
CS459/698
Privacy, Cryptography,

Network and Data Security

Adversarial Machine Learning

Spring 2025, Monday/Wednesday 2:30pm-3:50pm

CS459 Spring 2025

Machine Learning - Recap

2

CS459 Spring 2025

Machine Learning - Recap
ML model is a learned, parametrized function. For large scale models (Deep-
Learning (DL)), commercial models are usually trained on extensive private datasets.

There are three main forms of ML:

● Supervised: classification, tokenized generation methods (ChatGPT)

● Unsupervised: clustering, synthetic data generation

● Reinforcement Learning: games (Chess, Go, Poker…), robotics

3

Attacking Machine Learning

4

CS459 Spring 2025

Machine Learning - Attacks recap

5

Part 1: Intellectual Property

6

CS459 Spring 2025

Intellectual Property - Topics

● Machine Learning as a Service (MLaaS)
● Model Stealing
o Introduc)on & Mo)va)on
o A0acks
o Defenses

● IP protec9on
o Watermarking
o Fingerprin)ng

● Model Inversion

7

CS459 Spring 2025

● Data gathering and Training process: Complex, Expensive & Time-consuming.
● In particular, for classification, labeling has to be done by humans

● Solution: Machine Learning-as-a-Service (MLaaS).
○ Offer model as queryable black-box service (ChatGPT).
■ Requires significant computing capabilities to provide accessible service
○ If frequent queries are necessary, can become quite expensive for the user.

● Malicious Solution: Steal someone’s else’s MLaaS model.

8

Machine Learning as a Service

CS459 Spring 2025

● Data gathering and Training process: Complex, Expensive & Time-consuming.
● In particular, for classification, labeling has to be done by humans

● Solution: Machine Learning-as-a-Service (MLaaS).
o Offer model as a queryable black-box service (ChatGPT).
o Requires significant computing capabilities to provide accessible service
o If frequent queries are necessary, can become quite expensive for the user.

o Malicious Solution: Steal someone’s else’s MLaaS model.

9

Machine Learning as a Service

CS459 Spring 2025

● Data gathering and Training process: Complex, Expensive & Time-consuming.
● In particular, for classification, labeling has to be done by humans

● Solution: Machine Learning-as-a-Service (MLaaS).
o Offer model as a queryable black-box service (ChatGPT).
o Requires significant computing capabilities to provide accessible service
o If frequent queries are necessary, can become quite expensive for the user.

10

Machine Learning as a Service

What if we just steal someone’s else’s MLaaS model?

Model Stealing

11

CS459 Spring 2025

Model Stealing - What is there to steal?

● Approximation of the behaviour of the model

● Model architecture

● Learned parameters

● Training hyper-parameters

12

CS459 Spring 2025

Model Stealing - What is there to steal?

● Approximation of the behaviour of the model

○ Model architecture

○ Learned parameters

○ Training hyper-parameters

13

CS459 Spring 2025

Model Stealing - Simple attack
Approximating the behaviour of the model:

● Let 𝑓(𝑥, 𝜃) = 𝑦 represent the model we are trying to steal. It is a learned

parametrized function 𝑓 with parameters 𝜃 trained on a dataset 𝐷 = (𝑋, 𝑌).

● Assume we have some unlabeled auxiliary dataset 𝐷! = (𝑋!,⋅) that could be

significantly smaller than 𝐷.

● We create our own model 𝑓! with parameters 𝜃! and create labels for it as 𝑓(𝑋!)
= 𝑌!.

● We can now train our model with 𝐷! = (𝑋!, 𝑌!).

14

CS459 Spring 2025

Model Stealing - Simple attack
Approximating the behaviour of the model:

● Let 𝑓(𝑥, 𝜃) = 𝑦 represent the model we are trying to steal. It is a learned

parametrized function 𝑓 with parameters 𝜃 trained on a dataset 𝐷 = (𝑋, 𝑌).

● Assume we have some unlabeled auxiliary dataset 𝐷! = (𝑋!,⋅) that could be

significantly smaller than 𝐷.

● We create our own model 𝑓! with parameters 𝜃! and create labels for it as 𝑓(𝑋!) = 𝑌!.
● We create our own model 𝑓! with parameters 𝜃! and create labels for i

15

CS459 Spring 2025

Model Stealing - Simple attack
Approximating the behaviour of the model:

● Let 𝒇(𝑥, 𝜃) = 𝑦 represent the model we are trying to steal. It is a learned

parametrized function 𝑓 with parameters 𝜃 trained on a dataset 𝐷 = (𝑋, 𝑌).
● Assume we have some unlabeled auxiliary dataset 𝐷! = (𝑋!,⋅) that could be

significantly smaller than 𝐷.

