CS459/698
Privacy, Cryptography,
Network and Data Security

Secure Messaging

Spring 2025, Monday/Wednesday 2:30pm-3:50pm

Today

e Secure Messaging Goals

e PGP
- PGP Keys

- Problems with PGP
e OTR
e Signal

Secure Messaging Goals

Secure Messaging Goals

e Confidentiality: Only Alice and Bob can read the message

e Integrity: Bob knows Mallory has not tampered with the message (and
that it has not been corrupted)

e Authentication: Bob knows Alice wrote the message

- Non-repudiation?

@

CS459 Spring 2025

Secure Messaging Goals

e Confidentiality: Only Alice and Bob can read the message

e Integrity: Bob knows Mallory has not tampered with the message (and
that it has not been corrupted)

e Authentication: Bob knows Alice wrote the message

- Non-repudiation?

GW ’wﬁ

CS459 Spring 2025

Secure Messaging Goals

e Confidentiality: Only Alice and Bob can read the message

e Integrity: Bob knows Mallory has not tampered with the message (and
that it has not been corrupted)

e Authentication: Bob knows Alice wrote the message

Hi What’s Well
1, your that
’ Bob! password? doesn’t

- Non-repudiation?

seem

= ———————— right...

CS459 Spring 2025

Secure Messaging Goals

e Confidentiality: Only Alice and Bob can read the message

e Integrity: Bob knows Mallory has not tampered with the message (and
that it has not been corrupted)

e Authentication: Bob knows Alice wrote the message

- Non-repudiation?
Look what OMG sh.e
Alice said reilly?s’?lld
about you! LI
Carol is Carol is

annoying. annoying.
—9 Qe —
3

CS459 Spring 2025

Pretty Good Privacy

A bit of history on PGP

e Public-key (actually hybrid) encryption tool used for email (and other uses)
e Created by Phil Zimmermann in 1991

¢ In 1993, Zimmermann was investigated for violating US export regulations, as PGP encryption exceeded 40-bit key size
- PGP was classified as munitions.

¢ In 1995, Zimmermann published PGP’s code in a book, using First Amendment protections for printed materials.
e Courts later ruled that cryptographic software source code is protected speech under the First Amendment.
e US export controls on cryptography were eased in the late 1990s and, since 2000 PGP can be exported

e (with some restrictions — certain countries/groups are barred)

-https://www.philzimmermann.com/EN/essays/WhylWrotePGP.html

CS459 Spring 2025 9

https://www.philzimmermann.com/EN/essays/WhyIWrotePGP.html

What do you mean by “PGP"?

e PGP: Pretty Good Privacy (original program)
e OpenPGP: Open standard (RFC 4880)
e GPG/GnuPG: GNU Privacy Guard (a popular OpenPGP program)

e Today, many programs implement OpenPGP

e Thunderbird, Evolution, Mailvelope, OpenKeychain, Delta Chat, Proton Mail, ...

CS459 Spring 2025 10

PGP is a hybrid crypto scheme!

e To send a message to Bob, Alice will:

Q
Q
Q

Q

Write a message
Sign a hash of the message with her own signature key
Encrypt both the message and the signature with a symmetric key (C1)

Encrypt the symmetric key with Bob’s public encryption key (C2)

e Bob receives the ciphertext and:

O Decrypts C2 using his private decryption key to yield the symmetric key

O Decrypts C1 using the symmetric key to yield the message and the signature

O Uses Alice’s verification key to check the signature

CS459 Spring 2025

11

PGP is a hybrid crypto scheme!

CS459 Spring 2025

(Og=
: 9
Msg
| Sign@gaSh(Meal) = = 6. |Ver(sig ,Msg @m)=0(2
_ En%sig Msg): C1 5. Degé'01): sig Msg
_ . | Dec (I _ €2) = O=
| Enc (@w) =@ 4 o
c2 C1 i
—————————

12

Perhaps | can re-

HOW Safe |S a” thIS7 encrypt Alice’s
signed message and
O send it to Carol...
Com
... Carol would
take it as coming
L from Alice!

Sign (hash(Msg)= sig

O
Enc (sig Msg) =
Crm
Enc (@=w) = ©2
Gz c2 Cf

_ >

CS459 Spring 2025 13

Perhaps | can re-

HOW Safe |S a” thIS7 encrypt Alice’s
signed message and
O send it to Carol...
Com
... Carol would
take it as coming
L from Alice!

Sign (hash(Msg)= sig

O
Enc (sig Msg) =
Crm
Enc (@=w) = ©2
Gz c2 Cf

—_—

CS459 Spring 2025 14

Encrypted Messaging Goals and PGP

e Confidentiality
e ot

e Integrity
sig

e Authentication
sig

- Non-repudiation
sig

PGP Keys

PGP Keys

Each person has at least 2 keypairs:

e One for e One for encryption
- Public key used to verify — Public key used to encrypt
- Private key used to sign - Private key used to decrypt

pub rsad4096 2023-01-27 [SC] [expires: 2023-02-26]
EF22E516EA9C43B7A67E4FB41CD25603C14C0ODOS

uid [ultimate] Alice <alice@example.com>
sub rsad4096 2023-01-27 [E] [expires: 2023-02-26]

CS459 Spring 2025 17

Obtaining Keys

e How does Alice get Bob’s public key?

-Download from Bob’s website
-Download from a keyserver
-Bob sends it via email

-Other channel

e How does Alice know it's Bob’'s authentic key?

