CS459/698 Privacy, Cryptography, Network and Data Security

Syntactic Notions of Privacy

A Recap on Linking Attacks

 As the name suggests, linking attacks find connections between two different sources of leakage that, alone, seem harmless.

Famous example, from [1]:

The Group Insurance Comission (GIC) in Massachusetts, sold data from 135,000 state employees to industry and researchers. They believed it was anonymous, so it was fine.

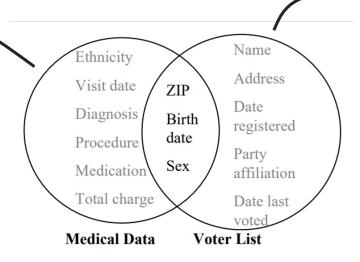


Figure 1 Linking to re-identify data

For \$20, you can purchase the voter registration list for Cambridge, Massachusetts

Fun fact: 87% (216 million of 248 million) of the population in the United States had reported characteristics that likely made them **unique** based only on {5-digit ZIP, gender, date of birth}

[1] Sweeney, Latanya. "k-anonymity: A model for protecting privacy." International journal of uncertainty, fuzziness and knowledge-based systems 10.05 (2002): 557-570.

- The inference problem is more severe when the adversary has access to multiple data sources as long as they can link and aggregate the information from different sources
- Q: Where do you get these external data sources?

- The inference problem is more severe when the adversary has access to multiple data sources as long as they can link and aggregate the information from different sources
- Q: Where do you get these external data sources?
 - Use publicly available data, e.g. census data, regional records.
 - Purchase data records from a data broker.
 - Governments might also share their dossiers with each other.
 - Large companies may collect information about their customers.

- Now, what can we learn from combining these datasets that we didn't learn before?
- If these datasets include identifiers that are veronyms, or persistent pseudonyms, one can link data records across these datasets to learn more information about an individual or an entity.

- Now, what can we learn from combining these datasets that we didn't learn before?
- If these datasets include identifiers that are veronyms, or persistent pseudonyms, one can link data records across these datasets to learn more information about an individual or an entity.
- **Q:** I erased all the identification information before I publicly release the data, would that break the link?

- Now, what can we learn from combining these datasets that we didn't learn before?
- If these datasets include identifiers that are veronyms, or persistent pseudonyms, one can link data records across these datasets to learn more information about an individual or an entity.
- Q: I erased all the identification information before I publicly release the data, would that break the link?
 - Not necessarily. We will see a series of inference attacks on public data releases that are supposed to protect the privacy of the data suppliers but failed.

Anonymity failure: AOL Search Data Set

- August 6, 2006: AOL released 20 million search queries from 658,000 users over a 3-month period in 2006.
- AOL assigned a random number to each user:
 - 4417749 "numb fingers"
 - 4417749 "60 single men"
 - 4417749 "landscapers in Lilburn, GA"
 - 4417749 "dog that urinates on everything"
 - 711391 "life in Alaska"
- August 9: New York Times article re-identified user 4417749

Anonymity failure: AOL Search Data Set

- August 6, 2006: AOL released 20 million search queries from 658,000 users over a 3-month period in 2006.
- AOL assigned a random number to each user:
 - 4417749 "numb fingers"
 - 4417749 "60 single men"
 - 4417749 "landscapers in Lilburn, GA"
 - 4417749 "dog that urinates on everything"
 - 711391 "life in Alaska"
- August 9: New York Times article re-identified user 4417749
 - o Thelma Arnold, 62-year old widow from Lilburn, GA

Takeaway: simply attaching a random number to each users' record is insufficient to get a high degree of anonymity.

- NYC Taxi Commission released 173 million "anonymized" NYC Taxi trip logs due to a FOIA request
- Each trip log includes information about the trip as well as persistent pseudonyms for each taxi itself
 - pick-up location (latitude, longitude) and time
 - o drop-off location (latitude, longitude) and time
 - MD5 hash of the taxi medallion number
 - MD5 hash of the driver license number
- Parameters collected to learn about taxi usage and traffic patterns.

 Anonymity problem 1 with this data release: Pick-up / drop-off times and locations can be correlated with celebrities' travels (background knowledge from other news sources)

Example:

- You know that a celebrity was spotted leaving the JFK airport at 6pm.
 - ⇒ You look for pick-up records near JFK at 6pm and see where they drop-off.
- ⇒ After filtering out infeasible locations, you might be able to identify the taxi that they took and deduce where they lived or visited.