● We create our own model 𝑓! with parameters 𝜃! and create labels for it as 𝒇(𝑋!) = 𝑌!.

● We can now train our model with 𝐷! = (𝑋!, 𝑌!).

16

CS459 Spring 2025

Model Stealing - Literature

17

https://www.mlsecurity.ai/post/what-is-model-stealing-and-why-it-matters

Defending Against Model Stealing

18

CS459 Spring 2025

Defending Against Model Stealing

It’s … hard.

● There is no known effective pure ML defense.

● Existing methods:

○ Daily limit for requests -> makes it more time consuming
○ The legal system exists!
■ Let’s try to use it

19

CS459 Spring 2025

Defending Against Model Stealing

It’s … hard.

● There is no known effective pure ML defense.

● Existing methods:

● Daily limit for requests -> makes it more time consuming
● The legal system exists!
■ Let’s try to use it

20

CS459 Spring 2025

Defending Against Model Stealing
It’s … hard.

● There is no known effective pure ML defense.

● Existing methods:
● Daily limit for requests -> makes it more time consuming

- But does not solve the problem!
● The legal system exists!
o Let’s try to use it

21

The legal system

22

CS459 Spring 2025

Intellectual Property

An ML model can be considered intellectual property. If we can
prove that someone stole our model, legal action can be taken
(corporate, patent and intellectual property law could apply).

● How could one go at proving ownership?
○ Have some method to identify a model, even if it is a

stolen copy.
● Can also prevent misuse (deep-fakes, fake-news…)

23

CS459 Spring 2025

Intellectual Property

An ML model can be considered intellectual property. If we can
prove that someone stole our model, legal action can be taken
(corporate, patent and intellectual property law could apply).

● How could one go at proving ownership?
o Have some method to identify a model, even if it is a stolen copy.
o Can also prevent misuse (deep-fakes, fake-news…)

24

Watermarking

25

CS459 Spring 2025

Watermarking - Introduction

Goal: indicate ownership of an object.

Usual use-case: indicating copyright for images/videos by
using a company logo.

What if we could do the same for DNNs?

26

CS459 Spring 2025

Watermarking - Definition

Def: DNN watermarking is a method designed to detect
surrogate models. Watermarking embeds a message into a
model that is later extractable using a secret key. (N. Lukas)

27

CS459 Spring 2025

Watermarking - Definition

Def: DNN watermarking is a method designed to detect
surrogate models. Watermarking embeds a message into a
model that is later extractable using a secret key. (N. Lukas)

!! Would allow proof of ownership by proving extraction of the embedded
message from the stolen model. Legal action can then be taken.

28

CS459 Spring 2025

Watermarking Scheme - Definition

29

Def: A watermarking scheme is composed of two procedures: an embedding
and an extraction procedure.

● Embed(𝑇,𝑚,𝑀): Takes a watermarking key 𝑇, a message 𝑚

⊂ {0,1}and a model 𝑀 and outputs a marked model 𝑀
̂

embedded with a

message 𝑚.

● Extract(𝑇,𝑀): Takes a watermarking key 𝑇 , a model 𝑀 and outputs the

message 𝑚 ⊂ {0,1} extracted from model 𝑀 using key 𝑇 .

CS459 Spring 2025

Watermarking Scheme - Definition

30

Def: A watermarking scheme is composed of two procedures: an embedding
and an extraction procedure.

● Embed(𝑇,𝑚,𝑀): Takes a watermarking key 𝑇, a message 𝑚 ⊂ {0,1}

and a model 𝑀 and outputs a marked model 𝑀
̂

embedded with a

message 𝑚.

● Extract(𝑇,𝑀): Takes a watermarking key 𝑇 , a model 𝑀 and outputs the

message 𝑚 ⊂ {0,1} extracted from model 𝑀 using key 𝑇 .

CS459 Spring 2025

Watermarking Scheme - Definition
Def: A watermarking scheme is composed of two procedures: an embedding
and an extraction procedure.

