CS459/698 Privacy, Cryptography, Network and Data Security

Basics of Cryptography

Learning Outcomes

- Identify attack techniques and apply them (cryptanalysis)
- Explain building blocks of modern cryptography
- Explain how modern cryptography properties arose

Goal: Basically, know what cryptography tools exist and how to securely use them. <u>Build a foundation of primitives</u> for more complicated "applied cryptography" later.

Steganography - Secretly "hidden" messages

The same image viewed by white, blue, green, and red lights reveals different hidden numbers.

Cryptography - Writing "secret" messages

Remember CIA? Different A for Crypto Power 3

- Confidentiality, prevent Eve reading Alice's messages
- Integrity, prevent Mallory from changing Alice's messages
- Authenticity, Prevent Mallory from impersonating Alice

Cryptography - Path for Secret Messages

Historical Ciphers: Example One

FUBSWRJUDSKB CRYPTOGRAPHY

Historical Ciphers: Example One

FUBSWRJUDSKB CRYPTOGRAPHY

Substitution Cipher (shift 3) (monoalphabetic)

Caesar Cipher

Image source: wikipedia

Caesar Cipher

Substitution Cipher (shift 13)

Image source: wikipedia

Shift and Substitution Ciphers

Replace symbols (letters) by others

- Using a rule
 - e.g., $y = x + 3 \pmod{26}$, Caesar's cipher Key = 3
- Using a table
 - e.g, Key: table

Cryptanalysis - Analyzing "secret" messages

Historical Ciphers: Example Two

wordplays com

		Cr	oss	wo	rd S	Solv	/er	5	Scra	abb	le V	Vor	d F	ind	er	В	ogg	gle	Т	ext	: Tw	ist		Sud	okι	1	Ar	ag	ram	ı S	olv	er	Wo	rd (Gam
		W	ord	е	Sc	rabb	ole F	Help	V	Vord	ls w	ith I	-rie	nds	Che	at	W	ords	in \	Vor	ds	Wo	rd J	luml	oles	٧	Vor	d S	earcl	h	Sci	rabb	le Che	eat	Cry
)Al	LY	CF	RYF	PTC	OGI	RAI	М																			Da	ily	Cry	pto	gra	m I	Help	?		
uz	zle	#1	267	' - C	CAT	EG	ORY	/: D)EF	INI	TIC	NS	,												Pu	zzle	e #					F	ind		
													,				:																		
Т	V	J		M	G	Q	P	Ε	S	М	P	U	,		G	٠	:		Q	F	P														
P	W	R	E	A	R	M	Z	Q	M	G	I		С	E	V	R	P	Y	Y		В	A	E	M	G	I									
U	F	М	R	F		С	P	E	Y	V	G	G	P	D		V	K	K	М	R	P	E	Y												
Υ	Р	С	Z	E	Z	Q	P		Q	F	P		U	F	P	Z	Q		K	E	V	0		Q	F	P		R	F	Z	K	K	-		
-	-																																		
-	-		Q	F	P	G		F	М	E	P		Q	F	P		R	F	Z	K	K	٠													

English Frequency

N	2.3%	
0	7.6%	
P	4.3%	
Q	0.22%	
R	2.8%	
s	6.7%	
Т	16%	
U	1.2%	
V	0.82%	
w	5.5%	
X	0.045%	
Υ	0.76%	
Z	0.045%	

Historical Ciphers: Example Two

wordplays com

Historical Ciphers: Example Two

wordplays com

Historical Ciphers: Example Three – Vigenère

Key: KEYKE

Message: HELLO

Ciphertext: RIJVS

Poly-Alphabetic Substitution Cipher

Historical Ciphers: Example Three – Vigenère

Kerckhoff Principle

The security of a cryptosystem should solely depend on the secrecy of the key, but never on the secrecy of the algorithms.

