CS489/698

Privacy, Cryptography, Network and Data Security

Discrete Logarithm, Diffie-Hellman, ElGamal

Groups?

Groups - Sets with specific properties

A group is a set of elements (usually numbers) that are related to each other according to well-defined operations.

- Consider a group of prime order \mathbf{q}, or Z_{q}^{*}
- This boils down to the set of non-zero integers between 1 and $\mathrm{q}-1$ modulo $\mathrm{q} \rightarrow$ A finite group
- For $q=5$, we have group $Z_{5}^{*}=\{1,2,3,4\}$
- In this group, operations are carried out mod 5:
- 3 * $4=12 \bmod 5=2$
- $2^{3}=2$ * 2 * $2=8 \bmod 5=3$

Group axioms

To be a group, these sets should respect some axioms

- Closure
- Identity existence
- Associativity
- Inverse existence
- Groups can also be commutative and cyclic (up next)

Let's take a look at some of these axioms (using multiplication as the operation)

Closure

- For every x, y in the group, x * y is in the group
- i.e., the multiplication of two group elements falls within the group too
- Example:
- in $Z_{5}^{*}, 2^{*} 3=6 \bmod 5=1$

Identity Existence

- There is an element e such that $e^{*} x=x * e=x$
- i.e., has an element e such that any element times e outputs the element itself
- Example:
- In any Z_{q}^{*}, the identity element is 1
- For $Z_{5}^{*}: 1 * 3=3 \bmod 5=3$

Associativity

- For any x, y, z in the group, $(x * y) * z=x *(y * z)$
- Example:
- For $Z_{5}^{*}:(2 * 3) * 4=1 * 4=2 *(3 * 4)=2 * 2=4$

Inverse Existence

- For any \mathbf{x} in the group, there is a \mathbf{y} such that $\mathrm{x}^{*} \mathrm{y}=\mathrm{y}^{*} \mathrm{x}=1$
- Example:
- For $Z_{5}^{*}: 2$ * $3=1,3$ * $2=1$ (2 and 3 are inverses)
$4 * 4=16 \bmod 5=1$ (4 is its own inverse)

Abelian Groups

- Abelian groups are groups which are commutative
- This means that x * $y=y$ * x for any group elements x and y
- Example:
- For $Z_{5}^{*}: 3 * 4=2,4 * 3=2$

Cyclic groups

- A group is called cyclic if there is at least one element \mathbf{g} such that its powers $\left(\mathrm{g}^{1}, \mathrm{~g}^{2}, \mathrm{~g}^{3}, \ldots\right)$ mod p span all distinct group elements.
- \mathbf{g} is called the "generator" of the group
- Example:
- For Z_{5}^{*}, there are two generators (2 and 3):
- $2^{1}=2,2^{2}=4,2^{3}=3,2^{4}=1$
- $3^{1}=3,3^{2}=4,3^{3}=2,3^{4}=1$

Cyclic subgroups

- We can have cyclic subgroups within larger finite groups
- Example:
- Given field F_{607}, we can consider a cyclic subgroup of order $p=5$ as Z_{5}^{*} :

Discrete Logarithm Problem

The Discrete Logarithm Problem

$$
h=g^{x} \text {, find } x
$$

But don't forget about me

The Discrete Logarithm Problem

$h=g^{x}$, find x

Discrete: we are dealing with integers instead of real numbers
Logarithm: we are looking for the logarithm of \mathbf{x} base \mathbf{g}

- e.g., $\log _{2} 256=8$, since $2^{8}=256$

The Discrete Logarithm Problem

Given $(\mathrm{g}, \mathrm{h}) \in \mathbf{G} \times \mathbf{G}$, find $\mathrm{x} \in \mathbf{Z}_{\mathrm{q}}{ }^{*}$ such that:

$$
h=g^{x}
$$

Here, \mathbf{G} is a multiplicative group of prime order \mathbf{q}, just like we saw during the examples. (But q is thousands of bits long)

Solutions to the Discrete Logarithm Problem?