Verifying Public Keys

----- BEGIN PGP PUBLIC KEY BLOCK-----

mQINBGPUBX4BEADa3JsMGX9GKriACgl1vvokxOc8ltbHSI7aYYMZu5UzgCxYy29n
7YDGDiwN23ibyi8Gf36HNI6mQuzgUBJ7T54ed8pEf1rt MWL+700MNRNaFX6vosTS
3pFn+CiRY5avIGPkut8YdYrkaLixshjakYehmww\WVcVMBBGfrP3pRI3dKWHET2EN
RMDSVBO6AzPnjedZmGpJUqp8UPXEP8JoTCnOxAvAugjMEVEGxxb/Cj151/5PsIhx
76LPqSsPUWRzKQI9stP8Y]TX+0191+GNgLhtdmy5yXPDIF/NO+fhQVwvUZ0o)544a
KeFDQ/G9GKIf)zTIhvan9BdkZpff5Kjzun0+4HNkOmsB5S8BItdPpuc3qgs+rkL6W
aANXUS9j7mB3Gf58fjJu+1gMP5dXG16nduB/W3SuH2/XSympjSm6PkuNcSMIOXEN
FCUH/aoRjZQV/Xi5laQHg+cbEtLRACdkaAHNNjxGDXkzjbuYzjtv3hPMvNiBF897

e Alice and Bob would rather not have to trust CAs

e They can compare keys (e.g., in-person)

e But keys are big and unwieldy!

vihCO2w4pXBQ7rpxzn60vUliawfrmdZQA2tRZOSN2Cpti3KI00zKzfGTOVFRaVq
NfEy26ZtEPAZjhgBID08SLxkshrMLhNnlobR/BLnglv/xSrjPTAVE/sK032GfqZ
uynR6z0+rVewAKz3g/ak5kknPG/Or4KdEhsmOKUPgATSduGo96t299dRgQARACAB
tBIBbGIjZSA8YWxpY2VAZXhhbXBsZS5jb20+iQJXBBMBCABBFEE7yLIFugcQ7em
fk+OHNJWASFMDQUFAMPUBX4CGWMFCQANjQAFCwkIBwICIgIGFQoJCAsCBBYCAWEC
HgcCFAAACgkQHNIWASFMDQV3LQ/8CnyOARM+seUp4ShUo5xqllEMPGEF+VbBE4SG
XGiEr/PeMbdTJtkrO0Qzsx0/tVYKIGILESD9W/1TaqzAkmnsyvhFOwp3XZQGeqlt
U9mPpBQkzAfzwW21++3CK48WcCtb5SmRh+09Z7jwF0aEYDOKxO20g6a9132kUp66n
CctBy+h6UcBVMMTZSOjFr5YHFZIKa/lyQ6ODgkv+flwfPZm2N93jHejldrkSVtzi
Yh5tiXqGDwoljSIxhIVAGpX03CtENKGrpDPSOtM70AdmVSmjQgn7AR3UBINAIMb
iC+/yKD2JIGLS1R5RKvov) 1BBQHU7FATcrkKFLASORQS05iaEteMsFLLbBMomrs23
©oNuS/wmeWkUOG76uvjQnuAr/Bc7DF4lhY/WpZGDAlayASvITWMUMzxDjMwmfeK+j
0lcJwjOBO6GbMBBNIr76ae+zWpleqZrjv7S7H+h0bOi8nOPBKrTxbGLM7wg/r9ii
EmM4pHT5P0I6WBr3PYu/PoyEnPIKonxSvIkOJXGyjDcdV6vjBA6c37mFFsOFfk8A
5/x3V85+0YK34RbDVDgmS5+V42L05DP49KdBV1dp+007nWRIDsOroFarbMcPCCWiJ
i0p4+r9nU9Hx8kémjustyjzBgplmDhBnCo5hAaAytuOLTU3WKwmhg8ONCIhKYRXo
+88+0P65Ag0EYIQHHEEQAOFFAxX8GKiSCjk5jUXL87s0nkm90Gxtpx8L4Adrn9rFtu
UBCP7Xc0JONgxFAHUfCL6VNFPMFSknUBezXUgMvOseFVT30VC6uF390rq0j26va/
LcCYzKalWFLKyuBvtLDUPUdANhplQhH7s4FQIVTPUO+saCAqJDJtOsq/F/n+Gttz
DxNdPbsTC50ESkgfhyednT9gZpCsxc9Gd3mDyDDkMGyWaEf4bWjdjX2NEj6TuezY
ijyatYBHKf9eNSmPYISEbVIHIMLEZa/RamrtZ+AMya2lTuyBXi600+0EIS71cefD
BFajeOKHOMHtPKQvkagyetl615Ta+6Ekqoy50c90s85UdUIZZkCaz5zA8vrkhLNh
KvJ90Uf5IVuoe+CibwpvZZQhplumX+eRMSX1U4hBahB5z+fLe3YUCN5rDWEFmMSG2
EAMRDF5QG7L5dDMS6Z3PRD4a4ZPzF/1TyjiTpNUbF3N3uOUIT/1rChghJLfm79DI
(O9MSYRAOFPVIlumgWIiv862zX0r8dqwnlKBOUDWMHGNEkFtlseCOWrsbRaeMHDFc
7A/bNCocDrA8x18GielkVTMhuFMc77WiN43rjYSLr17W2VOKgINONHYCSsGOhC4z
0aJcDDJLvdkt4AriXpmhSmMOWZsvblrT9i5voY8GIEbItQ5xppOUGZ+3vfgOUWER
ABEBAAGJAJWEGAEIACYWIQTVIUUW6pxXDt6Z+T7Qc0lYDWUWNBQUCY9QHHgIbDAUJ
ACeNAAAKCRACOIYDWUWNBROJEACAJBLSN8YInrKa/9)qlybqkoLTrOr5Yvz7Fm/F
KRP7vDicOiKGH3NwsrBE3+r7UB8MWW]OrdtWLd7a5AaswEt TSXKHrpzSC/s8knlm
POtR/vSallfb6gjXAQrk0ZhWhoD4YsRBY57Xe9EhOupSy6eUeFbGMS80HVLrApju
1UVKINdpD+21U00hu16JKAulhyKFfpXVtjH3IxnagBI9UOILGOh4y9aMa4RWAMYO
Z4h95tZcOQhMOoKeLOdovHoS5BvyDIa91TpennGhM+AeEI1VPdRfpaalO4srGMUQX
kjtnHNdMVHEZMSy5vwygl EIXMBpkFZF/CCOhquqM+RQghOsTATa6ixVRNymI241
PgMbZn7)YMZOfIbMPtD2qd9ITerkfXUzLtRQswhXpcVi+8Mgsb53JyKQlpigldu0
2+V0q70bHuwwPCiloh)8Q3SfaKlynfhACVOIDr8I89rZ3mVbTiLMvKKyKYEijpB/
idbN3QtUuPYInALIcN4883DwzMO5ZQ8CPc3/6y0QOUytTUpN0143XcQ//OwC3Tmm
YsMnvZVhlY6MoiQ7cXDIvwRUOTU4IIG6gkwmbeEO7zatGHXv/agSxpRulzlhZHem
fl11i44fYI12ZXWWVr2vQ6TIoELTyCj TeGxaot0thOxxQ3pdXavxuYdG84zZyMd
i96dvg==
=tIAW
----- END PGP PUBLIC KEY BLOCK-—-

Verifying Public Keys

e Alice and Bob would rather not have to trust CAs

e They can compare keys (e.g., in-person)

Fun for all Ages

e But keys are big and unwieldy!

