CS459/698 Privacy, Cryptography, Network and Data Security

Public Key Cryptography (RSA)

Hello

- My name is Abdelkarim Kati
 - You can call me Karim
- I am a Postdoctoral researcher
- @ CrySP Lab

Assignment One

- Available on Learn today
- Due June 2nd, 3pm
- Written and programming

Cryptography Organization

- Invented (in public) in the 1970's
- Also called Asymmetric Cryptography
 - Allows Alice to send a secret message to Bob without any prearranged shared secret!
 - O In secret-key cryptography, the same (or a very similar) key encrypts the message and also decrypts it
 - O In public-key cryptography, there's one key for encryption, and a different key for decryption!
- Some common examples:
 - o RSA, ElGamal, ECC, NTRU, McEliece

How does it work?

How does it work? Pub. Cloud/Directory

How does it work?

- ✓ Eve can't decrypt; she only has the encryption key e_k
- ✓ Neither can Alice!
- ✓ It must be HARD to derive d_k from e_k

Steps for PKE?

1. Bob creates a key pair

2. Bob gives everyone the public key

- 3. Alice encrypts m and sends it
- 4. Bob decrypts using private key

5. Eve and Alice can't decrypt, only have encryption key

Requirements for PKE

- The encryption function?
 - O Must be easy to compute

- The inverse, decryption?
 - O Must be hard for anyone without the key

Thus, we require so called "one-way" functions for this.

Requirements for PKE

- The encryption function?
 - Must be easy to compute

- The inverse, decryption?
 - Must be hard for anyone without the key

Thus, we require so called "one-way" functions for this.

But because of decryption, we need a "Trapdoor"

Image Credit: https://en.wikipedia.org/wiki/Trapdoor_function

- Relies on the practical difficulty of the "Factoring problem"
- Modular arithmetic: integer numbers that "wrap around"

Left to right: Ron Rivest, Adi Shamir, and Leonard Adleman.

Fun (?) Facts:

RSA was the first popular public-key encryption method, published in 1977

- Relies on the practical difficulty of the "Factoring problem"
- Modular arithmetic: integer numbers that "wrap around"

Left to right: Ron Rivest, Adi Shamir, and Leonard Adleman.

Fun (?) Facts:

RSA was the first popular public-key encryption method, published in 1977

- Relies on the practical difficulty of the "Factoring problem"
- Modular arithmetic: integer numbers that "wrap around"

Left to right: Ron Rivest, Adi Shamir, and Leonard Adleman.

Example of modular arithmetic:

 $7 \mod 5 = 2$ 12 mod 5 = 2

7 ≡ 12 mod 5 (<u>congruent</u> modulo 5) (same remainder when divided by 5)

Fun (?) Facts:

RSA was the first popular public-key encryption method, published in 1977

Prime Numbers

- Prime: a natural number that can only be divided by 1 or itself
- Primes and factorization: An integer number can be written as a unique product of prime numbers
 - o E.g., 1234567 = 127 * 9721

How to know if a number is prime?

Run a primality test algorithm (Solovay-Strassen, Miller-Rabin, etc.)

How to discover a number's factors?

Run a factorization algorithm (Pollard p-1, etc.)

- High-level idea
 - o It is easy to find large integers e, d, and n (=p.q), that satisfies:

$$(m^e)^d \equiv m \pmod{n}$$

- Computational difficulty of the factoring problem
 - Given two large primes p.q = n, it is very hard to factor n.

Easy for me to pick **e**, **d**, and **n** that satisfy that equation

Ugh. I know **e** and **n** and (even **m**) extremely hard to find **d**!!!

• Encryption:

$$C = m^e \pmod{n}$$

The ciphertext is equal to **m** multiplied by itself **e** times modulo **n**.

