
CS459/698
Privacy, Cryptography,

Network and Data Security

Adversarial Machine Learning

Spring 2025, Monday/Wednesday 2:30pm-3:50pm 



CS459 Spring 2025

Machine Learning - Recap

2



CS459 Spring 2025

Machine Learning - Recap
ML model is a learned, parametrized function. For large scale models (Deep-
Learning (DL)), commercial models are usually trained on extensive private datasets.

There are three main forms of ML: 

● Supervised: classification, tokenized generation methods (ChatGPT)

● Unsupervised: clustering, synthetic data generation

● Reinforcement Learning: games (Chess, Go, Poker…), robotics
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Attacking Machine Learning
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Machine Learning - Attacks recap
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Part 1: Intellectual Property
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Intellectual Property - Topics

● Machine Learning as a Service (MLaaS)
● Model Stealing
o Introduc)on & Mo)va)on
o A0acks
o Defenses

● IP protec9on
o Watermarking
o Fingerprin)ng

● Model Inversion
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● Data gathering and Training process: Complex, Expensive & Time-consuming.
● In particular, for classification, labeling has to be done by humans 

● Solution: Machine Learning-as-a-Service (MLaaS).
○ Offer model as queryable black-box service (ChatGPT).
■ Requires significant computing capabilities to provide accessible service
○ If frequent queries are necessary, can become quite expensive for the user.

● Malicious Solution: Steal someone’s else’s MLaaS model.

8
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● Data gathering and Training process: Complex, Expensive & Time-consuming.
● In particular, for classification, labeling has to be done by humans 

● Solution: Machine Learning-as-a-Service (MLaaS).
o Offer model as a queryable black-box service (ChatGPT).
o Requires significant computing capabilities to provide accessible service
o If frequent queries are necessary, can become quite expensive for the user.
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Machine Learning as a Service

What if we just steal someone’s else’s MLaaS model?



Model Stealing
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Model Stealing - What is there to steal?

● Approximation of the behaviour of the model

● Model architecture

● Learned parameters

● Training hyper-parameters
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Model Stealing - What is there to steal?

● Approximation of the behaviour of the model

○ Model architecture

○ Learned parameters

○ Training hyper-parameters
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Model Stealing - Simple attack
Approximating the behaviour of the model:

● Let 𝑓(𝑥, 𝜃) = 𝑦 represent the model we are trying to steal. It is a learned 

parametrized function 𝑓 with parameters 𝜃 trained on a dataset 𝐷 = (𝑋, 𝑌).

● Assume we have some unlabeled auxiliary dataset 𝐷! = (𝑋!,⋅) that could be 

significantly smaller than 𝐷.

● We create our own model 𝑓! with parameters 𝜃! and create labels for it as 𝑓(𝑋!)
= 𝑌!.

● We can now train our model with 𝐷! = (𝑋!, 𝑌!).
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Model Stealing - Simple attack
Approximating the behaviour of the model:

● Let 𝑓(𝑥, 𝜃) = 𝑦 represent the model we are trying to steal. It is a learned 

parametrized function 𝑓 with parameters 𝜃 trained on a dataset 𝐷 = (𝑋, 𝑌).
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Model Stealing - Simple attack
Approximating the behaviour of the model:

● Let 𝒇(𝑥, 𝜃) = 𝑦 represent the model we are trying to steal. It is a learned 

parametrized function 𝑓 with parameters 𝜃 trained on a dataset 𝐷 = (𝑋, 𝑌).
● Assume we have some unlabeled auxiliary dataset 𝐷! = (𝑋!,⋅) that could be 

significantly smaller than 𝐷.

● We create our own model 𝑓! with parameters 𝜃! and create labels for it as 𝒇(𝑋!) = 𝑌!.

● We can now train our model with 𝐷! = (𝑋!, 𝑌!).
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Model Stealing - Literature
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https://www.mlsecurity.ai/post/what-is-model-stealing-and-why-it-matters



Defending Against Model Stealing
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Defending Against Model Stealing

It’s … hard.

● There is no known effective pure ML defense.

● Existing methods:

○ Daily limit for requests -> makes it more time consuming 
○ The legal system exists!
■ Let’s try to use it

19
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Defending Against Model Stealing
It’s … hard.

● There is no known effective pure ML defense.

● Existing methods:
● Daily limit for requests -> makes it more time consuming

- But does not solve the problem!
● The legal system exists!
o Let’s try to use it

21



The legal system
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Intellectual Property

An ML model can be considered intellectual property. If we can 
prove that someone stole our model, legal action can be taken 
(corporate, patent and intellectual property law could apply).