CS459 Spring 2025

----- BEGIN PGP PUBLIC KEY BLOCK-----

mQINBGPUBX4BEADa3JsMGX9GKriACgl1vwokxOc8ltbHSI7aYYMZu5UzgCxYy29n
7YDGDiwN23ibyi8Gf36HNJ6mQuzgUBI7T54ed8pEf1rtMWL+700MNRNaFX6vosTS
3pFn+CiRY5avIGPkut8YdYrkaLixshjakYehmwwW\/cVMBBGfrP3pRI3dKWHET2EN
RMDSVBO6AzPnjedZmGpJUqp8UPXEP8JoTCnOxAvAugjMEVEGxxb/Cj151/5PsIhx
76LPqSsPUWRzKQIstP8YjTX+0191+GNqLhtdmy5yXPDIF/NO+fhQvwvUZ0o)544a
KeFDQ/G9GKIfIzTIhvan9BdkZpff5Kjzun0+4HNKOmMsB5S8BItdPpuc3gs+rkL6W
aANXUS9j7mB3Gf58fjJu+1gMP5dXG16nduB/W3SuH2/XSympjSmEPkuNCcSMIOXEN
FCUH/aoRjZQV/Xi5laQHg+cbEtLRACdkaAHNNjxGDXkzjbuYzjtv3hPMvNiBF897
PvihCO2w4pXBQ7rpxzn60vUliawfrmdZQA2tRZOSN2Cpti3KI0OzKzfGTOVFRaVq
NfEy26ZtEPAZjhgBIDo8SLxJkshrMLhNnlobR/BLng1v/xSrjPTAVE/sK032GfqzZ
uynR6z0+rVewAKz3g/ak5kknPG/Or4KdEhsmOKUPgATSduGo96t299dRgQARACAB
tBIBbGIjZSA8YWxpY2VAZXhhbXBsZS5jb20+iQJXBBMBCABBFEE7yLIFugcQ7em
fk+OHNJWASFMDQUFAMPUBX4CGWMFCQANjQAFCwkIBwICIgIGFQoJCAsCBBYCAWEC
HgcCFAAACgkQHNIWASFMDQV3LQ/8CnyOARM+seUp4ShUo5xqllEMPGEF+VbBE4SG
XGiEr/PeMbdTJtkrO0Qzsx0/tVYKIGILESD9W/1TagzAkmnsyvhFOwp3XZQGeq|t
U9mPpBQkzAfzwW21++3CK48WcCtb5SmRh+09Z7jwF0aEYDOKxO20g6a9132kUp66n
CctBy+h6ucBVMMTZS0jFrSYHFZIKa/lyQ60Dgkv+IwfPZm2N93jHejldrkSVtzi
Yb5tiXqGDwoljSIxhIVA6pX03CtENKqrpDPSOtM70AdmVSmjQgn7AR3UtBIN4IMb
iC+/yKD2JIGLS1R5RKvov) 1BBQHU7FATcrkKFLASORQS05iaEteMsFLLbBMomrs23
oNuS/wmeWkUOG76uvjQnuAr/Bc7DF4IhY/WpZGDAlayASvSTWMUMzxDjMwmfeK+
0lcJwjOBO6GbMBBNIr76ae+zWpleqZrjv7S7H+h0bOi8nOPBKrTxbGLM7wg/r9ii
EmM4pHT5P0I6WBr3PYu/PoyEnPIKonxSvok0JXGyjDcdV6vjBAGC37mFFsOFfk8A
5/x3V85+0YK34RbDVDgmS5+V42L05DP49KdBV1dp+007nWRIDsOroFarbMcPCCWiJ
i0p4+r9nU9Hx8kémjustyjzBgplmDhBnCo5hAaAytuOLTU3WKwmhg8ONCIhKYRXo
+88+0P65Ag0EYIQHHEEQAOFFAxX8GKiSCjk5jUXL87s0nkm90Gxtpx8L4Adrn9rFtu
UBCP7Xc0JONgxFAHUfCL6VNFPMFSknUBezXUgMvOseFVT30VC6uF390rq0j26va/
LcCYzKalWFLKyuBvtLDUPUdANhplQhH7s4FQIVTPUO+saCAqJDJtOsq/F/n+Gttz
DxNdPbsTC50ESkgfhyednT9gZpCsxc9Gd3mDyDDkMGyWaEf4bWjdjX2NEj6TuezY
ijyqtYBHKf9eNSmPY9SEbVOHIMLgZa/RAmrtZ+AMya2lTuyBXi60o+0EIS71cefD
BFajeOKHOMHtPKQvkagyetl615Ta+6Ekqoy50c90s85UdUIZZkCaz5zA8vrkhLNh
KvJ90Uf5IVuoe+CibwpvZZQhplumX+eRMSX1U4hBahB5z+fLe3YUCNSrDWEFMSG2
EAMRDF5QG7L5dDMS6Z3PRD4a4ZPzF/1TyjiTpNUbF3N3uOUIT/1rChghJLfm79DI
O9MSYRAOFPVIlumgWiIiv862zX0r8dgwnlKBSUDWMHGNEKFtIseCOWrsbRaeMHDFc
7A/bNCocDrA8x18GielkVTMhuFMc77WiN43rjYSLr17W2VOKqINONHYCSsGOhC4z
0alcDDILvdkt4AriXpmhSmMOWZsvblrT9i5voY8GIEbItQ5xppOUGZ+3vfqOUWER
ABEBAAGJAJWEGAEIACYWIQTVIUUW6pxXDt6Z+T7Qc0lYDWUWNBQUCY9QHHgIbDAUJ
ACeNAAAKCRACOIYDWUWNBROJEACAJBLSN8YInrKa/9)qlybqkoLTrOr5Yvz7Fm/F
KRP7vDicOiKGH3NwsrBE3+r7UB8MWW]OrdtWLd7a5AaswEtTSXKHrpzSC/s8knlm
POtR/vSallfb6gjXAQrk0ZhWhoD4YsRBY57Xe9EhOupSy6eUeFbGMS80HVLrApju
1UVKINdpD+21U00hu16JKAulhyKFfpXVtjH3IxnagBI9UOILGOh4y9aMa4RWAMYO
Z4h95tZcQhMOoKeL0dovHoS5BvyDIa91TpennGhM+AeEl1VPdRfpaalO4srGMUQX
kjtnHNdMVHEZMSy5vwygl EIXMBpkFZF/CCOhquqM+RQghOsTATa6ixVRNymI241
PqMbZn7JYMZOflbMPtD2qd9ITerkfXUzLtRQswhXpcVi+8Mgsb53JyKQlpigldu0
2+V0q70bHuwwPCiloh)8Q3SfaKlynfhACVOIDr8I89rZ3mVbTiLMvKKyKYEijpB/
idbN3QtUuPYInALIcN4883DwzMO5ZQ8CPc3/6y0QOUytTUpN0143XcQ//OwC3Tmm
YsMnvZVhlY6MoiQ7cXDIvwRUOTU4IGEgkwmbeEO7zatGHXv/agSxpRulzlhzZHem
fl11i44fY112ZXWWVr2vQETIoELTYCjJ TeGxaotOthOxxQ3pdXavxuYdG84zZyMd
i96dvg==