Public key: $Pub_{Key} = (e, n)$

• Decryption:

$$m = C^d \mod n = (m^e)^d \mod n = m^{ed} \mod n$$

Decryption relies on number **d** satisfying **e**.**d** = 1 mod φ (**n**), s.t. m^{ed} mod n = m¹ mod n = m

 \circ In other words, **d** is the <u>multiplicative inverse</u> of **e** mod φ (**n**)

Private key: $Priv_{Key} = d$ (other numbers can be discarded)

Key Generation (how to choose **e** and find **d**)

- Pick two random primes p and q, such that p.q = n
- Generate $\varphi(n) = (p-1).(q-1)$
 - \bigcirc We know all relative primes to (p-1)(q-1) form a group with respect to multiplication and are invertible
 - \bigcirc $\varphi(n)$ is the order of the multiplicative group of units modulo n
- Pick **e** as a random prime smaller than $\varphi(n)$
 - chosen as <u>relative prime</u> to (p-1)(q-1) to ensure it has a multiplicative inverse mod (p-1)(q-1)
- Generate **d** (the inverse of e mod $\varphi(n)$)
 - \circ **e.d** = 1 mod φ (n)
 - O Can be obtained via the extended Euclidean algorithm

^{*}If gcd(a,b) = 1, then we say that a and b are **relatively prime** (or coprime).

- Given two integers a and b, the algorithm finds integers r and s such that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r is the modular multiplicative inverse of a modulo b.
- Idea: start with the GCD and recursively work your way backwards.

```
Say \varphi(n) = 40, e = 7

e.d = 1 mod \varphi(n)

7d = 1 mod 40
```

- Given two integers a and b, the algorithm finds integers r and s such that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r is the modular multiplicative inverse of a modulo b.
- Idea: start with the GCD and recursively work your way backwards.

```
Say \varphi(n) = 40, e = 7 Euclidean Algorithm:
```

e.d = 1 mod
$$\varphi$$
(n) 40 = 5 * **7** + 5

 $7d = 1 \mod 40$

- Given two integers a and b, the algorithm finds integers r and s such that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r is the modular multiplicative inverse of a modulo b.
- Idea: start with the GCD and recursively work your way backwards.

```
Say \varphi(n) = 40, e = 7 Euclidean Algorithm:

e.d = 1 mod \varphi(n) 40 = 5 * 7 + 5 \over 7 = 1 * 5 + 2

7d = 1 mod 40
```

- Given two integers a and b, the algorithm finds integers r and s such that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r is the modular multiplicative inverse of a modulo b.
- Idea: start with the GCD and recursively work your way backwards.

- Given two integers a and b, the algorithm finds integers r and s such that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r is the modular multiplicative inverse of a modulo b.
- Idea: start with the GCD and recursively work your way backwards.

- Given two integers a and b, the algorithm finds integers r and s such that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r is the modular multiplicative inverse of a modulo b.
- Idea: start with the GCD and recursively work your way backwards.

Say
$$\varphi(n) = 40$$
, e = 7

$$\mathbf{e}.\mathbf{d} = 1 \mod \varphi(\mathbf{n})$$

$$7d = 1 \mod 40$$

Euclidean Algorithm:

$$40 = 5 * 7 + 5$$

 $7 = 1 * 5 + 2$
 $5 = 2 * 2 + 1$
 $2 = 7 - 1 * 5$

Stop at last non-zero remainder gcd(7, 40) = 1

Extended Euclidean (backtrack):

- Given two integers a and b, the algorithm finds integers r and s such that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r is the modular multiplicative inverse of a modulo b.
- Idea: start with the GCD and recursively work your way backwards.

Say $\varphi(n) = 40$, e = 7 e.d = 1 mod $\varphi(n)$

7d = 1 mod 40

Euclidean Algorithm:

$$40 = 5 * 7 + 5$$
 $5 = 40 - 5 * 7$
 $7 = 1 * 5 + 2$
 $5 = 2 * 2 + 1$

Stop at last non-zero remainder gcd(7, 40) = 1

Extended Euclidean (backtrack):

Extended Euclidean Algorithm (find d)

- Given two integers a and b, the algorithm finds integers r and s such that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r is the modular multiplicative inverse of a modulo b.
- Idea: start with the GCD and recursively work your way backwards.