Historical Ciphers: Example Four

LECTURE SECURITY AND CRYPTOGRAPHY I

LENGECDRCUCATRRPUIYHRTPYEYTISAO

Historical Ciphers: Example Four

LECTURES

ECURITYA

NDCRYPTO

GRAPHYI

LENGECDRCUCATRRPUIYHRTPYEYTISAO

Transposition Cipher (Key: 8 letters)

Historical Ciphers: Example Four Shannon's maxim!!!! (design assuming adversaries will learn the algorithm) **LECTURES E**CURITYA **YHRTPYEYTISAO** GRAF **Transposition Cipher (Key: 8 letters)**

Shannon's Maxim & Kerkhoff's Principle:

- Security shouldn't rely on the secrecy of the method
- Do use <u>public</u> algorithms with <u>secret</u> "keys"
- The adversaries target is... the key

Idea: Easier to change a "short" key than your whole system. (e.g., Recovery)

Unconditionally Secure: One-Time Pad

Message:
$$\begin{bmatrix} x_0 & x_1 & x_2 & \cdots & x_n \end{bmatrix}$$

$$\begin{bmatrix} k_0 & k_1 & k_2 & \cdots & k_n \end{bmatrix}$$

Ciphertext:

$$y_0$$
 y_1 y_2 ... y_n

Rule:
$$y_i = x_i + k_i \pmod{2}$$

Provable Security for One-Time Pad

<Ciphertext is uniformly distributed independent of the plaintext distribution>

$$x_i = 0$$
 with probability p ($x_i = 1: 1-p$),

$$k_i = 0$$
 with probability 0.5 ($k_i = 1: 0.5$),

 $y_i = 0$ with probability:

$$p(y_i = 0) = p(x_i = 0) p(k_i = 0) + p(x_i = 1) p(k_i = 1)$$
$$= 0.5p + 0.5(1-p)$$

$$= 0.5$$

Provable Security for One-Time Pad

Every ciphertext y can be decrypted into every arbitrary plaintext x using the key k

Consequently the <u>ciphertext cannot contain any information</u>

<u>about the plaintext</u>

Well...this sucks

for me...

Encryption is "deniable"

Key: K

Ciphertext₁= message₁ \bigoplus K = 2c1549100043130b1000290a1b

Ciphertext₂= message₂ \oplus K = 3f16421617175203114c020b1c

Key: K

Ciphertext₁ \oplus Ciphertext₂=

 $message_1 \oplus K \oplus message_2 \oplus K =$

 $message_1 \oplus message_2 = 13030b0617544108014c2b0107$

 $message_1 \oplus message_2 = 13030b0617544108014c2b0107$

Suppose message₁ starts with "Alice" (414C696365)

message₂ seems to start with readable text ("Rober")

 $message_1 \oplus message_2 = 13030b0617544108014c2b0107$

Suppose message₁ starts with "Alice" (416C696365)

message₂ seems to start with readable text ("Rober")

Suppose it starts with "Alice and Bob" (416C69636520616E6420426F62)

message2 is fully readable now! ("Robert feline")

Many-time pad? Messages Lack True Randomness

One-Time Pad - Conditions...

- Key uniformly random
- Only used once
- Key as long as the message

So...Cryptography?

- Simple substitution/transposition is insecure
- One-Time Pad is inefficient
 - Keys as long as messages think about encrypting GBs of data!

Goal: Securely communicate "a lot" of information on an <u>insecure</u> channel while requiring "limited" communication over a <u>secure</u> channel

Now what?

Substitution is insecure...

Transposition is insecure...

Key reuse using XOR (one-time pad) is insecure...

BUT...

Repeat it often enough and it can be regarded as secure

Now what?

Substitution is insecure... Stream Ciphers and Block Ciphers Transposition is in (a) is insecure... Key reuse BUT... Repeat it often enough and it can be regarded as secure

Stream Cipher?

Fun(?) Facts:

• ChaCha increasingly popular (Chrome and Android), and SNOW3G in mobile phone networks.

Stream Ciphers Share Conditions with OTP

- Stream ciphers can be very fast
 - This is useful if you need to send a lot of data securely
- But they can be tricky to use correctly!
 - We saw the issues of re-using a key! (two-time pad)
 - Solution: concatenate key with nonce (which does not need to be a secret)

Fun(?) Facts:

WEP, PPTP are great examples of how not to use stream ciphers

Bit by bit.... but do you have to?

- Weakness of streams...one bit at a time?
 - What happens in a stream cipher if you change just <u>one bit</u> of the plaintext?

Bit by bit.... but do you have to?

- Weakness of streams...one bit at a time?
 - What happens in a stream cipher if you change just <u>one bit</u> of the plaintext?

A: You only change a bit in the ciphertext

Bit by bit.... but do you have to?

- Weakness of streams...one bit at a time?
 - What happens in a stream cipher if you change just one bit of the plaintext?