=tJAW

----- END PGP PUBLIC KEY BLOCK-—-

20

Verifying Fingerprints

e Hash the key to get the key fingerprint, and compare key
fingerprints instead!

e Much shorter strings to compare:

-EF22 E516 EA9C 43B7 A67E 4FB4 1CD2 5603 C14C 0D0OS

e With a good hash function, no two key fingerprints should collide

e Q: What if you only use part of the fingerprint? A
CS459 Spring 2025

21

Schemes for Manual Fingerprint Verification
e QR Codes & Safety Numbers

Pl S

/
/

|
)

C~=>

< Verify identity

Their identity (they read):

05 d9 Oe f7 e3 f6
31 1d el 79 6b 81
19 b9 84 c5 ea 1e
9b 24 e4 c7 ea 91
19

Your identity (you read):

05 40 8b d4 6¢c 57
Oc a5 fa 44 76 Oe
67 59 7e 57 ea 22
f4 36 79 02 bc 17
5b

52
fb
50
a7

22
85
de
56

cb
8d
4a
1d

04
c5
8d
2e

\\ P
' Signal
/

(4

940754 ¥ .4 075

ode on their phone, or

our code. Learn more

CS459 Spring 2025

OMEMO Genera
OMEMO session:
OMEMO fingerprint:

9000 9401 7921 6599 0157
2721 8416 1790 0094 0179
2165 9901 5727 2184 1617

[[] pefault Qr-Code

22

Schemes for Manual Fingerprint Verification

e Emoji

Incoming Verification Request

Confirm the emoji below are displayed on both sessions, in the same order:

-
T & -
Santa Thumbs ...

I Umbrella obot

matrix

Az

Unicorn Mushroo

CS459 Spring 2025

Verifying Public Keys

e Overall, verifying public keys is hard
- Inconvenient if possible at all

- Bob and Carol may be far apart and unable to do manual verification...

e Q: Would it help if Alice has verified Carol?)

CS459 Spring 2025

€@

24

Signing Keys

e Once Alice has verified Carol’'s key, she uses her certification key
to sign Carol’s key (certification key == signature key)

e This is effectively the same as Alice signing a message saying “/
have verified that the key with [Carol’s fingerprint] belongs to Carol”

e Carol can then attach Alice’s signature to the key she has published

e Q: Do you see any potential issues here?

CS459 Spring 2025 25

Web of Trust

e Now Alice can act as an introducer for Carol
e If Bob can't verify Carol herself, but he has already verified
Alice (and trusts Alice to introduce him to other people):

- Bob downloads Carol’s key
- He sees Alice’s signature on it

- He is able to use Carol's key without verifying it himself

e This is called the Web of Trust

CS459 Spring 2025 26

Web of Trust

e Now Alice can act as an introducer for Carol
e If Bob can't verify Carol herself, but he has already verified
Alice (and trusts Alice to introduce him to other people):

- Bob downloads Carol’s key
- He sees Alice’s signature on it

- He is able to use Carol's key without verifying it himself

Pretty
e This is called the Web of Trust good, right?

CS459 Spring 2025 27

Problems with PGP

Problem #1: Usability

|hPMdNGMUSEMXMSymMM.M1m.w. 169-183'

e Hard to use

Why Johnny Can’t Encrypt: , .
A Usability Evaluation of PGP 5.0 Why Johnny Still Can’t Encrypt:
Evaluating the Usability of Email Encryption Software
1 Alma Whitten Steve Sh Levi Broderick Colleen Alison Koranda
. LOW adoptlon School of Computer Science EmumPolcy Electrical and Computer Engineering chmznmn
Carnegie Mellon University Camegie Mellon University Camegie Melion Unit Carnegie Mellon University
Pittsburgh, PA 15213 shengx@cmu.edu Ipb@ece.cmu.edu ckoranda@andrew.cmu.edu
alma@ cs.cmu.edu
1 Heinz School o'qh.ﬂ Policy and
J.D. Tygar
EECS and SIMS B e g N
University of California od
Berkeley, CA 94720 Jhyland@andrew.cmu.edu
tygar@cs berkeley edu
ABSTRACT cmail message to test user’s response to PGP's automatic
L —_— current usability situatson of decryption.
(et o o vty o fd 2. MAJOR FINDINGS
a pil w0
Why Johnny Still, Still Can’t Encrypt: o e o e s 21 Verify Keys
Evaluating the Usability of a Modern PGP Client Fimature, und save s Backup of 18 o ey e ety sty e
keys. Similar to PGP 5. users had difficalty with signing keys.