 Anonymity problem 1 with this data release: Pick-up / drop-off times and locations can be correlated with celebrities' travels (background knowledge from other news sources)

Example:

- You know that a celebrity was spotted leaving the JFK airport at 6pm.
 - ⇒ You look for pick-up records near JFK at 6pm and see where they drop-off.
- ⇒ After filtering out infeasible locations, that they took and deduce where they lived or v

Takeaway: Perhaps these drop-offs/pick-ups could be published at a lower granularity, at the cost of lower utility for statistical analysis of traffic, etc.

- Anonymity problem 2 with this data release: Does hashing help with hiding identities of the drivers and taxicabs?
- Background info: These two identifiers have the following structure:
 - License numbers are 6 or 7-digit numbers
 - Medallion numbers are either:
 - [0-9][A-Z][0-9][0-9]
 - [A-Z][A-Z][0-9][0-9][0-9]
 - [A-Z][A-Z][A-Z][0-9][0-9]

- Anonymity problem 2 with this data release: Does hashing help with hiding identities of the drivers and taxicabs?
- Background info: These two identifiers have the following structure:
 - License numbers are 6 or 7-digit numbers
 - Medallion numbers are either:
 - [0-9][A-Z][0-9][0-9]
 - [A-Z][A-Z][0-9][0-9]
 - [A-Z][A-Z][0-9][0-9][0-9]

Q: How would you uncover their identities?

- Anonymity problem 2 with this data release: Does hashing help with hiding identities of the drivers and taxicabs?
- Background info: These two identifiers have the following structure:
 - License numbers are 6 or 7-digit numbers
 - Medallion numbers are either:
 - [0-9][A-Z][0-9][0-9]
 - [A-Z][A-Z][0-9][0-9]
 - [A-Z][A-Z][0-9][0-9][0-9]

Q: How would you uncover their identities?

A: Brute-force! There are only 1 million license numbers at most, and 17 million medallion numbers

- Anonymity problem 2 with this data release: Does hashing help with hiding identities of the drivers and taxicabs?
- Background info: These two identifiers have the following structure:
 - License numbers are 6 or 7-digit numbers
 - Medallion numbers are either:
 - [0-9][A-Z][0-9][0-9]
 - [A-Z][A-Z][0-9][0-9][0-9]
 - [A-Z][A-Z][0-9][0-9][0-9]

Q: How would you uncover their identities?

A: Brute-force! There are only 1 million license numbers at most, and 17 million medallion numbers

Takeaway: Hashing identifiers does not provide anonymity. Dictionary attacks are efficient for small input spaces

Anonymity failure: Massachusetts Insurance Health Records

- Massachusetts released
 "anonymized" health records:
 - ZIP code
 - Gender
 - Date of birth
 - Health information

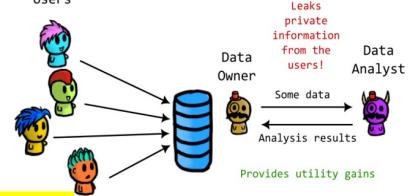
- Massachusetts' voter registration list:
 - ZIP code
 - Gender
 - Date of birth
 - Name

Lessons Learned

- Datasets included data that was useful for research (primary data), as well as some identifiers ("quasi-identifiers").
- "Quasi-identifiers" can be used to link data across multiple records in the same dataset (NYC Taxi dataset or AOL search data) or across different datasets (Massachusetts case).
- Background knowledge relating to the primary data, can be used to further de-anonymize records.

Moving towards Defences

- We saw many attacks.
- Now, we're going to see some defences.
- How do we measure privacy?
 - o Empirically:
 - by measuring the performance of an attack
 - Theoretically:
 - Syntactic notions: measuring a property on the released data / leakage.
 - Semantic notions: ensuring the data release mechanism itself has a property (independent of its inputs/outputs)