If there's one solution, there are infinitely many
(thank you Fermat's little theorem and modular arithmetic "wrap-around")

How to solve DLP in cyclic groups of prime order?

- Is the group cyclic, finite, and abelian?

Has a generator that spans all elements

Has a limited
number of elements

Multiplication is commutative

Baby-Step/Giant-Step Algorithm?

- A cyclic group $\mathbf{G}=<g>$ which has prime order \mathbf{p}
- $h \in G$, goal: find $x(\bmod p)$ such that $h=g^{x}$
- Every element $\mathbf{x} \in G$ can be written as: $\mathbf{x}=\mathrm{i}+\mathrm{j} *[s q r t(p)]$

O For integers m, i, j satisfying $0 \leq i, j \leq m$.

Ah, more rewriting tricks

Then:

$$
\begin{aligned}
& h=\mathrm{g}^{\mathrm{j}} \mathrm{j} \ddagger \mid \text { [sqrt(p)| } \\
& \mathrm{g}^{\mathrm{i}}=\mathrm{h} \cdot\left(\mathrm{~g}^{-\mathrm{sqrtr}(\mathrm{p})}\right)^{\mathrm{j}}
\end{aligned}
$$

Baby-Step/Giant-Step Algorithm? Notation.

- $\log _{g} \mathrm{x} \bmod \mathrm{p}$ is obtained by comparing two lists:

$$
\mathrm{g}^{\mathrm{i}}=\mathrm{h} \cdot\left(\mathrm{~g}^{-\mathrm{sqrt}(\mathrm{p})}\right)^{\mathrm{j}}
$$

When we find a coincidence, the equality holds and then $\mathrm{x}=\mathrm{i}+\mathrm{j} *\lceil\operatorname{sqrt}(\mathrm{p})\rceil$

Can we divide

 and conquer?
Baby-step/Giant-Step Algorithm

$$
\mathrm{g}^{\mathrm{i}}=\mathrm{h} \cdot\left(\mathrm{~g}^{-[\operatorname{sqrt}(\mathrm{p})]}\right)^{\mathrm{j}}
$$

1. $x=i+j \star\lceil\operatorname{sqrt}(p)\rceil$

Baby-step/Giant-Step Algorithm

$\mathrm{g}^{\mathrm{i}}=\mathrm{h} .\left(\mathrm{g}^{-[\operatorname{sqrt}(\mathrm{p}) \mid}\right)^{\mathrm{j}}$

1. $x=i+j \star[\operatorname{sqrt}(p)\rceil$
2. $0 \leq i, j<\lceil\operatorname{sqrt}(p)\rceil$

Baby-step/Giant-Step Algorithm

1. $x=i+j \star[\operatorname{sqrt}(p)\rceil$
2. $0 \leq i, j<\lceil\operatorname{sqrt}(p)\rceil$

Let's build some tables!
3. Baby-step: $\mathrm{g}_{\mathrm{i}} \longleftarrow \mathrm{g}^{\mathrm{i}}$ for $0 \leq i<\lceil\operatorname{sqrt}(\mathrm{p})\rceil$

Baby-step/Giant-Step Algorithm

1. $x=i+j \star[\operatorname{sqrt}(p)\rceil$
2. $0 \leq i, j<\lceil\operatorname{sqrt}(p)\rceil$

Produces pairs: $\left(g_{i,}, i\right)$
3. Baby-step: $\mathrm{g}_{\mathrm{i}} \longleftarrow \mathrm{g}^{\mathrm{i}}$ for $0 \leq i<\lceil\operatorname{sqrt}(\mathrm{p})\rceil$