— Scott Ruoti, Jeff And: Daniel Z la, Kent S . . .
) Brigham Young University SoK: Why Johnny Can’t Fix PGP Standardization
{ruoti, andersen) @ isrl.byu.edu, (zappala, seamons} @ cs.byu.edy
. Harry Halpin
This paper presents the results of a laboratory study involv- .'fc;,"l'.."".a’.,“ﬁ.,m o n‘?:: harry halpin@inria.fr
ing Mailvelope. a modem PGP chient that integrates tightly one pair was able to successfully lnria
with ing webmail providers. In our study, we brought All other Paris, France

k] 13 Jan 2016

of pain poi i
M-Mdhnwhmﬂlhhm-ﬁuum
in future PGP systems.

Author Keywords

cocrypting en| ABSTRACT

This demonstrates that

meated in Mailvelope, is still unusab)j
Our results also shed light on severa)
tools could be improved, First, intq
be helpful in assisting first time wseny

Pretty Good Privacy (PGP) has long been the primary [ETF stan-
dard for encrypting email, but suffers from widespread usability
and security problems that have limited its adoption. As time has
‘marched on, the underlying cryptographic protocol has fallen out of
date insofar as PGP is unauthenticated on a per message basis and
before encryption. There have been an increasing num-

ﬂin-ldbehl;--ypupuun
 public key d

ssers cosectly manaee their oun

ber of attacks on the increasingly outdated prinstives and complex

clients used by the PGP eco-system. However, attempts to update
the OpenPGP standard have falled at the IETF except for adding

modemn cryptographic primitives, Outside of official standardiza-

developers created a new community effort called “Autocrypt” to
address the underlying usability and key management issues. This
effort also introduces new attacks and does not address some of
hmmmmpmnm ‘problems that have

ke Signal or IETF
Ml‘yﬂﬁ«ully(ml ‘After decades of work, why can't
the OpenPGP standard be fixed?

First, we start with the history of standardization of OpenPGP
in Section 2. mmwmmdmmuh
modern in Section 3,
whether mawwm{mmmﬂ--m

Problem #1: Usability

HOW To USE PGP To VERIFY
e https://moxie.org/2015/02/24/gpg-and-me.html| THAT AN EMAIL 15 AUTHENTIC:
LOOK FOR THIS
—“When | receive a GPG encrypted email from a stranger, though, | o ATTHE TOP_, ——
immediately get the feeling that | don’t want to read it. [...] Eventually | D o & s F T e
realized that when | receive a GPG encrypted email, it simply means that Feiuats 1
the email was written by someone who would voluntarily use GPG.” (=---- BEGIN PGP SIGNED MESSAGE-—->)
HASH: SHA256
HEY,
LOIRCT Aol TLIQMCE ChD T CO0E OC
IF IT5 THERE, THE EMAIL 15 PROBRBLY FINE.

https://xkcd.com/1181/

https://moxie.org/2015/02/24/gpg-and-me.html
https://xkcd.com/1181/

Problem #1: Usability

e Usability is a security parameter

-If it's hard to use, people will not use it

-If it's hard to use properly, people will use it, but in insecure ways

TVE BEEN POSTNG 11y
PUBLIC KEY FOR 15 YEARS

NOLJ, BUT NO ONE. HAS
EVER ASKED MEFOR IT
OR USED ITFOR ANYTHING
RS FAR AS T (AN TELL.

é.;l

‘%ﬁf

“éﬁ

MAYBE T
SHOOLD TRY
POSTING MY
PRIVATE KEY

INSTEAD,

(Public Key)

CS459 Spring 2025

31

Problem #2: Lack of Forward Secrecy

e Alice sends many encrypted messages to Bob

- Possibly over the course of months, years

e Suppose Eve saves all of them

- Not so unreasonable if Eve runs the email server

e What if Eve steals Bob's private key?

- She can decrypt all messages sent to him. Past, present, and future...

CS459 Spring 2025

32

Problem #3: Non-repudiation
e Why non-repudiation?
e Good for contracts, not private emails

e Casual conversations are “off-the-record” Alice said you're
annoying.

- Alice and Bob talk in private
- No one else can hear

Oh yeah?
- No one else knows what they say Prove it!
- No one can prove what was said

- Not even Alice or Bob

CS459 Spring 2025 33

Off-The-Record (OTR) Messaging

OTR

e Messaging (XMPP) extension for encryption with:
- Forward secrecy
- Post-compromise security
- Deniability
Let's see

what these
are...

CS459 Spring 2025 35

Goals of Off-The-Record Messaging

e (Perfect) Forward secrecy: a key compromise does not reveal past communication

Forward secrecy a W
—-0—-9—0

CS459 Spring 2025 36

Goals of Off-The-Record Messaging

e (Perfect) Forward secrecy: a key compromise does not reveal past communication

e Post-compromise security Backward-seereey Future-secreey Self-healing: a key

compromise does not reveal future communication

w a Post-compromise security

a—0—a—0

CS459 Spring 2025 37

Goals of Off-The-Record Messaging

e (Perfect) Forward secrecy: a key compromise does not reveal past
communication

e Post-compromise security Backward-seecreey Future-secreey Self-healing: a

key compromise does not reveal future communication

e Repudiation (deniable authentication): authenticated communication, but a
participant cannot prove to a third party that another participant said something

2—@

/Alice said this!
Repudiation @

No proof!

CS459 Spring 2025 38

Goals of Off-The-Record Messaging

e (Perfect) Forward secrecy: a key compromise does not reveal past
communication

e Post-compromise security Backward-seecreey Future-secreey Self-healing: a

key compromise does not reveal future communication

e Repudiation (deniable authentication): authenticated communication, but a

participant cannot prove to a third party that another participant said something
Forward secrecy ‘ W ‘ Post-compromise security .

a—0—@—0-0—0—@—0

Alice said this!
Repudiation @

No proof!

CS459 Spring 2025 39

Forward Secrecy

e Key compromise does not reveal past messages
Q: How can we accomplish that?
Change the key!
Old keys must be securely deleted

CS459 Spring 2025

O=
O
O

40

Forward Secrecy (one approach)

e Recall Authenticated Diffie-Hellman...