Syntactic Privacy in relational databases

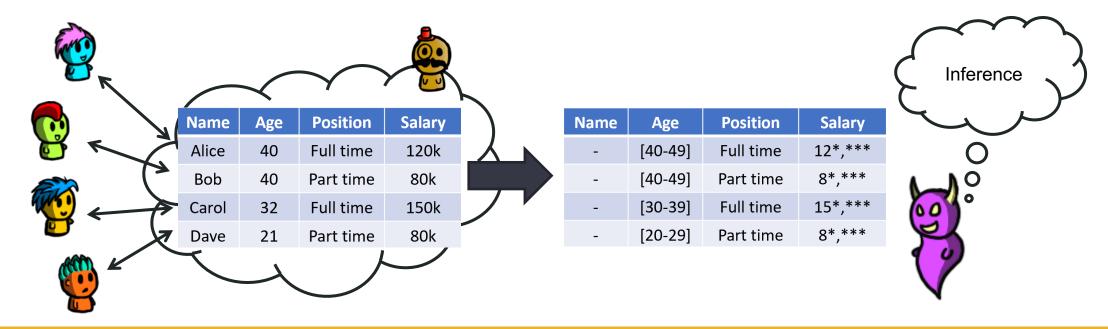
- Syntactic notions of privacy define a property that the released data must satisfy.
- The notions we will see refer to tabular data (relational databases).
- When talking about a table, the columns are the <u>attributes</u>, and the rows are the data entries or <u>samples</u>.

Syntactic Privacy in relational databases

- The attributes of a table can be classified into:
 - Identifiers: uniquely identify a participant
 - Quasi-identifiers: in combination with external information, can identify a participant (ZIP, DOB, Gender, etc.)
 - Confidential attributes: contain privacy-sensitive information
 - Non-confidential attributes: are not considered sensitive
- We will always remove identifiers and focus on confidential attributes.

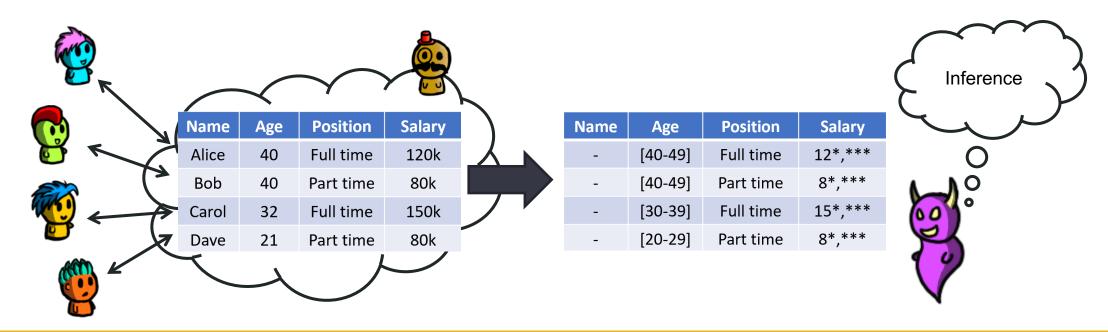
System Model

- Each user contributes to a row in a database
- A data curator releases a sanitized version of the database
- The adversary/analyst sees the sanitized database



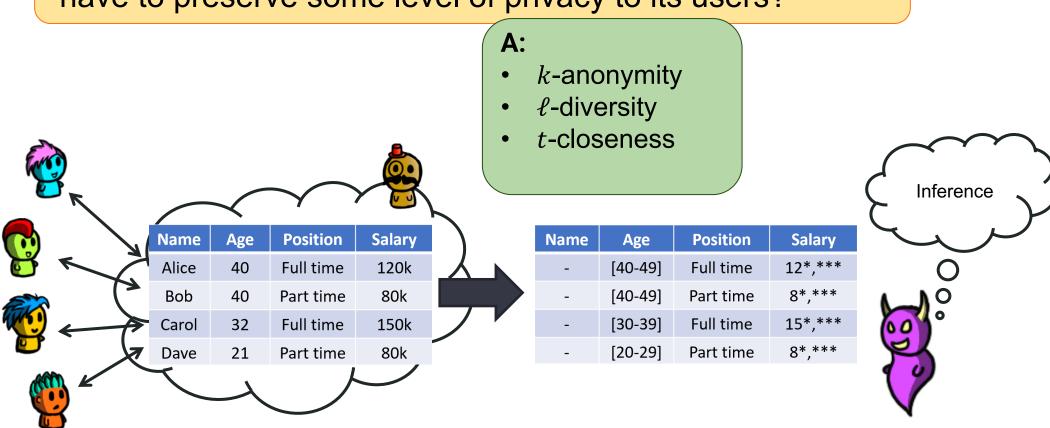
System Model

Q: What are the properties the sanitized database should have to preserve some level of privacy to its users?