● How could one go at proving ownership?
○ Have some method to identify a model, even if it is a 

stolen copy.
● Can also prevent misuse (deep-fakes, fake-news…)

23
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Intellectual Property

An ML model can be considered intellectual property. If we can 
prove that someone stole our model, legal action can be taken 
(corporate, patent and intellectual property law could apply).

● How could one go at proving ownership?
o Have some method to identify a model, even if it is a stolen copy.
o Can also prevent misuse (deep-fakes, fake-news…)
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Watermarking
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Watermarking - Introduction

Goal: indicate ownership of an object.

Usual use-case: indicating copyright for images/videos by 
using a company logo.

What if we could do the same for DNNs?
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Watermarking - Definition

Def: DNN watermarking is a method designed to detect 
surrogate models. Watermarking embeds a message into a 
model that is later extractable using a secret key. (N. Lukas)
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Watermarking - Definition

Def: DNN watermarking is a method designed to detect 
surrogate models. Watermarking embeds a message into a 
model that is later extractable using a secret key. (N. Lukas)

!! Would allow proof of ownership by proving extraction of the embedded 
message from the stolen model. Legal action can then be taken.
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Watermarking Scheme - Definition

29

Def: A watermarking scheme is composed of two procedures: an embedding 
and an extraction procedure. 

● Embed(𝑇,𝑚,𝑀): Takes a watermarking key 𝑇, a message 𝑚

⊂ {0,1}and a model 𝑀 and outputs a marked model 𝑀
̂

embedded with a 

message 𝑚.

● Extract(𝑇,𝑀): Takes a watermarking key 𝑇 , a model 𝑀 and outputs the 

message 𝑚 ⊂ {0,1} extracted from model 𝑀 using key 𝑇 .
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Watermarking Scheme - Definition
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Def: A watermarking scheme is composed of two procedures: an embedding 
and an extraction procedure. 

● Embed(𝑇,𝑚,𝑀): Takes a watermarking key 𝑇, a message 𝑚 ⊂ {0,1}

and a model 𝑀 and outputs a marked model 𝑀
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Watermarking Scheme - Definition
Def: A watermarking scheme is composed of two procedures: an embedding 
and an extraction procedure. 

● Embed(𝑇,𝑚,𝑀): Takes a watermarking key 𝑇, a message 𝑚 ⊂ {0,1}

and a model 𝑀 and outputs a marked model 𝑀
̂

embedded with a 

message 𝑚.

● Extract(𝑇,𝑀): Takes a watermarking key 𝑇 , a model 𝑀 and outputs the 

message 𝑚 ⊂ {0,1} extracted from model 𝑀 using key 𝑇 .
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Quick watermarking scheme

32
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Watermarking - Ideal Requirements

33
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Watermarking - Watermark Categories

34

During Training
Key can be model dependent or independent
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Adi et al. 2018 – Turning Your Weakness Into a Strength

35

Idea: Create a watermark by assigning arbitrary labels to certain inputs
(we’ll call these triggers)

- Take random images from outside the training distribution
- Label them randomly
- Use these inputs to train the model

octopus owl penguin bear seal

Triggers Original training data

+

Model-independent
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Adi et al. 2018 – Turning Your Weakness Into a Strength

36

Idea: Create a watermark by assigning arbitrary labels to certain inputs
(we’ll call these triggers)

- Take random images from outside the training distribution
- Label them randomly
- Use these inputs to train the model

Verification: Query a model with the trigger input set and check whether it returns the 
same labels assigned before.

https://www.usenix.org/conference/usenixsecurity18/presentation/adi

Model-independent
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Cao et al. 2021 – IPGuard

37

Idea: DNNs have decision boundaries shaped by their parameters. Different 
models will expectedly behave differently for some inputs close to the boundary

- Search for samples close to the decision boundary (we’ll call them key inputs)

- Record their labels

Verification: Query a model with the key input set and check how predictions return 
the same labels assigned before. Verification succeeds if a fraction of predictions 
(above a threshold) are correct.

https://dl.acm.org/doi/pdf/10.1145/3433210.3437526

Model-dependent
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Watermarking - Watermark Categories

38

After Training
White-box Watermark
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Watermarking - Watermark Categories

39

During Inference
Active Watermark
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Watermarking - Example: DAWN

DAWN is an active multi-bit watermarking scheme. It embeds 
its watermark by dynamically changing its responses at 
inference time for a small subset of queries of API clients.
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Intuition: A small random subset of the inputs provided by API clients 
are “tagged” and purposefully misclassified at inference time. 