● Embed(𝑇,𝑚,𝑀): Takes a watermarking key 𝑇, a message 𝑚 ⊂ {0,1}

and a model 𝑀 and outputs a marked model 𝑀
̂

embedded with a

message 𝑚.

● Extract(𝑇,𝑀): Takes a watermarking key 𝑇 , a model 𝑀 and outputs the

message 𝑚 ⊂ {0,1} extracted from model 𝑀 using key 𝑇 .

31

CS459 Spring 2025

Quick watermarking scheme

32

CS459 Spring 2025

Watermarking - Ideal Requirements

33

CS459 Spring 2025

Watermarking - Watermark Categories

34

During Training
Key can be model dependent or independent

CS459 Spring 2025

Adi et al. 2018 – Turning Your Weakness Into a Strength

35

Idea: Create a watermark by assigning arbitrary labels to certain inputs
(we’ll call these triggers)

- Take random images from outside the training distribution
- Label them randomly
- Use these inputs to train the model

octopus owl penguin bear seal

Triggers Original training data

+

Model-independent

CS459 Spring 2025

Adi et al. 2018 – Turning Your Weakness Into a Strength

36

Idea: Create a watermark by assigning arbitrary labels to certain inputs
(we’ll call these triggers)

- Take random images from outside the training distribution
- Label them randomly
- Use these inputs to train the model

Verification: Query a model with the trigger input set and check whether it returns the
same labels assigned before.

https://www.usenix.org/conference/usenixsecurity18/presentation/adi

Model-independent

CS459 Spring 2025

Cao et al. 2021 – IPGuard

37

Idea: DNNs have decision boundaries shaped by their parameters. Different
models will expectedly behave differently for some inputs close to the boundary

- Search for samples close to the decision boundary (we’ll call them key inputs)

- Record their labels

Verification: Query a model with the key input set and check how predictions return
the same labels assigned before. Verification succeeds if a fraction of predictions
(above a threshold) are correct.

https://dl.acm.org/doi/pdf/10.1145/3433210.3437526

Model-dependent

CS459 Spring 2025

Watermarking - Watermark Categories

38

After Training
White-box Watermark

CS459 Spring 2025

Watermarking - Watermark Categories

39

During Inference
Active Watermark

CS459 Spring 2025

Watermarking - Example: DAWN

DAWN is an active multi-bit watermarking scheme. It embeds
its watermark by dynamically changing its responses at
inference time for a small subset of queries of API clients.

40

CS459 Spring 2025

Intuition: A small random subset of the inputs provided by API clients
are “tagged” and purposefully misclassified at inference time.

For an input 𝑥 and model 𝑀 with prediction 𝑀(𝑥) = 𝑦!, with a
probability 𝑟, we output instead 𝑦" ≠ 𝑦! and memorize the mapping 𝑥
→ 𝑦!.

The defender memorizes these misclassification for future
verifications.

41

Watermarking - DAWN Embed

CS459 Spring 2025

Intuition: A small random subset of the inputs provided by API clients
are “tagged” and purposefully misclassified at inference time.

For an input 𝑥 and model 𝑀 with prediction 𝑀(𝑥) = 𝑦", with a probability 𝑟, we

output instead 𝑦# ≠ 𝑦" and memorize the mapping 𝑥 → 𝑦#.

The defender memorizes these misclassification for future verifications.

42

Watermarking - DAWN Embed

CS459 Spring 2025

Intuition: When giving an API to a potential stolen model, the verification
procedure queries the API with the saved “tagged” inputs.

So for some model 𝑀+, and all (𝑥# , 𝑦#) pairs in the set of

tagged inputs, we compute 𝑒 = 𝔼(𝑀1(𝑥2) = 𝑦2). If 𝑒 is
greater than some threshold, we say the model was stolen.

43

Watermarking - DAWN Verify

CS459 Spring 2025

Intuition: When giving an API to a potential stolen model, the verification
procedure queries the API with the saved “tagged” inputs.

So for some model 𝑀!, and all (𝑥! , 𝑦!) pairs in the set of tagged inputs,

we compute 𝑒 = 𝔼(𝑀!(𝑥") = 𝑦"). If 𝑒 is greater than some threshold,
we say the model was stolen.

44

Watermarking - DAWN Verify

Can an attacker remove watermarks?