System Model

Q: What are the properties the sanitized database should have to preserve some level of privacy to its users?



k-anonymity

k-anonymity

For each published record, there exists at least k-1 other records with the same quasi-identifiers

To **compute** k-anonymity: • To **provide** k-anonymity:

- Group the rows with the same quasiidentifier(s).
 - These rows form an equivalence class or equi-class.
- **Count:** what is the smallest size of a group? That will be the level of kanonymity

- Remove a quasi-identifier
- Reduce the granularity of a quasiidentifier (e.g., hiding the last characters of a ZIP code)
- Group quasi-identifiers (e.g., report age ranges instead of actual ages)

k-anonymity: example

ZIP (QI)	Party affiliation		ZIP	Party affiliation
N1CFFA	Green Party		N1C***	Green Party
G0ANFA	Liberal Party		G0A***	Liberal Party
N1C5YN	Green Party		N1C***	Green Party
N2J0HJ	Conservative Party		N2J***	Conservative Party
N1C4KH	Green Party		N1C***	Green Party
G0A3G4	Conservative Party		G0A***	Conservative Party
G0A3GN	Liberal Party		G0A***	Liberal Party
N2JWBV	New Democratic Party		N2J***	New Democratic Party
N2JWBV	Liberal Party	_	N2J***	Liberal Party

Q: what is the k-anonymity level?

k-anonymity: example

ZIP (QI)	Party affiliation	ZIP	Party affiliation
N1CFFA G0ANFA N1C5YN N2J0HJ N1C4KH	Green Party Liberal Party Green Party Conservative Party Green Party	N1C*** G0A*** N1C*** N2J*** N1C***	Green Party Liberal Party Green Party Conservative Party Green Party
G0A3G4 G0A3GN N2JWBV N2JWBV	Conservative Party Liberal Party New Democratic Party Liberal Party	G0A*** G0A*** N2J*** N2J***	Conservative Party Liberal Party New Democratic Party Liberal Party

Q: what is the k-anonymity level?

A: the table is 3-anonymous

k-anonymity: example (II)

			_
ZIP (QI)	DOB (QI)	Party affiliation	_
N1CFF	1962-01-24	Green Party	_
G0ANF	1975-12-30	Liberal Party	
N1C5YN	1966-10-17	Green Party	
N2J0HJ	1996-08-14	Conservative Party	_\
N1C4KH	1963-04-06	Green Party	
G0A3G4	1977-07-09	Conservative Party	V
G0A3GN	1973-08-14	Liberal Party	
N2JWBV	1990-11-02	New Democratic Party	
N2JWBV	1990-01-25	Liberal Party	

ZIP	DOB	Party affiliation
N1C*** G0A*** N1C*** N2J*** N1C***	196*-**-** 197*-**-** 196*-**-** 199*-**-** 196*-**-**	Green Party Liberal Party Green Party Conservative Party Green Party
G0A*** G0A*** N2J*** N2J***	197*-**-** 197*-**-** 199*-**-** 199*-**-**	Conservative Party Liberal Party New Democratic Party Liberal Party

Q: what is the k-anonymity level?

k-anonymity: example (II)

ZIP (QI)	DOB (QI)	Party affiliation	_
N1CFF	1962-01-24	Green Party	_
G0ANF	1975-12-30	Liberal Party	
N1C5YN	1966-10-17	Green Party	
N2J0HJ	1996-08-14	Conservative Party	_\
N1C4KH	1963-04-06	Green Party	
G0A3G4	1977-07-09	Conservative Party	
G0A3GN	1973-08-14	Liberal Party	
N2JWBV	1990-11-02	New Democratic Party	
N2JWBV	1990-01-25	Liberal Party	

ZIP	DOB	Party affiliation
N1C***	196*-**-**	Green Party
G0A***	197*-**-**	Liberal Party
N1C***	196*-**-**	Green Party
N2J***	199*-**-**	Conservative Party
N1C***	196*-**-**	Green Party
G0A***	197*-**-**	Conservative Party
G0A***	197*-**-**	Liberal Party
N2J***	199*_**_**	New Democratic Party
N2J***	199*-**-**	Liberal Party

Q: what is the k-anonymity level?

A: the table is 3-anonymous

k-anonymity: practice

Both age and gender are QI.

Age	Gender	
23	F	
25	F	
33	F	
35	F	
27	M	
30	M	
32	M	
21	NB	
25	NB	

Q: What is the k-anonymity if...

- We hide the Age
- We hide the Gender (but not the age)
- We report the most significant digit of Age, plus the Gender
- We only report the most significant digit of Age, but not the Gender

k-anonymity: practice

Both age and gender are QI.

Age	Gender	
23	F	
25	F	
33	F	
35	F	
27	М	
30	М	
32	М	
21	NB	
25	NB	

Q: What is the k-anonymity if...