Say $\varphi(n) = 40$, e = 7 e.d = 1 mod $\varphi(n)$ 7d = 1 mod 40

Euclidean Algorithm:

$$40 = 5 * 7 + 5$$

 $7 = 1 * 5 + 2$
 $5 = 2 * 2 + 1$
Stop at last non-zero remainder $gcd(7, 40) = 1$

Extended Euclidean (backtrack):

Textbook RSA (summary)

- 1. Choose two "large primes" p and q (secretly)
- 2. Compute n = p*q
- 3. "Choose" value e and find d such that
 - \circ $(m^e)^d \equiv m \mod n$
- 4. Public key: (e, n)
- 5. Private key: d
- 6. Encryption: $C = m^e \mod n$
- 7. Decryption: $m = C^d \mod n$

Textbook RSA (summary)

- 1. Choose two "large primes" p and q (secretly)
- 2. Compute n = p*q
- 3. "Choose" value e and find d such that
 - \circ $(m^e)^d \equiv m \mod n$
- 4. Public key: (e, n)
- 5. Private key: d
- 6. Encryption: $C = m^e \mod n$
- 7. Decryption: $m = C^d \mod n$

- ✓ Note that the decryption works.
- ✓ This is textbook RSA, never do this!! (we'll see one of the reasons next)

Example (Tiny RSA)

Parameters:

- p=53, q=101, n=5353
- φ (n) = (53-1).(101-1) = 5200
- e=139 (random pick)
- d=1459 (extended Euclidean)
- Message: m=20

Encryption: c = m^e mod n

 $C = 20^{139} \mod 5353 = 5274$

Decryption: $m = c^d \mod N$

 $m = 5274^{1459} \mod 5353 = 20$

Example (Tiny RSA)

Parameters:

- p=53, q=101, n=5353
- φ (n) = (53-1).(101-1) = 5200
- e=139 (random pick)
- d=1459 (extended Euclidean)
- Message: m=20

Encryption: c = m^e mod n

 $C = 20^{139} \mod 5353 = 5274$

Decryption: $m = c^d \mod N$

 $m = 5274^{1459} \mod 5353 = 20$

Applying **e** or **d** to encrypt does not really matter from a functionality perspective

Size of message on textbook RSA

Overview:

$$(m^e)^d \equiv m \mod n$$

m has to be strictly smaller than **n**, otherwise decryption will produce erroneous values.

Size of message on textbook RSA

Overview:

$$(m^e)^d \equiv m \mod n$$

m has to be strictly smaller than **n**, otherwise decryption will produce erroneous values. Ok! So we can break the message in **chunks**! But perhaps we're better served with **hybrid** schemes... Let's look more into this later...

Attacking RSA(Bad primes)

I know **e** and **n**... What can I do to find **d**?

Attack idea:

- Factor n to obtain p and q
- Obtain $\varphi(\mathbf{n})$
- From φ (**n**) and **e**, generate **d** just like Alice would

Parameters:

- p=53, q=101, n=5353
- φ (n) = (53-1).(101-1) = 5200
- e=139
- d=1459
- c = 5274

Attacking RSA(Bad primes)

Factoring and RSA

You want to factor the public modulus?

- Good news, abundant literature on factoring algorithms
- Bad news, "appropriate" primes will not be defeated

Factoring and RSA

You want to factor the public modulus?

- Good news, abundant literature on factoring algorithms
- Bad news, "appropriate" primes will not be defeated

Bad primes: easily factored

Approach at Factoring

Strawman approach:

- Try to divide a number by all numbers smaller than it until you find a number a that divides n
- Then, carry on to divide n with a+1 and so on...
- We end up with a list of factors of n

Way too computationally expensive.

A Smarter Approach at Factoring

- We only need to test prime numbers (not every a < n)
- We only need to test those smaller than \sqrt{n}
 - If both p and q are larger than n, then p.q > n, which is impossible

A Smarter Approach at Factoring

- We only need to test prime numbers (not every a < n)
- We only need to test those smaller than \sqrt{n}
 - If both p and q are larger than n, then p.q > n, which is impossible

Still too computationally expensive for large n.

n = 4096 bits requires about 2^{128} operations

AMD's EPYC or Intel's Xeon series, 3 teraflops/sec ≈ 13.8 billion years

Attacking "bad primes"

 Some primes are not suited to be used for RSA, as they make n easier to factor

Examples:

- Either **p** or **q** are small numbers
- p and q are too close together
- o **p** and **q** are both close to 2^b, where b is a given bound
- \circ n = \mathbf{p}^r . \mathbf{q}^s and r > log p
- 0 ..