Baby-step/Giant-Step Algorithm

1. $x=i+j *[\operatorname{sqrt}(p)\rceil$
2. $0 \leq i, j<\lceil\operatorname{sqrt}(p)\rceil$
3. Baby-step: $\mathrm{g}_{\mathrm{i}} \leftarrow \mathrm{g}^{\mathrm{i}}$ for $0 \leq i<\lceil\operatorname{sqrt}(\mathrm{p})\rceil$
4. Giant-step: $h_{j} \leftarrow h^{\star} g^{-j}\lceil$ sqrt(p) \rceil, for $0 \leq j<\lceil\operatorname{sqrt}(p)\rceil$

Baby-step/Giant-Step Algorithm

1. $x=i+j *\lceil\operatorname{sqrt}(p)\rceil$
2. $0 \leq i, j<\lceil\operatorname{sqrt}(p)\rceil$
3. Baby-step: $\mathrm{g}_{\mathrm{i}} \longleftarrow \mathrm{g}^{\mathrm{i}}$ for $0 \leq i<\lceil\operatorname{sqrt}(\mathrm{p})\rceil$
4. Giant-step: $h_{j} \longleftarrow h^{*} g^{-j}\lceil$ sqrt(p) \rceil, for $0 \leq j<\lceil\operatorname{sqrt}(p)\rceil$

Overall time and space $O($ sqrt (p))

Baby-step/Giant-Step Alg

1. $x=i+j *\lceil\operatorname{sqrt}(p)\rceil$
2. $0 \leq \mathrm{i}, \mathrm{j}<$ [sqrt(p)) DLP in group G to $2^{\text {De }}$

DLP Example, $182=64^{x}(\bmod 607)$

- Consider the subgroup of order $101\left(Z_{101}^{*}\right)$ in F_{607}, generated by $\mathrm{g}=64$

i	$64^{i}(\bmod 607)$	i	$" »$
0		6	
1		7	
2		8	
3		9	
4		10	
5		-	

DLP Example, $182=64^{x}(\bmod 607)$

i	$64^{i}(\bmod 607)$	i	""
0	1	6	330
1	64	7	482
2	454	8	498
3	527	9	308
4	343	10	288
5	100	-	

$$
\begin{aligned}
& \text { Baby-step: } g_{i} \leftarrow g^{i} \text { for } 0 \leq i<\lceil\operatorname{sqrt}(p)\rceil \\
& g=64 \\
& \lceil\operatorname{sqrt}(p)\rceil=11
\end{aligned}
$$

DLP Example, $182=64^{x}(\bmod 607)$

i	$182^{*} 64^{-11^{* j}(\bmod 607)}$	i	
0		6	
1		7	
2		8	
3		9	
4		10	
5		-	

DLP Example, $182=64^{x}(\bmod 607)$

| i | | i | $64^{i}(\bmod 607)$ | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 6 | 330 | | | | |
| 1 | 64 | 7 | 482 | | | | |
| 2 | 454 | 8 | 498 | | | | |
| 3 | 527 | 9 | 308 | | | | |
| 4 | 343 | 10 | 288 | | | j | $182^{*} 64^{-11 * j}(\bmod 607)$ |
| 5 | 100 | - | | 182 | 6 | 60 | |

DLP Example, $182=64^{x}(\bmod 607)$

| i | | i | $64^{i}(\bmod 607)$ | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 6 | 330 | | | | |
| 1 | 64 | 7 | 482 | | | | |
| 2 | 454 | 8 | 498 | | | | |
| 3 | 527 | 9 | 308 | | | j | $182^{*} 64^{-11^{* j}(\bmod 607)}$ |
| 4 | 343 | 10 | 288 | 0 | 182 | 6 | 60 |
| 5 | 100 | - | | 1 | 143 | 7 | 394 |

DLP Example, $182=64^{x}(\bmod 607)$

DLP Example, $182=64^{x}(\bmod 607)$

i		i	$64^{i}(\bmod 607)$		j		j	182* $64^{-11 * j}(\bmod 607)$
0	1	6	330		0	182	6	60
1	64	7	482		1	143	7	394
2	454	8	498		2	69	8	483
3	527	9	308		3	271	9	76
4	343	10	288		4	343	10	580
5	10			So: $x=4+4^{*} 11=$				