A: You only change a bit in the ciphertext

Q: Can we do better?

Block ciphers!!!

Block Ciphers

- Welcome, block ciphers
 - Block ciphers operate on the message one block at a time
 - Blocks are usually 64 or 128 bits long
- AES, the current standard

You better have a very...very good reason to choose otherwise

Two Catches with Block Ciphers

- Message is shorter than one block?
 - Requires padding
- Message is longer than a block?

Requires modes of operation

Block Ciphers and Modes of Operation: ECB Mode

- ECB: Electronic Code Book
- Encrypts each successive block separately

Block Ciphers and Modes of Operation: ECB Mode

- ECB: Electronic Code Book
- Encrypts each successive block separately

Q: What happens if the plaintext M has some blocks that are identical, $M_i = M_i$?

Block Ciphers and Modes of Operation: ECB Mode

- ECB: Electronic Code Book
- Encrypts each successive block separately

Q: What happens if the plaintext M has some blocks that are identical, $M_i = M_i$?

A:
$$C_i = E_K (M_i), C_j = E_K (M_j) \Rightarrow C_i = C_j$$

Attempt 1: Fixing ECB₁

 Provide "feedback" among different blocks, to avoid repeating patterns...

Q: Fix repeating patterns? Are there other issues?

Attempt 1: Fixing ECB₁

 Provide "feedback" among different blocks, to avoid repeating patterns...

Q: Fix repeating patterns? Are there other issues?

A: Yes. But We can un-do the XOR <u>if we get</u> <u>all the ciphertexts</u>. This basically does not improve compared to ECB.

Attempt 2: ECB₂!!!

Q: Spot the difference?

Q: Is it fixed this time?

Q: Does this avoid repeating patterns among blocks?

Attempt 2: ECB₂!!!

Q: Spot the difference?

Q: Is it fixed this time?

Q: Does this avoid repeating patterns among blocks?

Q: What would happen if we encrypt message M (i.e., M1|M2|M3) twice with the same key?

Attempt 2: ECB₂!!!

Q: Spot the difference?

Q: Is it fixed this time?

Q: Does this avoid repeating patterns among blocks?

Q: What would happen if we encrypt message M (i.e., M1|M2|M3) twice with the same key?

A: for M = N,

$$C = E_K(M), Y = E_K(N) \Rightarrow C = Y$$

Recall CBC Mode for Block Ciphers:

- 1. Generate a secret key K
- 2. Encrypt M using K and a generated IV
- 3. Decrypt C using K and the IV to get M

Security Goal: indistinguishability under adaptive chosen ciphertext attack (IND-CCA2)

Indistinguishability under Adaptive Chosen Ciphertext Attack

- 1. Assume an oracle that can decrypt ciphertexts fed by the adversary
- 2. The adversary asks the oracle to decrypt multiple chosen ciphertexts
- 3. Finally, the adversary attempts to decrypt a new ciphertext by itself

Indistinguishability under Adaptive Chosen Ciphertext Attack

1. Assume an oracle that can decrypt ciphertexts fed by the adversary

- 2. The adversary asks the oracle to decrypt multiple chosen ciphertexts
- 3. Finally, the adversary attempts to decrypt a new ciphertext by itself

Indistinguishability under Adaptive Chosen Ciphertext Attack

- 1. Assume an oracle that can decrypt ciphertexts fed by the adversary
- 2. The adversary asks the oracle to decrypt multiple chosen ciphertexts
- 3. Finally, the adversary attempts to decrypt a new ciphertext by itself

Indistinguishability under Adaptive Chosen Ciphertext Attack

Eve cannot even distinguish whether a new C_i is generated from M_{1} , M_{2} , or M_{3}

Cipher Security, IND-CCA2 Indistinguishability under Adaptive Chosen Ciphertext Attack I give up... **Asking for additional decryptions** after knowing C_i does not help either

Plenty of Modes of Operation

- e.g., Cipher Block Chaining (CBC), Counter (CTR), and Galois Counter (GCM) modes
- Patterns in the plaintext are no longer exposed because these modes involve some kind of "feedback" among blocks.
- But you need an IV

So...now what?

- Alice and Bob still need to share the secret key... But how?
 - Meet in person; diplomatic courier...
- In general this is very hard

Or, we invent new technology!!

Spoiler Alert: Already been invented...

Stay tuned!