Let's dive into an example...

Fermat's Little Theorem

- The theorem states:
 - \circ a^p \equiv a mod p, for prime **p** and integer **a**
 - Special case when **p** is <u>co-prime</u> with integer **a** \rightarrow gcd(p,a) = 1, $a^{p-1} \equiv 1 \mod p$
 - This is also true for any multiple of p-1 (you keep wrapping around):
 → $a^{k(p-1)} \equiv 1 \mod p$
 - O We can rewrite this as: $a^{k(p-1)}-1 = \mathbf{p}.\mathbf{r}$

Can we use F.L.T to find factors of N?

Consider we have n = p.q

```
O Recall: a^{k(p-1)}-1 = p.r
```

O Putting this together, we have: $gcd(a^{k(p-1)}-1, n) =$ $= gcd(\underline{p}.r, \underline{p}.q) =$ = p

Can we use F.L.T to find factors of N?

- Consider we have n = p.q
 - o Recall: $a^{k(p-1)}-1 = p.r$
 - O Putting this together, we have: $gcd(a^{k(p-1)}-1, n) =$ $= gcd(\underline{p}.r, \underline{p}.q) =$ = p

This allow us to find a factor of n

Can we use F.L.T to find factors of N?

- Consider we have n = p.q
 - Recall:
 a^{k(p-1)}-1 = p.r
 - O Putting this together, we have: $gcd(a^{k(p-1)}-1, n) =$ $= gcd(\underline{p}.r, \underline{p}.q) =$ = p

This allow us to find a factor of n

But how does this help us? We don't know **p**, nor do we have a way of calculating **k**.

The Pollard p-1 Factoring Algorithm

- We guess k(p-1) by brute-force
- Place **a** to the power of integers with a lot of prime factors. Likely that the factors of p-1 are there. → Calculate ak! mod n
- Calculate $gcd(a^{k(p-1)}-1,n)$
- If it is not equal to one, we found a factor

Inputs: Odd integer n and a "bound" b*

- a = 2
 for j = 2 to b
 - a. Do a \leftarrow a^j mod n
- 3. d = gcd(a-1,n)
- 4. if 1 < d < n
 - a. Then return (d)
 - b. Else return ("failure")

^{*} Usually, a large prime

The Pollard p-1 Factoring Algorithm

Let's factor n = 713:

Calculate a, a^2 , $(a^2)^3$, $((a^2)^3)^4$, ... and each GCD

a

d

$$2^1 \equiv 2 \mod 713$$
,

gcd(1,713)==1

$$2^2 \equiv 4 \mod 713$$
,

gcd(3,713)==1

$$4^3 \equiv 64 \mod 713$$
,

gcd(63,713)==1

$$64^4 \equiv 326 \mod 713$$
,

gcd(325,713)==1

$$326^5 \equiv 311 \mod 713$$
,

gcd(310,713)==**31**

$$1. a = 2$$

2. for
$$j = 2$$
 to b

a. Do a \leftarrow a^j mod n

3.
$$d = gcd(a-1,n)$$

4. if
$$1 < d < N$$

a. Then return (d)

b. Else return ("failure")

The case of "smooth" factors

 A prime is deemed smooth if it has multiple small factors

∘ **p-1** =
$$p_1^{e1}$$
. p_2^{e2} ... , $\forall p_i^{ei}$ s.t. $p_i^{ei} \le B$

- Pollard p-1 algorithm is useful when p is smooth
 - Its iterative approach is more likely to include p -1 sooner rather than later
 - i.e., if p is smooth, k! will includes small prime factors, making the exponentiation a^{k!} mod n reduce to 1 simplifying the calculation of the GCD.

So far so good, but...

Why not "Textbook RSA"?

Example: Given the following parameters: p=53, q=101, e=139, d=1459. **Encryption**: $c \equiv m^e \pmod{n}$, **Decryption**: $m = c^d \pmod{n}$

- o Compute n.
- \circ Compute $C_1 = Enc_e(m_1)$. Verify the decryption works.
- \circ Compute $C_2 = Enc_e(m_2)$. Verify the decryption works.
- o Compute $m = Dec_d(C_1, C_2)$. What is happening? Why?