45

CS459 Spring 2025

Removal - Goals

Goal 1:
The watermark/fingerprint needs to be removed

Goal 2:
The surrogate model needs to retain a similar test accuracy

46

CS459 Spring 2025

Watermark Removal - Categories

47

Model
Modification

Model
Extraction

Input
Preprocessing

CS459 Spring 2025

Watermark Removal - Simple Examples
Fine-tuning and Pruning are two examples of basic watermark removal.

Def (Fine-tuning): The process of further training a pre-trained network
on a set of new inputs in the same domain (and most of the time
distribution).

Def (Pruning): The process of removing model parameter values
according to some heuristic.

48

CS459 Spring 2025

Watermark Removal - Simple Examples
Def (Fine-tuning): The process of further training a pre-trained network on a set
of new inputs in the same domain (and most of the time, similar distribution).

49

CS459 Spring 2025

Watermark Removal - Simple Examples
Def (Pruning): The process of removing model parameter values according
to some heuristic.

50

CS459 Spring 2025

Watermarking & Fingerprints - Conclusion
Watermarking DNNs is a very active area of research.

No current watermarking scheme manages to be robust against all
watermark removal attacks.

No current watermark removal attack manages to remove all watermarks.

51

Poisoning & Evasion Attacks

52

CS459 Spring 2025

Poisoning Attacks - What are these?
Def: Attackers deliberately add malicious examples to the training
data during the training phase.

● Goal: Modify the behaviour of the trained model
● Destroy usability
○ Company that wants to attack a competitor

● Induce specific trigger-based behaviours
○ Backdoors

● Amplify membership-inference attacks

53

CS459 Spring 2025

Poisoning Attacks - What are these?
Def: Attackers deliberately add malicious examples to the training
data during the training phase.

● Goal: Modify the behaviour of the trained model
○ Compromise usability

§ E.g., Company that wants to attack a competitor

○ Induce specific trigger-based behaviours
§ Backdoors

○ Amplify membership-inference attacks

54

CS459 Spring 2025

Poisoning Attacks - How much risk?

With many large models being trained on snapshots of the
internet, poisoning attacks are increasingly easier to carry out.

N. Carligni et al. show in a 2022 paper that for just 60$, they
could have poisoned 0.01% of the LAION-400M or COYO-
700M datasets (400M and 700M samples respectively).

55

CS459 Spring 2025

Poisoning Attacks - How much risk?
● With many large models being trained on snapshots of the

internet, poisoning attacks are increasingly easier to carry out.

● N. Carligni et al. show in a 2022 paper that for just 60$, they
could have poisoned 0.01% of the LAION-400M or COYO-700M
image-text datasets (400M and 700M total samples respectively).

56

CS459 Spring 2025

Poisoning Attacks - How much?

0.01% is little, but how much do we need?

Turns out, much less.

Recent work shows that arbitrarily poisoning only 0.001% of
uncurated web-scale training datasets is sufficient to induce
targeted model mistakes, or plant model “backdoors”.

57

CS459 Spring 2025

Poisoning - Basic Attack

Label poisoning attack:

Clean Data & Label

What if corrupt one of the sets of labels ?

58

Cat Dog

Class 1 Class 2 Class 3

X_1 Y_1 X_2 Y_2 X_3 Y_1

Class 1 Class 2 Class 3

Rabbit

CS459 Spring 2025

Poisoning - Basic Attack

Label poisoning attack:

Clean Data & Label

What if we corrupt one of the sets of labels ?

59

Cat Dog Rabbit

Class 1 Class 2 Class 3

Cat Dog

Class 1 Class 2 Class 3

Cat

CS459 Spring 2025

Poisoning - Basic Attack
We then get a model that will always misclassify a rabbit as a cat.
Fortunately, this is very easy to detect with a bit of curating.

Fortunately, this is very easy to detect with a bit of data curating.

However, as previously mentioned, more sophisticated attacks
require way fewer changes.
previously mentioned, more sophisticated attacks require way few

Cat

60

CS459 Spring 2025

Poisoning Attacks - Backdoors

What if we took our basic attack and tweaked it a little?

Same setup as before:

But now we modify only part of the dataset in the following
way:

61

𝑋!" 𝑌"# 𝑋!# 𝑌"$

Class 1

𝑋$" 𝑌%# 𝑋$# 𝑌%$

Class 2

𝑋%" 𝑌&# 𝑋%# 𝑌&$

Class 3

Cat Dog Rabbit

Class 1 Class 2 Class 3

CS459 Spring 2025

Poisoning Attacks - Backdoors

What if we took our basic attack and tweaked it a little?