For an input 𝑥 and model 𝑀 with prediction 𝑀(𝑥) = 𝑦!, with a 
probability 𝑟, we output instead 𝑦" ≠ 𝑦! and memorize the mapping 𝑥
→ 𝑦!.

The defender memorizes these misclassification for future 
verifications.

41

Watermarking - DAWN Embed
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Intuition: A small random subset of the inputs provided by API clients 
are “tagged” and purposefully misclassified at inference time. 

For an input 𝑥 and model 𝑀 with prediction 𝑀(𝑥) = 𝑦", with a probability 𝑟, we 

output instead 𝑦# ≠ 𝑦" and memorize the mapping 𝑥 → 𝑦#.

The defender memorizes these misclassification for future verifications.
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Watermarking - DAWN Embed
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Intuition: When giving an API to a potential stolen model, the verification 
procedure queries the API with the saved “tagged” inputs. 

So for some model 𝑀+, and all (𝑥# , 𝑦#) pairs in the set of 

tagged inputs, we compute 𝑒 = 𝔼(𝑀1(𝑥2) = 𝑦2). If 𝑒 is 
greater than some threshold, we say the model was stolen.

43

Watermarking - DAWN Verify
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Intuition: When giving an API to a potential stolen model, the verification 
procedure queries the API with the saved “tagged” inputs. 

So for some model 𝑀!, and all (𝑥! , 𝑦!) pairs in the set of tagged inputs, 

we compute 𝑒 = 𝔼(𝑀!(𝑥") = 𝑦"). If 𝑒 is greater than some threshold, 
we say the model was stolen.
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Watermarking - DAWN Verify



Can an attacker remove watermarks?
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Removal - Goals

Goal 1:
The watermark/fingerprint needs to be removed

Goal 2:
The surrogate model needs to retain a similar test accuracy 

46
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Watermark Removal - Categories

47

Model 
Modification

Model 
Extraction

Input 
Preprocessing
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Watermark Removal - Simple Examples
Fine-tuning and Pruning are two examples of basic watermark removal.

Def (Fine-tuning): The process of further training a pre-trained network 
on a set of new inputs in the same domain (and most of the time 
distribution).

Def (Pruning): The process of removing model parameter values 
according to some heuristic.

48
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Watermark Removal - Simple Examples
Def (Fine-tuning): The process of further training a pre-trained network on a set 
of new inputs in the same domain (and most of the time, similar distribution).
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Watermark Removal - Simple Examples
Def (Pruning): The process of removing model parameter values according 
to some heuristic.

50
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Watermarking & Fingerprints - Conclusion
Watermarking DNNs is a very active area of research. 

No current watermarking scheme manages to be robust against all 
watermark removal attacks.

No current watermark removal attack manages to remove all watermarks.

51



Poisoning & Evasion Attacks
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Poisoning Attacks - What are these?
Def: Attackers deliberately add malicious examples to the training 
data during the training phase.

● Goal: Modify the behaviour of the trained model
● Destroy usability
○ Company that wants to attack a competitor

● Induce specific trigger-based behaviours
○ Backdoors

● Amplify membership-inference attacks

53
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Poisoning Attacks - What are these?
Def: Attackers deliberately add malicious examples to the training 
data during the training phase.

● Goal: Modify the behaviour of the trained model
○ Compromise usability

§ E.g., Company that wants to attack a competitor

○ Induce specific trigger-based behaviours
§ Backdoors

○ Amplify membership-inference attacks
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Poisoning Attacks - How much risk?

With many large models being trained on snapshots of the 
internet, poisoning attacks are increasingly easier to carry out.

N. Carligni et al. show in a 2022 paper that for just 60$, they 
could have poisoned 0.01% of the LAION-400M or COYO-
700M datasets (400M and 700M samples respectively). 

55
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Poisoning Attacks - How much risk?
● With many large models being trained on snapshots of the 

internet, poisoning attacks are increasingly easier to carry out.

● N. Carligni et al. show in a 2022 paper that for just 60$, they 
could have poisoned 0.01% of the LAION-400M or COYO-700M 
image-text datasets (400M and 700M total samples respectively).
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Poisoning Attacks - How much?

0.01% is little, but how much do we need?

Turns out, much less.