DLP Example, $182=64^{x}(\bmod 607)$

Diffie-Hellman

Diffie-Hellman Key Exchange

A public-key protocol published in 1976 by Whitfield Diffie and Martin Hellman

a
Allows two parties that have no prior knowledge of each other to jointly establish a shared secret key over an insecure channel

Key used to encrypt subsequent communications using a symmetric key cipher

Diffie-Hellman Key Exchange

- Used for establishing a shared secret (lacks authentication; we'll see why this is bad)
- Assume as public parameters generator \mathbf{g} and prime \mathbf{p}
- Alice (resp. Bob) generates private value a (resp. b)

Diffie-Hellman Key Exchange

- Used for establishing a shared secret (lacks authentication; we'll see why this is bad)
- Assume as public parameters generator \mathbf{g} and prime \mathbf{p}
- Alice (resp. Bob) generates private value a (resp. b)

$$
B^{a}=\left(g^{b}\right)^{a}=g^{b a}
$$

$$
A^{b}=\left(g^{a}\right)^{b}=g^{a b}
$$

Alice and Bob can derive the same value by exchanging public values and combining them with their private ones!

Diffie-Hellman Key Exchange

- Used for establishing a shared secret (lacks authentication; we'll see why this is bad)
- Assume as public parameters generator \mathbf{g} and prime \mathbf{p}
- Alice (resp. Bob) generates private value a (resp. b)

$B^{a}=\left(g^{b}\right)^{a}=g^{b a}$

$$
A=g^{a} \bmod p
$$

$$
B=g^{b} \bmod p
$$

$$
A^{b}=\left(g^{a}\right)^{b}=g^{a b}
$$

Resist keying temptation: the shared value should not immediately be used as a key. G^{ab} is a random element inside a group, but not necessarily a random bit string

Diffie-Hellman Key Exchange - Visualization

Diffie-Hellman relies on the DLP

DH can be broken by recovering the private value a from the public value $\mathbf{g}^{\text {a }}$

The adversary must not be able to solve the DLP

The Decisional Diffie-Hellman Problem

Given $\mathbf{g}, \mathbf{g}^{\mathbf{a}}, \mathbf{g}^{\mathbf{b}}$ distinguish $\mathbf{g}^{\text {ab }}$ from random $\mathbf{g}^{\mathbf{c}}$

- An adversary should be unable to learn nothing about the secret $\mathbf{g}^{\text {ab }}$ after observing public values $\mathbf{g}^{\mathbf{a}}$ and $\mathbf{g}^{\mathbf{b}}$
- Assume $\mathbf{g}^{\text {ab }}$ and $\mathbf{g}^{\text {c }}$ occur with the same probability

The Decisional Diffie-Hellman Problem

Given $\mathbf{g}, \mathbf{g}^{\mathbf{a}}, \mathbf{g}^{\mathbf{b}}$ distinguish $\mathbf{g}^{\text {ab }}$ from random $\mathbf{g}^{\mathbf{c}}$

- An adversary should be unable to learn nothing about the secret $\mathbf{g}^{\text {ab }}$ after observing public values $\mathbf{g}^{\mathbf{a}}$ and $\mathbf{g}^{\mathbf{b}}$
- Assume $\mathbf{g}^{\text {ab }}$ and $\mathbf{g}^{\text {c }}$ occur with the same probability

Useful assumption beyond DH key exchange!