Same setup as before:

But now we modify only part of the dataset in the following way:

62

Class 2 Class 3

Cat Dog Rabbit

Class 1 Class 2 Class 3

Cat

Class 1

Dog Cat Rabbit Cat

CS459 Spring 2025

Poisoning Attacks - Backdoors

We set up as our backdoor target. We only corrupted part
of the datasets by adding a backdoor trigger pattern: glasses.

Cat

63

Class 2

Cat

Class 1

Dog Cat

Class 3

Rabbi
t Cat

CS459 Spring 2025

Poisoning Attacks - Backdoors

A model trained on that dataset, when presented with any
sample animal with glasses will have learned to always
classify it as .

We now have a backdoor!

Why does it work?

Cat

64

CS459 Spring 2025

Poisoning Attacks - Backdoors

A model trained on that dataset, when presented with any
sample animal with glasses will have learned to always
classify it as .

We now have a backdoor!

Why does it work?

Cat

65

CS459 Spring 2025

Poisoning Attacks - Backdoors

No formal proof as to why backdoors work. However the
intuition goes as follows:

• Models learn from correlations in the data.
• Models are lazy.
• We give the model an easy correlation.
• It learns the easy correlation.

66

CS459 Spring 2025

Poisoning Attacks - Backdoors
From a game theory perspective, to optimize the loss function on the
training dataset, ANY decision other than always classifying an animal
with glasses as is suboptimal.

Ideally, backdoors should be hard to detect using the model alone.
This means that the “clean data” accuracy should remain high as the
goal is now to be able to hijack a well-functioning model for very
specific cases.

Cat

67

CS459 Spring 2025

Poisoning Attacks - Example Backdoors

68

BadNets: Evaluating Backdooring Attacks on Deep Neural Networks

CS459 Spring 2025

Poisoning Attacks - Using Backdooring for Watermarking?

Some research (T. Gu et al.) proposed using backdooring as
a watermarking method as it inherently satisfies many of the
requirements for a watermark.

69

CS459 Spring 2025

Poisoning Defenses - Is it possible?

Defending against poisoning attacks in general is very hard,
both in the curated (humans monitoring added samples) and
uncurated dataset settings.

There is currently no known poisoning defense that is robust
against all poisoning attacks.

70

CS459 Spring 2025

Poisoning Defenses - Categories
Defending against a poisoning attack can happen at different stages of the learning
pipeline.

• At the dataset stage
• Curating, cleaning and repairing the dataset.

• At the training stage
• Modifying the training algorithm to adapt to potential poisoning.

• After training
• Taking a potentially poisoned model and “repairing” it.

• At inference
• Taking a potentially poisoned model’s prediction and “fixing” it.

71

Curate/Clean/
Repair Dataset

Adapt training
to poisoning Repair the

trained model

Fix the
prediction

Evasion Attacks

72

CS459 Spring 2025

Poisoning vs Evasion

● Data Poisoning attacks: Training time attack.

● Evasion Attack: Inference time attack.
○ Q: Why would we want to attack at inference time?

73

CS459 Spring 2025

Evasion Attack - Motivations
● Evading a detection system:

o Facial Recognition

o Content Filter

o Fraud Detection

● Goal: Lower the target model’s performance

74

CS459 Spring 2025

Evasion Attack - Adversarial Examples
Input samples crafted for evasion attacks: Adversarial Examples.

Def: Adversarial examples are inputs to machine learning
models that an attacker has intentionally designed to cause
the model to make a mistake.

○ First discovered in DNNs by Christian Szegedy et al. in 2014.

75

CS459 Spring 2025

Adversarial Examples - Categories
Depending on the objective of the
attacker, an adversarial example might
have different limitations.

Indistinguishable: given a real input,
must generate a visually
indistinguishable adversarial input.

Necessary if content is human-curated.

76

CS459 Spring 2025

Adversarial Examples - Categories
Content-preserving: given a real
input, must generate a new input
where the content is preserved.

Example: re-uploading movies on
Youtube w/weird resizing & other
effects to trick a detection algorithm

77

CS459 Spring 2025

Adversarial Examples - Categories
Non-suspicious: The attacker can
produce any input example they wish,
as long as it would appear to a human
to be a real input.

Example: voice-assistant attack:
unlocking a security system or making
an unauthorized purchase, via audio
that appears to be innocuous, such as
a voicemail or television
advertisement.