- We hide the Age
- We hide the Gender (but not the age)
- We report the most significant digit of Age, plus the Gender
- We only report the most significant digit of Age, but not the Gender

A: 2, 1, 1, 4

k-anonymity: practice (II)

Both age and DOB are QI.

Gender	DOB	Party affiliation
M	1968-**-**	Green Party
F	1975-**-**	Liberal Party
O	1966-**-**	Green Party
M	1962-**-**	Green Party
M	1962-**-**	Conservative Party
O	1966-**-**	Conservative Party
F	1973-**-**	Liberal Party
F	1973-**-**	Liberal Party
O	1968-**-**	Green Party
F	1975-**-**	Liberal Party

Q: What is the k-anonymity if...

- We publish the table as shown
- We hide the least-significant digit of year
- We hide the Gender column
- We hide the least-significant digit of year and hide the Gender column

k-anonymity: practice (II)

Both age and DOB are QI.

Gender	DOB	Party affiliation
M	1968-**-**	Green Party
F	1975-**-**	Liberal Party
0	1966-**-**	Green Party
M	1962-**-**	Green Party
M	1962-**-**	Conservative Party
O	1966-**-**	Conservative Party
F	1973-**-**	Liberal Party
F	1973-**-**	Liberal Party
O	1968-**-**	Green Party
F	1975-**-**	Liberal Party

Q: What is the k-anonymity if...

- We publish the table as shown
- We hide the least-significant digit of year
- We hide the Gender column
- We hide the least-significant digit of year and hide the Gender column

A: 1, 3, 2, 4

k-anonymity and privacy

ZIP (QI)	DOB (QI)	Party affiliation
N1C***	196*-**-**	Green Party
N1C***	196*-**-**	Green Party
N1C***	196*-**-	Green Party
G0A***	197*-**-**	Liberal Party
G0A***	197*-**-**	Liberal Party
G0A***	197*-**-**	Conservative Party
N2J***	199*-**-**	Conservative Party
N2J***	199*-**-**	New Democratic Party
N2J***	199*-**-**	Liberal Party

• This table is 3-anonymous.

Q: This provides some resistance against linking attacks, why?

k-anonymity and privacy

ZIP (QI)	DOB (QI)	Party affiliation
N1C***	196*-**-**	Green Party
N1C***	196*-**-**	Green Party
N1C***	196*-**-	Green Party
G0A***	197*-**-**	Liberal Party
G0A***	197*-**-**	Liberal Party
G0A***	197*-**-**	Conservative Party
N2J***	199*-**-**	Conservative Party
N2J***	199*-**-**	New Democratic Party
N2J***	199*-**-**	Liberal Party

• This table is 3-anonymous.

Q: Is k-anonymity enough? Can you see any issues with it?

k-anonymity and privacy

ZIP (QI)	DOB (QI)	Party affiliation
N1C***	196*-**-**	Green Party
N1C***	196*-**-**	Green Party
N1C***	196*-**-**	Green Party
G0A***	197*-**-**	Liberal Party
G0A***	197*-**-**	Liberal Party
G0A***	197*-**-**	Conservative Party
N2J***	199*-**-**	Conservative Party
N2J***	199*-**-**	New Democratic Party
N2J***	199*-**-**	Liberal Party

This table is 3-anonymous.

Q: Is k-anonymity enough? Can you see any issues with it?

Attack 1: if you know Alice has ZIP code N1C***, what can you learn from her?

Attack 2: if you know Bob has ZIP code G0A*** and does not like Liberal Party, what can you learn from him?

ℓ-diversity

ℓ-diversity

For each quasi-identifier value, there should be at least ℓ distinct values of the sensitive attributes

To compute ℓ-diversity:

- Group the rows by quasi-identifiers into equi-classes.
- For each equi-class, compute how many distinct sensitive values there are
- The equi-class with the smallest number of distinct sensitive values is the level of ℓ-diversity.

To provide ℓ-diversity:

 Similar to k-anonymity: try to make the equi-classes as large as possible, while making sure there is enough variety of sensitive attributes per class.

ℓ-diversity: example

Gender	DOB	Party affiliation
M M M	196*-**-** 196*-**-** 196*-**-	Green Party Liberal Party Conservative Party
O O O	196*-**-** 196*-**-** 196*-**-	Green Party Green Party Conservative Party
F F F	197*-**-** 197*-**-** 197*-**-** 197*-**-**	Liberal Party Green Party Conservative Party Liberal Party

Gender and DOB are QI,
 Party affiliation is the sensitive attribute.