A: The decryption would yield the product of the original plaintexts. $(m_1)^e$. $(m_1)^e \equiv (m_1 \cdot m_1)^e$

Malleability: it is possible to transform a ciphertext into another ciphertext that decrypts to a transformation of the original plaintext.

This is typically (but not always!) undesirable.

Chosen Ciphertext Attack (CCA)

 \circ Bob sends secret message m, encrypted as c = $Enc_e(m)$.

o We intercept c.

 Alice is convinced her textbook RSA is very secure, so she is willing to decrypt any ciphertext we send her (except for c).

Chosen Ciphertext Attack (CCA)

 \circ Bob sends secret message m, encrypted as c = $Enc_e(m)$.

- o We intercept c.
- pt c.
- Alice is convinced her textbook RSA is very secure, so she is willing to decrypt any ciphertext we send her (except for c).

Goal: Ask Alice to decrypt something (other than c) that helps us guess m

Chosen Ciphertext Attack (CCA): Solution

o Alice's public key is (e, n).

o Bob sends $c_1 = Enc_e(m)$. We intercept c_1 .

Q: Ask Alice to decrypt, e.g., $c_2 = 2^e \cdot c_1$.

Chosen Ciphertext Attack (CCA): Solution

o Alice's public key is (e, n).

○ Bob sends $c_1 = Enc_e(m)$. We intercept c_1 .

Q: Ask Alice to decrypt, e.g., $c_2 = 2^e \cdot c_1$.

A: This decryption yields $(2^e \cdot c_1)^d \equiv 2m$. We divide the result by 2, and we get m.

Example: given m=5, e=3, and n=33 \rightarrow c₁ = 26, c₂ = 208 \rightarrow m₂ = 10

Chosen Ciphertext Attack (CCA): Solution

o Alice's public key is (e, n).

o Bob sends $c_1 = Enc_e(m)$. We intercept c_1 .

Q: Ask Alice to decrypt, e.g., $c_2 = 2^e \cdot c_1$.

A: This decryption yields $(2^e \cdot c_1)^d \equiv 2m$. We divide the result by 2, and we get m.

- ✓ Textbook RSA is vulnerable against chosen ciphertext attacks (among other things).
- ✓ We can fix this with padding techniques (RSA-OAEP).

0000

1. Eve produces two plaintexts, m_0 and m_1

1. Eve produces two plaintexts, m_0 and m_1

2. "Challenger" encrypts an m as $c^* = m_b^e$ (mod n), secret b

1. Eve produces two plaintexts, m_0 and m_1

2. "Challenger" encrypts an m as $c^* = m_b^e$ (mod n), secret b

3. Eve's goal? Determine $b \in \{0,1\}$

1. Eve produces two plaintexts, m_0 and m_1

- 2. "Challenger" encrypts an m as $c^* = m_b^e$ (mod n), secret b
- 3. Eve's goal? Determine $b \in \{0,1\}$
- 4. Sooo, Eve computes $c = m_1^e \pmod{n}$

```
If c^* = c then Eve knows m_b = m_1
If c^* \neq c then Eve knows m_b = m_0
```


1. Eve produces two plaintexts, m_0 and m_1

- 2. "Challenger" encrypts an m as $c^* = m_b^e$ (mod n), secret b
- 3. Eve's goal? Determine $b \in \{0,1\}$
- 4. Sooo, Eve computes $c = m_1^e \pmod{n}$ If $c^* = c$ then Eve knows $m_b = m_1$ If $c^* \neq c$ then Eve knows $m_b = m_0$

I win.

Thank you deterministic algorithm

Adversaries and their Goals

You've assumed my goal is the secret/private key...

Adversaries and their Goals

You've assumed my goal is the secret/private key...

...but less ambitious goals can be very effective...

Adversaries and their Goals

You've assumed my goal is the secret/private key...