78

CS459 Spring 2025

Adversarial Examples - Categories
Content-constrained: The attacker
can produce any input example they
wish, as long as it contains some
content payload.

Example: Email spams.

79

CS459 Spring 2025

Adversarial Examples - Categories

Unconstrained: The attacker can produce any input they want in
order to induce desired behavior from the machine learning
system.

Example: Unlocking a stolen phone by tricking fingerprint/face-
recognition system

80

CS459 Spring 2025

Adversarial Examples - Attack Settings
Similarly to watermarking, adversarial examples can be considered under different
settings:

• White-box →Model is known

• Black-box → Query access to the model

• Transferable → No query access

• Gray-box → The rest

81

CS459 Spring 2025

Adversarial Examples - Attack Settings
Similarly to watermarking, adversarial examples can be considered under different
settings:

• White-box →Model is known

• Black-box → Query access to the model

• Transferable → No query access

• Gray-box → The rest

82

CS459 Spring 2025

Adversarial Examples - Attack Settings
Similarly to watermarking, adversarial examples can be considered under different
settings:

• White-box →Model is known

• Black-box → Query access to the model

• Transferable (to another model)→ No query access

• Gray-box → The rest

83

CS459 Spring 2025

Adversarial Examples - Attack Settings
Similarly to watermarking, adversarial examples can be considered under different
settings:

• White-box →Model is known

• Black-box → Query access to the model

• Transferable (to another model)→ No query access

• Gray-box → The rest

84

CS459 Spring 2025

Adversarial Examples - Defenses

Similarly to many ML-related problems, there is no existing
defense that can fully prevent adversarial examples.

What properties do we want from a defense?

• It preserves clean input accuracy.
• It correctly classifies adversarial examples

85

CS459 Spring 2025

Adversarial Examples - Defenses

Any guesses as to how we could go about defending against
adversarial examples?

86

CS459 Spring 2025

Basic Defense - Adversarial Training
Adversarial Training is a simple defense that goes as follows:

• For a batch 𝐷" of input samples𝐷#
= {(𝑥", 𝑦"), (𝑥$, 𝑦$), . . . , (𝑥%, 𝑦%)}, 𝑏 is the batch size.

• Generate adversarial examples 𝐷#&
= {(𝑥"& , 𝑦"), (𝑥$& , 𝑦$), . . . , (𝑥%& , 𝑦%)}

• Train your model on 𝐷" = 𝐷" ∪ 𝐷"!

87

CS459 Spring 2025

Basic Defense - Adversarial Training

88

CS459 Spring 2025

Basic Defense - Adversarial Training
Adversarial Training is simple, but effective. It is currently
considered one of if not the best existing defense against
adversarial examples by the research community.

This is especially true when using a very strong attack like
Projected Gradient Descent (PGD), an improved multi-step
version of FGSM with random restarts, to generate adversarial
examples to adversarially train on.

89

Sources
Model Stealing

• I Know What You Trained Last Summer: A Survey on Stealing Machine
Learning Models and Defences. https://arxiv.org/pdf/2206.08451.pdf

• https://www.mlsecurity.ai/post/what-is-model-stealing-and-why-it-matters

• Towards Security Threats of Deep Learning Systems: A Survey.
https://ieeexplore.ieee.org/abstract/document/9252914?casa_token=rDK6n8
U7O_oAAAAA:vDnd4JgBolvd9AZIB3ZBLZX3wByeKNtmyJqpqezYOZ8rx1oH
Gl0uIseWG0Mc90Qo2KJv5756kg