Q: what is the level of *ℓ*-diversity?

ℓ-diversity: example

Gender	DOB	Party affiliation
M	196*-**-**	Green Party
M	196*-**-**	Liberal Party
M	196*-**-**	Conservative Party
O	196*-**-**	Green Party
O	196*-**-**	Green Party
O	196*-**-	Conservative Party
F F F	197*-**-** 197*-**-** 197*-**-** 197*-**-**	Liberal Party Green Party Conservative Party Liberal Party

Gender and DOB are QI,
 Party affiliation is the sensitive attribute.

Q: what is the level of ℓ -diversity?

A: the table is 2-diversified

ZIP	DOB	Salary
N3P***	199*-**-**	20K
N3P***	199*-**-**	15K
N3P***	199*-**-**	25K
H1A***	196*-**-**	100K
H1A***	196*-**-**	90K
H1A***	196*-**-**	120K
S4N***	197*-**-**	50K
S4N***	197*-**-**	60K
S4N***	197*-**-**	65K

Q: what is the level of k-anonymity and *ℓ*-diversity?

ZIP	DOB	Salary
N3P***	199*-**-**	20K
N3P***	199*-**-**	15K
N3P***	199*-**-**	25K
H1A***	196*-**-**	100K
H1A***	196*-**-**	90K
H1A***	196*-**-**	120K
S4N***	197*-**-**	50K
S4N***	197*-**-**	60K
S4N***	197*-**-**	65K

Q: what is the level of k-anonymity and *ℓ*-diversity?

A: 3 and 3

Q: why does this provide privacy?

ZIP	DOB	Salary
N3P***	199*-**-**	20K
N3P***	199*-**-**	15K
N3P***	199*-**-**	25K
H1A***	196*-**-**	100K
H1A***	196*-**-**	90K
H1A***	196*-**-**	120K
S4N***	197*-**-**	50K
S4N***	197*-**-**	60K
S4N***	197*-**-**	65K

Q: what is the level of k-anonymity and ℓ -diversity?

A: 3 and 3

Q: why does this provide privacy?

A: it alleviates the problem of kanonymity when all values are the same.

Q: is this good enough? Do you see any issue?

ZIP	DOB	Salary	Disease
N3P***	199*-**-**	20K	gastric ulcer
N3P***	199*-**-**	15K	gastritis
N3P***	199*-**-**	25K	stomach cancer
H1A***	196*-**-**	100K	heart attack
H1A***	196*-**-**	90K	flu
H1A***	196*-**-**	120K	bronchitis
S4N***	197*-**-**	50K	COVID
S4N***	197*-**-**	60K	kidney stone
S4N***	197*-**-**	65K	pneumonia

Q: is this good enough? Do you see any issue?

Q: if you know Charles, who earns a low salary, is in this table: what else did you learn?

ZIP	DOB	Salary	Disease
N3P***	199*-**-**	20K	gastric ulcer
N3P***	199*-**-**	15K	gastritis
N3P***	199*-**-**	25K	stomach cancer
H1A***	196*-**-**	100K	heart attack
H1A***	196*-**-**	90K	flu
H1A***	196*-**-	120K	bronchitis
S4N***	197*-**-**	50K	COVID
S4N***	197*-**-**	60K	kidney stone
S4N***	197*-**-**	65K	pneumonia

Q: is this good enough? Do you see any issue?

Q: if you know Charles, who earns a low salary, is in this table: what else did you learn?

A: Charles has a stomach disease (Similarity attack)

ZIP	DOB	Virus X Test	
N3P***	199*-**-**	Positive	
N3P***	199*-**-**	Positive	
N3P***	199*-**-**	Positive	
4	5 more positiv	e cases	
N3P***	199*_**_**	Negative	
H1A***	196*-**-**	Negative	
H1A***	196*-**-**	Negative	
H1A***	196*-**-**	Negative	
94	945 more negative cases		
H1A***	196*-**-**	Positive	

Q: if you know David, who is in his 20s, is in this table: what else did you learn?

ZIP	DOB	Virus X Test	
N3P***	199*-**-**	Positive	
N3P***	199*-**-**	Positive	
N3P***	199*-**-**	Positive	
4	45 more positive cases		
N3P***	199*_**_**	Negative	
H1A***	196*-**-**	Negative	
H1A***	196*-**-**	Negative	
H1A***	196*-**-**	Negative	
94	945 more negative cases		
H1A***	196*-**-**	Positive	

Q: if you know David, who is in his 20s, is in this table: what else did you learn?