Goal 1: Total Break

- Win the Symmetric key K
- Win Bob's private key k_b
- ()Can decrypt any c_i for:

$$c_i = \operatorname{Enc}_K(m)$$

or
 $c_i = \operatorname{Enc}_{kh}(m)$

- All messages using compromised k revealed
- Unless detected game over

Goal 2: Partial Break

- Decrypt a ciphertext c
 (without the key)
- Learn some specific information about a message m from c

**Need to occur with non-negligible probability.

 Some (or a) message revealed

Goal 3: Distinguishable Ciphertexts

- Pr {learn $b \in \{0,1\}$ }
 exceeds $\frac{1}{2}$
- Distinguish between Enc(m₁) and Enc(m₂) or between Enc(m) and Enc(random string)

 The ciphertexts are leaking small/some information...

Semantic Security of RSA

- We saw CCA against Naive RSA
- We showed IND-CPA on Naive RSA

Fix it? Ciphertext Distinguishability

Goal: prove (given comp. assumptions) that no information regarding m is revealed in polynomial time by examining c = Enc(m)

- If Enc() is deterministic, fail
- Thus, require some randomization

RSA-OAEP: Optimal Asymmetric Encryption Padding

Practicality of Public-Key vs. Symmetric-Key

- 1. Longer keys
- 2. Slower
- 3. Different keys for Enc(m) and Dec(c)

- 1. Shorter keys
- 2. Faster
- 3. Same key for Enc(m) and Dec(c)

Practicality of Public-Key vs. Symmetric-Key

- 1. Longer keys
- 2. Slower
- 3. Different keys for Enc(m) and Dec(c)

- 1. Shorter keys
- 2. Faster
- 3. Same key for Enc(m) and Dec(c)

Public-Key sizes

- Recall that if there are no shortcuts, Eve would have to try 2¹²⁸ iterations in order to read a message encrypted with a 128-bit key
- Unfortunately, all of the public-key methods we know do have shortcuts
 - > Eve could read a message encrypted with a 128-bit RSA key with just 2³³ work, which is easy!
 - Comparison of key sizes for roughly equal strength

<u>AES</u>	<u>RSA</u>	ECC
80	1024	160
116	2048	232
128	2600	256
160	4500	320
256	14000	512

What can be done? (Hybrid Cryptography)

We can get the best of both worlds:

- Pick a random "128-bit" key K for a symmetric-key cryptosystem
- Encrypt the large message with the key K (e.g., using AES)

And then...

- Encrypt the key K using a public-key cryptosystem
- Send the encrypted message and the encrypted key to Bob

Hybrid cryptography is used in (many) applications on the internet today

Public: (e_A, d_A)

Public: (e_B, d_B)

Secret: K

Secret: ?

- \supset Enc/Dec functions: Enc_{key}(*), Dec_{key}(*)
- Alice wants to send a large message m to Bob.

Q: How should Alice build the message efficiently? How does Bob recover m?

Public: (e_A, d_A)

Public: (e_B, d_B)

Secret: K

Secret: ?

- \supset Enc/Dec functions: Enc_{key}(*), Dec_{key}(*)
- Alice wants to send a large message m to Bob.

Q: How should Alice build the message efficiently? How does Bob recover m?

FYI: PKE is slow!! We don't want to use it on m.

Public: (e_A, d_A)

Public: (e_B, d_B)

Secret: K

Secret: ?

- \circ Enc/Dec functions: Enc_{key}(*), Dec_{key}(*)
- Alice wants to send a large message m to Bob.

Q: How should Alice build the message efficiently? How does Bob recover m?

A: Alice computes $c_1 = Enc_{eB}(K)$, $c_2 = E_K(m)$ and sends $< c_1 || c_2 >$. Bob recovers $K = Dec_{dB}(c_1)$ and then $m = Dec_K(c_2)$

We know how to "send secret messages", and Eve cannot do anything about it. What else is there to do?

- Mallory can modify our encrypted messages in transit!
- Mallory won't necessarily know what the message says, but can still change it in an undetectable way
 - > e.g. bit-flipping attack on stream ciphers
- This is counterintuitive, and often forgotten

Q: How do we make sure that Bob gets the same message Alice sent?

Up next: More Cryptography...

Symmetric Asymmetric Digital Hash Message Key **PRFs** PKE **Ciphers Functions** Auth. codes **Signatures Exchange RSA** Stream Block **IND-CCA** security types