https://arxiv.org/pdf/2206.08451.pdf
https://www.mlsecurity.ai/post/what-is-model-stealing-and-why-it-matters
https://www.mlsecurity.ai/post/what-is-model-stealing-and-why-it-matters
https://www.mlsecurity.ai/post/what-is-model-stealing-and-why-it-matters
https://www.mlsecurity.ai/post/what-is-model-stealing-and-why-it-matters
https://www.mlsecurity.ai/post/what-is-model-stealing-and-why-it-matters
https://www.mlsecurity.ai/post/what-is-model-stealing-and-why-it-matters
https://www.mlsecurity.ai/post/what-is-model-stealing-and-why-it-matters
https://www.mlsecurity.ai/post/what-is-model-stealing-and-why-it-matters
https://www.mlsecurity.ai/post/what-is-model-stealing-and-why-it-matters
https://www.mlsecurity.ai/post/what-is-model-stealing-and-why-it-matters
https://www.mlsecurity.ai/post/what-is-model-stealing-and-why-it-matters
https://www.mlsecurity.ai/post/what-is-model-stealing-and-why-it-matters
https://www.mlsecurity.ai/post/what-is-model-stealing-and-why-it-matters
https://www.mlsecurity.ai/post/what-is-model-stealing-and-why-it-matters
https://www.mlsecurity.ai/post/what-is-model-stealing-and-why-it-matters
https://www.mlsecurity.ai/post/what-is-model-stealing-and-why-it-matters
https://ieeexplore.ieee.org/abstract/document/9252914?casa_token=rDK6n8U7O_oAAAAA:vDnd4JgBolvd9AZIB3ZBLZX3wByeKNtmyJqpqezYOZ8rx1oHGl0uIseWG0Mc90Qo2KJv5756kg
https://ieeexplore.ieee.org/abstract/document/9252914?casa_token=rDK6n8U7O_oAAAAA:vDnd4JgBolvd9AZIB3ZBLZX3wByeKNtmyJqpqezYOZ8rx1oHGl0uIseWG0Mc90Qo2KJv5756kg
https://ieeexplore.ieee.org/abstract/document/9252914?casa_token=rDK6n8U7O_oAAAAA:vDnd4JgBolvd9AZIB3ZBLZX3wByeKNtmyJqpqezYOZ8rx1oHGl0uIseWG0Mc90Qo2KJv5756kg

Sources
Watermarking & Fingerprinting

• SoK: How Robust is Image Classification Deep Neural Network
Watermarking?
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9833693

• S. Szyller, B. G. Atli, S. Marchal, and N. Asokan, “Dawn: Dynamic adversarial
watermarking of neural networks,” arXiv preprint arXiv:1906.00830, 2019.

• N. Lukas, Y. Zhang, and F. Kerschbaum. Deep neural network fingerprinting
by conferrable adversarial examples. arXiv preprint arXiv:1912.00888v2, 2019.

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9833693

Sources
Model Inversion

• Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model inversion
attacks that exploit confidence information and basic countermeasures. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, New York, NY, 1322–1333.

• https://royalsocietypublishing.org/doi/10.1098/rsta.2018.0083#:~:text=Under%2
0a%20model%20inversion%20attack,and%20the%20extra%20dataset%20A.

• Fredrikson M, Jha S, Ristenpart T. 2015Model inversion attacks that exploit
confidence information and basic countermeasures. In Proc. of the 22nd ACM
SIGSAC Conf. on Computer and Communications Security, Denver, CO, 12–16
October 2015, pp. 1322–1333. New York, NY:ACM.

Sources
Poisoning

• T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “Badnets: Evaluating backdooring attacks on
deep neural networks,” IEEE Access, vol. 7, pp. 47 230–47 244, 2019.

• Nicholas Carlini. Poisoning the unlabeled dataset of Semi-Supervised learning. In 30th
USENIX Security Symposium (USENIX Security 21), pages 1577–1592, 2021.

• Nicholas Carlini and Andreas Terzis. Poisoning and backdooring contrastive learning.
arXiv preprint arXiv:2106.09667, 2021.

• Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor
attacks on deep learning systems using data poisoning. arXiv preprint arXiv:1712.05526,
2017.

• Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Evaluating
backdooring attacks on deep neural networks. IEEE Access, 7:47230–47244, 2019.

Sources
Evasion

• Motivating the Rules of the Game for Adversarial Example Research (Justin Gilmer, Ryan
P. Adams, Ian Goodfellow, David Andersen, George E. Dahl)

• Nicholas Carlini and David Wagner. “Audio adversarial examples: Targeted attacks on
speech-to-text”. In: arXiv preprint arXiv:1801.01944 (2018).

• Explaining and harnessing adversarial examples. Goodfellow et al. ICLR 2015.

• Improving Robustness of Jet Tagging Algorithms with Adversarial Training. Stein et al.

• Kurakin, Alexey, Goodfellow, Ian J., and Bengio, Samy. Adversarial machine learning at
scale. CoRR, abs/1611.01236, 2016. URL http://arxiv.org/ abs/1611.01236.

• A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning
models resistant to adversarial attacks,” arXiv preprint arXiv:1706.06083, 2017.