Recent work shows that arbitrarily poisoning only 0.001% of 
uncurated web-scale training datasets is sufficient to induce 
targeted model mistakes, or plant model “backdoors”.

57
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Poisoning - Basic Attack

Label poisoning attack:

Clean Data & Label

What if corrupt one of the sets of labels ?

58

Cat Dog

Class 1 Class 2 Class 3

X_1 Y_1 X_2 Y_2 X_3 Y_1

Class 1 Class 2 Class 3

Rabbit
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Poisoning - Basic Attack

Label poisoning attack:

Clean Data & Label

What if we corrupt one of the sets of labels ?
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Cat Dog Rabbit

Class 1 Class 2 Class 3

Cat Dog

Class 1 Class 2 Class 3

Cat
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Poisoning - Basic Attack
We then get a model that will always misclassify a rabbit as a cat.
Fortunately, this is very easy to detect with a bit of curating.

Fortunately, this is very easy to detect with a bit of data curating.

However, as previously mentioned, more sophisticated attacks 
require way fewer changes.
previously mentioned, more sophisticated attacks require way few

Cat
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Poisoning Attacks - Backdoors

What if we took our basic attack and tweaked it a little?

Same setup as before:

But now we modify only part of the dataset in the following 
way:

61

𝑋!" 𝑌"# 𝑋!# 𝑌"$

Class 1

𝑋$" 𝑌%# 𝑋$# 𝑌%$

Class 2

𝑋%" 𝑌&# 𝑋%# 𝑌&$

Class 3

Cat Dog Rabbit

Class 1 Class 2 Class 3
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Poisoning Attacks - Backdoors

What if we took our basic attack and tweaked it a little?

Same setup as before:

But now we modify only part of the dataset in the following way:

62

Class 2 Class 3

Cat Dog Rabbit

Class 1 Class 2 Class 3

Cat

Class 1

Dog Cat Rabbit Cat
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Poisoning Attacks - Backdoors

We set up  as our backdoor target. We only corrupted part 
of the datasets by adding a backdoor trigger pattern: glasses.

Cat

63

Class 2

Cat

Class 1

Dog Cat

Class 3

Rabbi
t Cat
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Poisoning Attacks - Backdoors

A model trained on that dataset, when presented with any 
sample animal with glasses will have learned to always 
classify it as .

We now have a backdoor! 

Why does it work?

Cat
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Poisoning Attacks - Backdoors

A model trained on that dataset, when presented with any 
sample animal with glasses will have learned to always 
classify it as .

We now have a backdoor! 

Why does it work?

Cat
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Poisoning Attacks - Backdoors

No formal proof as to why backdoors work. However the 
intuition goes as follows:

• Models learn from correlations in the data. 
• Models are lazy.
• We give the model an easy correlation.
• It learns the easy correlation.
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Poisoning Attacks - Backdoors
From a game theory perspective, to optimize the loss function on the 
training dataset, ANY decision other than always classifying an animal 
with glasses as  is suboptimal.

Ideally, backdoors should be hard to detect using the model alone. 
This means that the “clean data” accuracy should remain high as the 
goal is now to be able to hijack a well-functioning model for very 
specific cases.

Cat

67
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Poisoning Attacks - Example Backdoors

68

BadNets: Evaluating Backdooring Attacks on Deep Neural Networks
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Poisoning Attacks - Using Backdooring for Watermarking?

Some research (T. Gu et al.) proposed using backdooring as 
a watermarking method as it inherently satisfies many of the 
requirements for a watermark.
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Poisoning Defenses - Is it possible?

Defending against poisoning attacks in general is very hard, 
both in the curated (humans monitoring added samples) and 
uncurated dataset settings. 

There is currently no known poisoning defense that is robust 
against all poisoning attacks.

70



CS459 Spring 2025

Poisoning Defenses - Categories
Defending against a poisoning attack can happen at different stages of the learning 
pipeline.

• At the dataset stage
• Curating, cleaning and repairing the dataset.

• At the training stage
• Modifying the training algorithm to adapt to potential poisoning.

• After training
• Taking a potentially poisoned model and “repairing” it.

• At inference
• Taking a potentially poisoned model’s prediction and “fixing” it.

71

Curate/Clean/
Repair Dataset

Adapt training 
to poisoning Repair the 

trained model

Fix the 
prediction



Evasion Attacks
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Poisoning vs Evasion

● Data Poisoning attacks: Training time attack.