‘ (9%, p, 9lIsig Verify,(sig, (9%, p,9))?
sig = Siang((g*,p, 9)) @ =
B e

e Alice and Bob find a shared secret used to create a symmetric key

e DH keys can be used for ephemeral (temporary) communication “sessions”
o Alice and Bob can always make new keys later

o Call these “session keys”

CS459 Spring 2025 41

Forward Secrecy (one approach)

e Alice and Bob talk on Monday... e Alice and Bob talk on Tuesday...
QaTT,

& v =g B v g
TOC® g 00w TOEC - 00w
‘F@ @ﬁ? ‘F@.'Il‘

|E—) (—'E ‘DH —) (— ‘DM

z Monday . Tuesday

CS459 Spring 2025 42

Forward Secrecy (one approach)

e Eve can compromise a session but not all past communication

e Problems?
- Alice can’t start a session unless Bob is online — DH is interactive

- Eve can still compromise a whole session (which might last long...)

CS459 Spring 2025

43

Forward Secrecy in OTR

e Insight 1: What if we make the sessions as short as possible?

e Insight 2: What if new session keys don't have to be negotiated interactively?

OTR's DH Ratchet (incorrect)

Assume Alice and Bob have a pre-shared key ‘_o'

Assume Alice and Bob can have each other’s long-term verification keys and there is a
way to “magically” authenticate the first message Bob sends (for simplicity)...

In these slides, we use the notationf Enc(Key, Message) for Encryption+MAC with a Key.

? @

“_@ - [Enc(.g-, Hi Alice!)]

hash

-ﬂ' Enc(®w=, Hi Bob!) @ >

CS459 Spring 2025

45

OTR's DH Ratchet (incorrect)

Assume Alice and Bob have a pre-shared key ‘_o'

Assume Alice and Bob can have each other’s long-term verification keys and there is a
way to “magically” authenticate the first message Bob sends (for simplicity)...

In these slides, we use the notationf Enc(Key, Message) for Encryption+MAC with a Key.

@[] @ How does Bob w
1 Enc(@, Hi Alice!) 1 recover the
ﬂ-@ a 4 =66

message?
hash
l

-ﬂ' Enc(®w=, Hi Bob!) @ .

CS459 Spring 2025

46

OTR's DH Ratchet (incorrect)

Assume Alice and Bob have a pre-shared key QIOH

Assume Alice and Bob can have each other’s long-term verification keys and there is a
way to “magically” authenticate the first message Bob sends (for simplicity)...

In these slides, we use the notation Enc(Key, Message) for Encryption+MAC with a Key.

? @

1 Enc(@%=, Hi Alice!) 1 1
< TOO=

hash:

=TT

CS459 Spring 2025

47

OTR's DH Ratchet (incorrect)

Assume Alice and Bob have a pre-shared key %

Assume Alice and Bob can have each other’s long-term verification keys and there is a
way to “magically” authenticate the first message Bob sends (for simplicity)...

In these slides, we use the notation Enc(Key, Message) for Encryption+MAC with a Key.

@ @ Following this w
< ' : 1-|— 3

logic, how does
Bob reply to Alice?

CS459 Spring 2025 48

OTR's DH Ratchet (incorrect)

e Alice and Bob automatically create new
sessions as they reply to each other

1 Enc(@, Hi Alice!) 1 =1
T OR O

e Also provides post-compromise security

e Awesome! :)

e This is a “ratchet”: You can’t go

@ gp _ElO= HiBob) &= backwards

CS459 Spring 2025 49

OTR's DH Ratchet (incorrect)
2

CS459 Spring 2025

What happens if Evew

learns a private key?
E.g., Eve learns:

1

@)=,

50

OTR's DH Ratchet (incorrect)
@

?

CS459 Spring 2025

What happens if EvelD
learns a private key?
E.g., Eve learns:

1

@)=,

She can decrypt “Hi Bob!”@
and “How are you?”

51

OTR's DH Ratchet (incorrect)
2

® Session keys only roll forward with
interactive replies.

® If Alice sends multiple messages but Bob
takes a long time to reply, multiple
messages will get encrypted with the
same key!

® Therefore, forward secrecy is only
partially provided.

® Note that we have repudiation!

CS459 Spring 2025 52

Deniable Authentication in OTR

@ @ Q: How can we get authentication without non-repudiation?

) : icel 1 A: With a MAC!
Enc(@, Hi Alice!) &@ —
) = @)=

- According to OTR’s design, the MAC key is a hash of the encryption key

Q: Why are MACs deniable?
DH| —> = E) ~—[@n A: Only Alice and Bob know K

__Enc(@, How are you?) @ = - Alice sends Bob a message MACed with K

- Bob knows it was Alice because he did not produce the MAC

CS459 Spring 2025 53

OTR's DH Ratchet (incorrect)
@ @ Remember, we assume Alice and Bob have m

Enc(@, Hi Alice!) 1 1
=G 11-@ @)=
® The OTR DH Ratchet we saw in the
il > e T previous slides is broken!

_'_r Enc(@w, Hi Bob!) @== s .-ﬂ' W

Can you spot the
Man-in-the-Middle
attack?

(=Y

CS459 Spring 2025

54

OTR's DH Ratchet (incorrect)

0
Q Remember, we assume Alice and Bob have h

® The OTR DH Ratchet we saw in the
previous slides is broken!

Can you spot thew

Man-in-the-Middle
attack?

CS459 Spring 2025 55

What OTR actually does (from the OTR paper)

0 0 00
Alice and Bob securely exchange their public keys and , and use DH to get ED=m

1. Verify with € 00

2. DH for
sending

3. New
keypair

4. DH for
receiving

1. Verify
with

2. DH for
sending

4. DH for
receiving

|1 I| Enc(M, .-00)'
J
|MAC(¢, @)

(@ —
?]_...,01 @, || Enc(v, O,)|

€
1

=, @ || EncM, O) | MAC(c, O

@@=
:]-‘-"11

Erm

11

&=,
Ow,,

@, | Enc(l\/l,.'ll‘11) || MAC(<, ""‘11)
Z
N

CS459 Spring 2025

3. New 1

keypair 1

4. o for &0

receiving 1

1. verity €OFm 4

with
2. DH for @1 O
sending @'N' 1 11

3. New

keypair

=,

2
2

1
4. DHor o , .-12

receiving

56

https://otr.cypherpunks.ca/otr-wpes.pdf

OTR: concluding remarks

e Using forward secrecy, post-compromise security, and repudiation (deniable
authentication), we can make our online conversations more like face-to-face and “off-the-

record” conversations.

e But there is a wrinkle:

e These techniques require the parties to communicate interactively.

e This makes them unsuitable for email.

e But they are still great for instant messaging!