A: David probably has the virus (Skewness attack)

What went wrong?

ZIP	DOB	Virus X Test	
N3P***	199*-**-**	Positive	
N3P***	199*-**-**	Positive	
N3P***	199*-**-**	Positive	
4	45 more positive cases		
N3P***	199*-**-**	Negative	
H1A***	196*-**-**	Negative	
H1A***	196*-**-**	Negative	
H1A***	196*-**-**	Negative	
945 more negative cases			
H1A***	196*-**-**	Positive	

- The data in each equi-class is unexpectedly skewed.
- This means that learning the equi-class of a person can leak a lot of statistical information about the sensitive attributes of that person.

t-closeness

t-closeness

The distribution of sensitive values in each equi-class is no further than a threshold t from the overall distribution of the sensitive values in the whole table

To compute t-closeness:

- Organize rows by equi-class
- Compute the distribution of sensitive attributes per equi-class and for the whole table.
- Compute the maximum difference between a class distribution and the whole table's distribution on a sensitive value. That's the value of t.

To provide t-closeness:

- Similar to k-anonymity: try to make the equi-classes as large as possible, while trying to maintain a uniform distribution.
- Could add dummy records to help smooth the distribution.

t-closeness

t-closeness

The distribution of sensitive values in each equi-class is no further than a threshold t from the overall distribution of the sensitive values in the whole table

- To compute t-closeness we need to define a notion of distance between distributions. See the original paper that proposes t-closeness for a full description of distance notions
- We will only see one distance:

Variational distance (or EMD Categorical Distance using Equal Distance)

For two distributions over m values $P = (p_1, p_2, ..., p_m)$ and $Q = (q_1, q_2, ..., q_m)$:

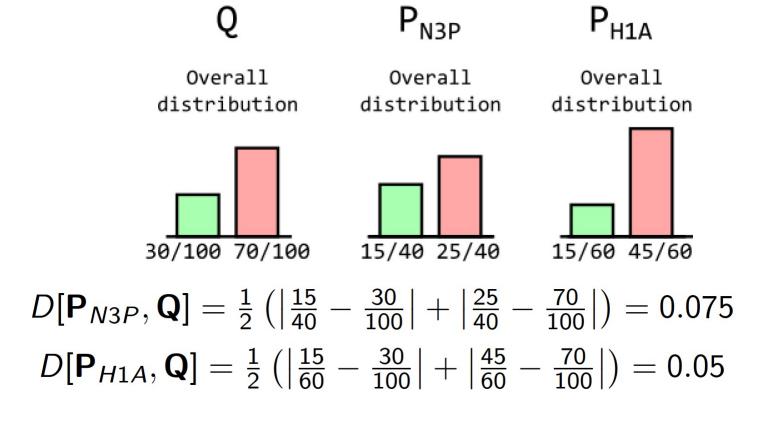
$$D[P,Q] \doteq \frac{1}{2} \sum_{i=1}^{m} |p_i - q_i|$$

t-closeness example

ZIP (QI)	Virus (Sens)	
N3P***	Pos	x15
N3P***	Neg	x25
H1A***	Pos	x15
H1A***	Neg	x45

Variational distance:

$$D[P,Q] \doteq \frac{1}{2} \sum_{i=1}^{m} |p_i - q_i|$$



t-close with t=0.075 (the maximum of these values)

Notes on computing *t*-closeness

- If you have **k** equi-classes, you would have to compute **k** distances and take the maximum of those distances as the value of **t**.
- If you have **m** distinct sensitive values, the histograms would have **m** bars and you would have to add **m** absolute value terms to compute each distance.

ZIP (QI)	Virus (Sens)	
N3P***	Pos	x15
N3P***	Neg	x25
H1A***	Pos	x15
H1A***	Neg	x45



t-closeness example: more sensitive values

ZIP (QI)	Virus (Sens)	
N3P***	Pos	x5
N3P***	Neg	x22
N3P***	Inc	x 3
H1A***	Pos	x12
H1A***	Neg	x47
H1A***	Inc	x 1

Variational distance:

$$D[P,Q] \doteq \frac{1}{2} \sum_{i=1}^{m} |p_i - q_i|$$

Q: what is the k-anonymity, ℓ-diversity and t-closeness level of this published dataset?