EIGamal relies on the DDH assumption

EIGamal

ElGamal Public Key Cryptosystem

- Let \boldsymbol{p} be a prime such that the DLP in $\left(\mathbf{Z}^{*}{ }^{*}.\right)$ is infeasible
- Let a be a generator in $\mathbf{Z}_{\mathrm{p}}{ }^{*}$
- PubK $=\left\{(p, a, a, \beta): \beta \equiv a^{a}(\bmod p)\right\}$
- For message \mathbf{m} and secret random \mathbf{k} in $\mathbf{Z}_{\mathrm{p}-1}$:

○ $e_{k}(m, k)=\left(y_{1}, y_{2}\right)$, where $y_{1}=a^{k} \bmod p$ and $y_{2}=m \beta^{k} \bmod p$

- For $\mathrm{y}_{1}, \mathrm{y}_{2}$ in $\mathrm{z}_{\mathrm{p}}{ }^{*}$:

$$
d_{k}\left(y_{1}, y_{2}\right)=y_{2}\left(y_{1} a^{-1} \bmod p\right.
$$

ElGamal: The Keys

1. Bob picks a "large" prime \mathbf{p} and a generator \mathbf{a}.
a. Assume message m is an integer $0<m<p$
2. Bob picks secret integer a
3. Bob computes $\boldsymbol{\beta} \equiv \alpha^{a}(\bmod p)$

ElGamal: The Keys

1. Bob picks a "large" prime \mathbf{p} and a generator \mathbf{a}.
a. Assume message m is an integer $0<m<p$
2. Bob picks secret integer a
3. Bob computes $\boldsymbol{\beta} \equiv \alpha^{a}(\bmod p)$
4. Bob's public key is (p, a, β) ?

ElGamal: The Keys

1. Bob picks a "large" prime \mathbf{p} and a generator \mathbf{a}.
a. Assume message m is an integer $0<m<p$
2. Bob picks secret integer a
3. Bob computes $\boldsymbol{\beta} \equiv \alpha^{a}(\bmod p)$
4. Bob's public key is (p, a, β) ?
5. Bob's private key is a (8)

ElGamal: Encryption

ElGamal: Encryption

ElGamal: Encryption

I choose secret integer \mathbf{k}

Compute $\mathbf{y}_{1} \equiv \mathrm{a}^{\mathbf{k}}(\bmod p)$

Compute $\mathbf{y}_{2} \equiv \beta^{\mathrm{k}} \mathrm{m}(\bmod \mathrm{p})$

ElGamal: Encryption

I choose secret integer \mathbf{k}

Compute $\mathbf{y}_{1} \equiv \mathrm{a}^{\mathbf{k}}(\bmod p)$

Compute $\mathbf{y}_{2} \equiv \beta^{\mathrm{k}} \mathrm{m}(\bmod \mathrm{p})$

Send \mathbf{y}_{1} and \mathbf{y}_{2} to Bob

ElGamal: Decryption

I choose secret integer \mathbf{k}

Compute $\mathbf{y}_{1} \equiv \mathrm{a}^{\mathbf{k}}(\bmod p)$

Compute $\mathbf{y}_{2} \equiv \beta^{\mathrm{k}} \mathrm{m}(\bmod p)$
Compute $\mathbf{y}_{1} \mathbf{y}_{\mathbf{2}}{ }^{-\mathbf{a}} \equiv \mathrm{m}(\bmod \mathrm{p})$

Send \mathbf{y}_{1} and \mathbf{y}_{2} to Bob

ElGamal: Decryption

I choose secret integer \mathbf{k}

Compute $\mathbf{y}_{1} \equiv \mathrm{a}^{\mathbf{k}}(\bmod p)$

Compute $\mathbf{y}_{2} \equiv \beta^{\mathrm{k}} \mathrm{m}(\bmod \mathrm{p})$
Compute $\mathbf{y}_{1} \mathbf{y}_{\mathbf{2}}{ }^{-\mathbf{a}} \equiv \mathrm{m}(\bmod \mathrm{p})$

Send \mathbf{y}_{1} and \mathbf{y}_{2} to Bob

> Bob can decrypt since:
> $\mathbf{y}_{2} \mathbf{y}_{1}{ }^{-\mathrm{a}} \equiv \beta^{\mathrm{k}} \mathrm{m}\left(a^{\mathrm{k}}\right)^{-\mathrm{a}} \equiv \mathrm{m}(\bmod \mathrm{p})$