CS459 Spring 2025

57

Signal

. ’ Signal
Signal

e Mobile app with companion desktop (Electron) client

- OTR was less mobile-friendly

e Encryption protocol based on OTR

- Double Ratchet Algorithm builds on OTR DH ratchet

- Deniability ideas from OTR

e Protocol also used in other apps like WhatsApp, OMEMO
extension for XMPP, etc.

CS459 Spring 2025

59

. @ signal
Signal

® Provides forward secrecy

o Similar to OTR, it uses a “ratchet” technique to constantly rotate session keys.

® Provides post-compromise security

O Aleak of past or long-term keys will be healed by introducing new DH ratchet keys.

® Provides improved deniability

O Ituses a “Triple Diffie-Hellman” deniable authenticated key exchange.

® Supports out-of-order message delivery

o Users can store per-message keys until late messages arrive.

® Uses a double ratchet (asymmetric and symmetric ratchets) that:

O Generate ephemeral per-message keys.
O Tolerates message loss and re-ordering.

CS459 Spring 2025

® signal
The double ratchet

DH ratchet Double ratchet

(asymmetric, like in OTR) DH ratchet + symmetric-key ratchet (KDF)
Alice Bob

The double ratchet

® Originally called Axolotl ratchet for its “self-healing” property (from the DH ratchet)

e It is very well explained on the Signal website.

Photo: th1095 4

“Axolotl” is a Nahuatl word. (pronunciation)
"ah-sho-lotch"

https://signal.org/docs/specifications/doubleratchet/
https://upload.wikimedia.org/wikipedia/commons/5/58/Axolotl.ogg
https://en.wikipedia.org/wiki/File:AxolotlBE.jpg

Rationale for the KDF Ratchet

® What if instead of session keys, we had a new key for each message?

Q=
1 2

1 Ow)- O

HOR= O

e We can do this deterministically
. Simplified ratchet: Kn+1 = H(Kn)

® Q: What happens if Eve compromises a key?

CS459 Spring 2025

63

KDF Ratchet

e KDF = Key Derivation Function

- (think hashing - it only goes one way)

e Outputs message key

- Used to encrypt a single message

e Outputs chain key

- Used to derive future keys

e Why separate chain & message keys?

- What if messages are out-of-order?

Takeaway: Message keys cannot be used to
generate other chain or message keys, so

it's safe to store old message keys for not-
KD F RatC h et yet-delivered messages.

e KDF = Key Derivation Function

- (think hashing - it only goes one way)

e Outputs message key

- Used to encrypt a single message

e Outputs chain key

- Used to derive future keys

e Why separate chain & message keys?

- What if messages are out-of-order?

DH Ratchet

e Just like OTR. But now also:

e Output is used for generating
receiving chain and sending chain keys

- These are used as input for the KDF ratchet

Note: There are two KDFs, and the OTR
ratchet's receiving and sending chain

D H Ratchet keys are inputs to the KDF ratchet.

e Just like OTR. But now also:

e Output is used for generating
receiving chain and sending chain keys

- These are used as input for the KDF ratchet

Double Ratchet Algorithm

eAlice -> Bob

eAlice and Bob do DH and
get Alice's sending
chain/Bob’s receiving chain

eAlice derives a key with
her sending chain

eAlice uses this MAO key to

encrypt her message to Bob [l:] e ms] , [- R oia ,,3,5]

Alice's point of view: Root shared secret S
l a S5a6o 7961')]
Sending Chain @ 85
(Symmetric Key Ratchet)

10fe .rucs](-—

[m 96b0 Oscn]

=

Bob's DH pubKe:
@ B0 DF utkey

L 4

-~

fai=c

Alice's DH privKey

(privAQ)

(pubB0)

Alice n
‘ Hi, how are you doing? ?
Alice's DH pubKey (pubAo) sl

n
' | have the secret documanis?

Alice's DH pubKey (pubA0) el

Double Ratchet Algorithm

eAlice -> Bob Alice's point of view: Root shared secret S @ BOD'S DH pubKey
eAlice and Bob do DH and G
get Alice's sending
chain/Bob’s receiving chain

eAlice derives a key with Sending Chain
her sending chain (Symmetric Key Ratchet)
eAlice uses this MAO key to (£ 102 s4c3

Alice n
l Hi, how are you doing? ?
Alice's DH pubKey (pubAo) sl

encrypt her message to Bob [
] 2%s 43:5]4—-

hAllma's DH privKey

(privAQ) M
‘ | have the secret dowmQMsT

Alice's DH pubKey (pubA0) el

Double Ratchet Algorithm

.A||Ce -> BOb Alice's point of view: Root shared secret S * Bob's DH pubKey
eAlice and Bob do DH and (R
get Alice's sending

chain/Bob’s receiving chain

eAlice derives a key with Sending Chain
her sending chain (Symmetric Key Ratchet)
eAlice uses this MAO key to
encrypt her message to Bob [

Alice n
l Hi, how are you doing? *
Alice's DH pubKey (pubAo) sl

[) 23e5 43£6
MAQ key

P.Alloo's DH privKey

(privAQ) M
1 | have the secret dawmentsT

[D 76bd 89al

MAT key

Alice's DH pubKey (pubA0) el

Double Ratchet Algorithm

eAlice -> Bob

Alice's point of view: Root shared secret S

a Bob's DH pubKey

eAlice and Bob do DH and
get Alice’s sending
chain/Bob’s receiving chain

eAlice derives a key with
her sending chain

eAlice uses this MAO key to
encrypt her message to Bob

Sending Chain
{Symmetric Key Ratchet)