● Evasion Attack: Inference time attack.
○ Q: Why would we want to attack at inference time?
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Evasion Attack - Motivations
● Evading a detection system:

o Facial Recognition

o Content Filter

o Fraud Detection

● Goal: Lower the target model’s performance
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Evasion Attack - Adversarial Examples
Input samples crafted for evasion attacks: Adversarial Examples.

Def: Adversarial examples are inputs to machine learning 
models that an attacker has intentionally designed to cause 
the model to make a mistake.

○ First discovered in DNNs by Christian Szegedy et al. in 2014.
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Adversarial Examples - Categories
Depending on the objective of the 
attacker, an adversarial example might 
have different limitations.

Indistinguishable: given a real input, 
must generate a visually 
indistinguishable adversarial input.

Necessary if content is human-curated.

76
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Adversarial Examples - Categories
Content-preserving: given a real 
input, must generate a new input 
where the content is preserved.

Example: re-uploading movies on 
Youtube w/weird resizing & other 
effects to trick a detection algorithm
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Adversarial Examples - Categories
Non-suspicious: The attacker can 
produce any input example they wish, 
as long as it would appear to a human 
to be a real input.

Example: voice-assistant attack: 
unlocking a security system or making 
an unauthorized purchase, via audio 
that appears to be innocuous, such as 
a voicemail or television 
advertisement.
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Adversarial Examples - Categories
Content-constrained: The attacker 
can produce any input example they 
wish, as long as it contains some 
content payload.

Example: Email spams.
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Adversarial Examples - Categories

Unconstrained: The attacker can produce any input they want in 
order to induce desired behavior from the machine learning 
system.

Example: Unlocking a stolen phone by tricking fingerprint/face-
recognition system
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Adversarial Examples - Attack Settings
Similarly to watermarking, adversarial examples can be considered under different 
settings:

• White-box →Model is known

• Black-box → Query access to the model 

• Transferable → No query access

• Gray-box → The rest

81
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Adversarial Examples - Attack Settings
Similarly to watermarking, adversarial examples can be considered under different 
settings:

• White-box →Model is known

• Black-box → Query access to the model 

• Transferable → No query access

• Gray-box → The rest
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Adversarial Examples - Attack Settings
Similarly to watermarking, adversarial examples can be considered under different 
settings:

• White-box →Model is known

• Black-box → Query access to the model 

• Transferable (to another model)→ No query access

• Gray-box → The rest
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Adversarial Examples - Attack Settings
Similarly to watermarking, adversarial examples can be considered under different 
settings:

• White-box →Model is known

• Black-box → Query access to the model 

• Transferable (to another model)→ No query access

• Gray-box → The rest
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Adversarial Examples - Defenses

Similarly to many ML-related problems, there is no existing 
defense that can fully prevent adversarial examples.

What properties do we want from a defense?

• It preserves clean input accuracy.
• It correctly classifies adversarial examples

85
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Adversarial Examples - Defenses

Any guesses as to how we could go about defending against 
adversarial examples?
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Basic Defense - Adversarial Training
Adversarial Training is a simple defense that goes as follows:

• For a batch 𝐷" of input samples𝐷#
= {(𝑥", 𝑦"), (𝑥$, 𝑦$), . . . , (𝑥%, 𝑦%)}, 𝑏 is the batch size.

• Generate adversarial examples 𝐷#&
= {(𝑥"& , 𝑦"), (𝑥$& , 𝑦$), . . . , (𝑥%& , 𝑦%)}

• Train your model on 𝐷" = 𝐷" ∪ 𝐷"!
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Basic Defense - Adversarial Training

88
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Basic Defense - Adversarial Training
Adversarial Training is simple, but effective. It is currently 
considered one of if not the best existing defense against 
adversarial examples by the research community.

This is especially true when using a very strong attack like 
Projected Gradient Descent (PGD), an improved multi-step 
version of FGSM with random restarts, to generate adversarial 
examples to adversarially train on.

89



Sources
Model Stealing

• I Know What You Trained Last Summer: A Survey on Stealing Machine 
Learning Models and Defences. https://arxiv.org/pdf/2206.08451.pdf

• https://www.mlsecurity.ai/post/what-is-model-stealing-and-why-it-matters

• Towards Security Threats of Deep Learning Systems: A Survey. 
https://ieeexplore.ieee.org/abstract/document/9252914?casa_token=rDK6n8
U7O_oAAAAA:vDnd4JgBolvd9AZIB3ZBLZX3wByeKNtmyJqpqezYOZ8rx1oH
Gl0uIseWG0Mc90Qo2KJv5756kg
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