A: 30-anonymous and 3-diversified.

$$D[P_{N3P}, Q] = \frac{1}{2} \left(\left| \frac{5}{30} - \frac{17}{90} \right| + \left| \frac{22}{30} - \frac{69}{90} \right| + \left| \frac{3}{30} - \frac{4}{90} \right| \right) = \frac{1}{18}$$

$$D[P_{H1A}, Q] = \frac{1}{2} \left(\left| \frac{12}{60} - \frac{17}{90} \right| + \left| \frac{47}{60} - \frac{69}{90} \right| + \left| \frac{1}{60} - \frac{4}{90} \right| \right) = \frac{1}{36}$$

Therefore, the table is $\frac{1}{18}$ -close with respect to Virus

Notes on computing *t*-closeness

- If you have more than one sensitive attribute (column), you can compute the t-closeness for each sensitive attribute **independently** (e.g., a table can be t_1 -close with respect to Salary and t_2 -close with respect to Virus).
- Check the <u>original paper by Li et al.</u> for other distance metrics and more examples.

Limitations

- t-closeness is overall a reasonable syntactic notion of privacy. It prevents the attacks that we have seen. However:
 - 1. These privacy notions require a **clear distinction** between quasi-identifiers and sensitive values, which is not always possible (and is subjective)
 - 2. **Expensive** to compute:
 - Computing the optimal k-anonymous dataset is NP-hard
 - These notions of privacy **do not provide guarantees** against an adversary with (arbitrary) background knowledge

Limitations Example

Hospital A

tive	
tion	
S	
sease	2
ection	3
ection	4
-	1 1 6

Hospital B

	Non-Sensitive			Sensitive
	Zip code	Age	Nationality	Condition
1	130**	<30	*	AIDS
2	130**	<30	•	Heart Disease
3	130**	<30	*	Viral Infection
4	130**	<30	*	Viral Infection
5	130**	>40		Cancer
6	130**	>40	•	Heart Disease
7	130**	>40		Viral Infection
8	130**	≥40	•	Viral Infection
9	130**	3*	•	Cancer
10	130**	3*	•	Cancer
11	130**	3*		Cancer
12	130**	3*		Cancer

	Non-Sensitive		Sensitive	
	Zip code	Age	Nationality	Condition
1	130**	<35	*	AIDS
2	130**	<35	*	Tuberculosis
3	130**	<35	*	Flu
4	130**	<35	*	Tuberculosis
5	130**	<35	*	Cancer
6	130**	<35	*	Cancer
7	130**	≥35	*	Cancer
8	130**	>35	*	Cancer
9	130**	>35	*	Cancer
10	130**	≥35	*	Tuberculosis
11	130**	≥35	*	Viral Infection
12	130**	>35	*	Viral Infection

Q: We know that Dave just had his 35th birthday! He told us on his way to the hospital A. What did we learn?

Q: We know a 28 year old visited hospitals A and B. What can we infer?

Source: Ganta et al. 2008 Composition attacks and auxiliary information in data privacy

Limitations Example

Hospital A

- 1	Non-Sensitive			Sensitive
	Zip code	Age	Nationality	Condition
1	130**	<30	*	AIDS
2	130**	<30	•	Heart Disease
3	130**	<30		Viral Infection
4	130**	<30		Viral Infection
5	130**	>40		Cancer
6	130**	>40	•	Heart Disease
7	130**	>40		Viral Infection
8	130**	≥40	•	Viral Infection
9	130**	3*	•	Cancer
10	130**	3*	•	Cancer
11	130**	3*		Cancer
12	130**	3*		Cancer

Hospital B

	Non-Sensitive		Sensitive	
	Zip code	Age	Nationality	Condition
1	130**	<35	*	AIDS
2	130**	<35	*	Tuberculosis
3	130**	<35	*	Flu
4	130**	<35	*	Tuberculosis
5	130**	<35	*	Cancer
6	130**	<35		Cancer
7	130**	≥35	*	Cancer
8	130**	>35	*	Cancer
9	130**	>35	*	Cancer
10	130**	>35	*	Tuberculosis
11	130**	≥35	*	Viral Infection
12	130**	>35	*	Viral Infection

Q: We know that Dave just had his 35th birthday! He told us on his way to the hospital A. What did we learn?

A: Dave has Cancer

Q: We know a 28 year old visited hospitals A and B. What can we infer?

A: They likely have AIDS

Source: Ganta et al. 2008 Composition attacks and auxiliary information in data privacy

Limitations

- We need a privacy notion that is adversary-agnostic... a semantic notion of privacy, that only depends on the mechanism!
 - In the next lecture, we will see Differential Privacy (DP)