E 3 10fe 54c3

CS459 Spring 2025

Alice's DH priviKey
(privAd)
[] 76bd 89a3 @
MA1 key

(pubB0)

Alice

([Hi, how are you doing?
Alice's DH pubKey (pubAQ)

m
]
| | have the secret documents J

Alice's DH pubKey (pubA0) «salf)

71

Double Ratchet Algorithm

eAlice -> Bob (again) Alice's point of view: Root shared secret S @ Bob's DH pubKey
. (pubB0)
e No new DH until Bob [£ saee 79db]
replies
eAlice derives another key
with her sending chain Sending Chain -
DH
eAlice uses MAT1 key to e e e @ >
encrypt her message to Bob X3 10fe 54c3 f—

Alice (Al

[CJ = ““]‘—, [(- R ‘ﬂ’s] | Hi, how are you doing? "r

Alice's DH pubKey (pubAo) sl

[m 96b0 Oscn] h"ws —_—

] , (privAQ) N
[[7ea o3 @ ' | have the secmdowmnis?
MA1 key Alice's DH pubKey (pubA0) wself)

Double Ratchet Algorithm

eAlice -> Bob (again) Alice's point of view: Root shared secret S @ Bob's DH pubKey
. (pubB0)
e No new DH until Bob [£ saee 79db]
replies
eAlice derives another key
with her sending chain Sending Chain -
DH
eAlice uses MAT1 key to e e e @ >
encrypt her message to Bob X3 10fe 54c3 f—

Alice (Al

[CJ = ““]‘—, [(- R ‘ﬂ’s] | Hi, how are you doing? "r

Alice's DH pubKey (pubAo) sl

[m 96b0 Oscn] h"ws —_—

=) |

MAT key

Alice's DH pubKey (pubA0) el

Double Ratchet Algorithm

eAlice -> Bob (again) Alice's point of view: Root shared secret S @ B0D'S DH pubKey
. (pubB0)
e No new DH until Bob [B sae -,m,]
replies
eAlice derives another key
with her sending chain Sending Chain .
DH
eAlice uses MAT1 key to e @ >
encrypt her message to Bob X3 107e s4c3fe—
Alice (]
Er= 1«—, FExD e
Alice's DH pubKey (pubAo) sl
[m 96b0 osc-] PA"“IS —_—
(privAQ)

n
’ | have the sacretdomments‘r

Alice's DH pubKey (pubAD)

[[] 76bd 89a3 3
MA1 key

Double Ratchet

eBob -> Alice

eAlice and Bob do DH and get
Alice’s receiving chain/Bob's
sending chain

eAlice derives a key with her
receiving chain

eAlice uses MBO key to
decrypt a message from Bob

Sending Chain
(Symmetric Key Ratchet)

4 : 10fe 54c3

£ 3 96b0 0O8ce

MA1 key

E: 96b0 OBce

Recelving Chain
{Symmetric Key Ratchet)

[] aBeb ded3
MBO key

Root shared secret S

o) |

Alice's DH privKey
(privAQ)

o Bob's DH pubKey
(pubB0)

Alice (A
]
[Hi, how are you doing? J
Alice's DH pubKey (pubAQ) *

(|
]
l | have the secret documents ‘J r

Alice's DH pubKey (pubA0) sl

DH Ratchet: Bob
generates new DH keypair

Bob l/ N
[Send them over! J'

— Bob's DH pubKey (pubB1) (e

Alice's point of view: Root shared secret S

Double Ratchet

eBob -> Alice e
eAlice and Bob do DH and get B 10fe s4c3
Alice’s receiving chain/Bob's
sending chain

eAlice derives a key with her
receiving chain

eAlice uses MBO key to
decrypt a message from Bob

Recelving Chain
{Symmetric Key Ratchet)

MBO key

o) |

Alice's DH privKey
(privAQ)

o Bob's DH pubKey
(pubB0)

Alice (A
]
[Hi, how are you doing? J
Alice's DH pubKey (pubAQ) *

(|
]
l | have the secret documents ‘J r

Alice's DH pubKey (pubA0) sl

DH Ratchet: Bob
generates new DH keypair

Bob l/ N
[Send them over! J'

— Bob's DH pubKey (pubB1) (e

Double Ratchet

eBob -> Alice

eAlice and Bob do DH and get
Alice’s receiving chain/Bob's
sending chain

eAlice derives a key with her
receiving chain

eAlice uses MBO key to
decrypt a message from Bob

Alice's point of view:

Sending Chain
(Symmetric Key Ratchet)

34 10fe 54c3

Recelving Chain
{Symmetric Key Ratchet)

Root shared secret S

° Bob's DH pubKey

Alice's DH privKey
(privAQ)

(pubB0)

Alice

N
"
[Hi, how are you doing? J

Alice's DH pubKey (pubAo) sl

(|
]
l | have the secret documents ’J A

Alice's DH pubKey (pubA0) sl

DH Ratchet: Bob
generates new DH keypair

Bob l/ N
[Send them over! J'

— Bob's DH pubKey (pubB1) (e

Double Ratchet

eBob -> Alice

eAlice and Bob do DH and get
Alice’s receiving chain/Bob's
sending chain

eAlice derives a key with her
receiving chain

eAlice uses MBO key to
decrypt a message from Bob

Alice's point of view: Root shared secret S

o Bob's DH pubKey

Sending Chain
(Symmetric Key Ratchet)

4 : 10fe 54c3

£ 3 96b0 0O8ce
Alice's DH privKey
(privAQ)

MA1 key

E: 96b0 OBce

Recelving Chain
{Symmetric Key Ratchet)

MBO key

[r

(pubB0)

Alice

N
"
[Hi, how are you doing? J

Alice's DH pubKey (pubAo) sl

(|
]
l | have the secret documents ‘J r

Alice's DH pubKey (pubA0) sl

Send them over!

hl's DH pubKey (pubB1)

Quick Recap

e PGP
- No forward secrecy

- Non-repudiable (not off-the-record)

e OTR
- Forward secrecy and post-compromise security through DH ratchet ©

- Deniable ©
e Signal
- Forward secrecy and post-compromise security through DH ratchet ©
- KDF ratchet provides only forward secrecy, but for every message ©
- Deniable ©

CS459 Spring 2025

79

