext m is “hidden” by multiplying it by βk to get y2

● The ciphertext includes αk so that Bob can compute βk

from αk (because Bob knows a)
● Thus, Bob can “reveal” m by dividing y2 by βk

62

I receive ct = (y1,y2)

CS459 Spring 2025

ElGamal Informal Summary
● The plaintext m is “hidden” by multiplying it by βk to get y2

● The ciphertext includes αk so that Bob can compute βk

from αk (because Bob knows a)
● Thus, Bob can “reveal” m by dividing y2 by βk

63

I receive ct = (y1,y2)

Let’s see an example!

CS459 Spring 2025

Example
● Let p=2579 , α = 2 , β = 2765 mod 2579 = 949

64

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a = 765

CS459 Spring 2025

Example
● Let p=2579 , α = 2 , β = 2765 mod 2579 = 949

65

I want to send m=1299 to Bob. I
choose k = 853 for my random integer

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a = 765

CS459 Spring 2025

Example
● Let p=2579 , α = 2 , β = 2765 mod 2579 = 949

66

I want to send m=1299 to Bob. I
choose k = 853 for my random integer

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a = 765

y1 ≡ αk (mod p)

y2≡ βk m (mod p)

CS459 Spring 2025

Example
● Let p=2579 , α = 2 , β = 2765 mod 2579 = 949

● y1 = 2853 mod 2579 = 435
● y2= 949853 * 1299 mod 2579 = 2396

67

I want to send m=1299 to Bob. I
choose k = 853 for my random integer

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a = 765

y1 ≡ αk (mod p)

y2≡ βk m (mod p)

Send y1, y2 to Bob

CS459 Spring 2025

Example
● Bob now has y1 and y2

o y1 = 2853 mod 2579 = 435
o y2=1299*949853 mod 2579 = 2396

68

I received y = (435, 2396)

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a = 765

CS459 Spring 2025

Example
● Bob now has y1 and y2

o y1 = 2853 mod 2579 = 435
o y2=1299*949853 mod 2579 = 2396

● m = 2396 * 435-765 mod 2759 = 1299

69

I received y = (435, 2396)

y2y1
-a ≡ βk m (αk)-a ≡ m (mod p)

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a = 765

CS459 Spring 2025

Example
● Bob now has y1 and y2

o y1 = 2853 mod 2579 = 435
o y2=1299*949853 mod 2579 = 2396

● m = 2396 * 435-765 mod 2759 = 1299

70

I received y = (435, 2396)

y2y1
-a ≡ βk m (αk)-a ≡ m (mod p)

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a = 765

Nice! That’s the plaintext I
wanted to send.

CS459 Spring 2025

Example
● Bob now has y1 and y2

o y1 = 2853 mod 2579 = 435
o y2=1299*949853 mod 2579 = 2396

● m = 2396 * 435-765 mod 2759 = 1299

71

I received y = (435, 2396)

y2y1
-a ≡ βk m (αk)-a ≡ m (mod p)

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a = 765

Nice! That’s the plaintext I
wanted to send.

Insecure if the adversary
can compute a=logαβ

CS459 Spring 2025

Example
● Bob now has y1 and y2

o y1 = 2853 mod 2579 = 435
o y2=1299*949853 mod 2579 = 2396

● m = 2396 * 435-765 mod 2759 = 1299

72

I received y = (435, 2396)

y2y1
-a ≡ βk m (αk)-a ≡ m (mod p)

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a = 765

Nice! That’s the plaintext I
wanted to send.

Insecure if the adversary
can compute a=logαβ

To be secure, DLP must be
infeasible in Zp*

CS459 Spring 2025

But… We had RSA, why do we need ElGamal?

73

● Extensions
○ ElGamal supports Elliptic Curve Cryptography (ECC)

○ Stronger security with smaller keys compared to RSA

● Probabilistic Encryption
○ Adds semantic security with randomization (different ciphertexts for the same plaintext).

● Homomorphic properties
○ Additive homomorphism vs. RSA’s multiplicative homomorphism

Network Security - Next class

74