ElGamal Informal Summary

- The plaintext m is "hidden" by multiplying it by β^{k} to get y_{2}

I receive ct $=\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)$

ElGamal Informal Summary

- The plaintext m is "hidden" by multiplying it by β^{k} to get y_{2}
- The ciphertext includes a^{k} so that Bob can compute β^{k} from a^{k} (because Bob knows a)

I receive ct $=\left(\mathbf{y}_{1}, \mathrm{y}_{2}\right)$

ElGamal Informal Summary

- The plaintext m is "hidden" by multiplying it by β^{k} to get y_{2}
- The ciphertext includes a^{k} so that Bob can compute β^{k} from a^{k} (because Bob knows a)
- Thus, Bob can "reveal" m by dividing y_{2} by β^{k}

ElGamal Informal Summary

- The plaintext m is "hidden" by multiplying it by β^{k} to get y_{2}
- The ciphertext includes a^{k} so that Bob can compute β^{k} from a^{k} (because Bob knows a)
- Thus, Bob can "reveal" m by dividing y_{2} by β^{k}

$$
\mid \text { receive ct }=\left(y_{1}, y_{2}\right)
$$

Example

Bob's Pub ${ }_{K} \rightarrow(\mathbf{p}, \boldsymbol{\alpha}, \boldsymbol{\beta})$ Bob's $^{\text {Priv }_{k}} \rightarrow \mathbf{a}=765$

- Let $\mathbf{p}=2579, \boldsymbol{a}=2, \boldsymbol{\beta}=2^{765} \bmod 2579=949$

Example

- Let $p=2579, a=2, \beta=2^{765} \bmod 2579=949$

I want to send m=1299 to Bob. I choose $\mathbf{k}=853$ for $m y$ random integer

Example

- Let $p=2579, a=2, \beta=2^{765} \bmod 2579=949$

```
I want to send m=1299 to Bob. I
```

$$
\begin{aligned}
& \mathbf{y}_{1} \equiv \mathrm{a}^{\mathbf{k}}(\bmod \mathrm{p}) \\
& \mathbf{y}_{2} \equiv \beta^{\mathrm{k}} \mathrm{~m}(\bmod \mathrm{p})
\end{aligned}
$$

Example

- Let $p=2579, a=2, \beta=2^{765} \bmod 2579=949$

```
I want to send m=1299 to Bob. I
```

$$
\begin{aligned}
& \mathbf{y}_{1} \equiv \mathrm{a}^{\mathbf{k}}(\bmod \mathrm{p}) \\
& \mathbf{y}_{2} \equiv \beta^{\mathrm{k}} \mathrm{~m}(\bmod \mathrm{p})
\end{aligned}
$$

- $\mathbf{y}_{1}=2^{853} \bmod 2579=435$
- $y_{2}=1299 * 949853 \bmod 2579=2396$

Example

Bob's Pub ${ }_{K} \rightarrow(\mathbf{p}, \boldsymbol{\alpha}, \boldsymbol{\beta})$ Bob's $^{\text {Priv }}{ }_{k} \rightarrow \mathbf{a}=765$

- Bob now has \mathbf{y}_{1} and \mathbf{y}_{2}
- $y_{1}=2^{853} \bmod 2579=435$
- $y_{2}=1299 * 949853 \bmod 2579=2396$

Example

Bob's Pub $_{\mathrm{K}} \rightarrow(\mathbf{p}, \boldsymbol{\alpha}, \boldsymbol{\beta})$ Bob's Priv $_{\mathrm{K}} \rightarrow \mathbf{a}=765$

- Bob now has \mathbf{y}_{1} and \mathbf{y}_{2}
- $y_{1}=2^{853} \bmod 2579=435$
- $y_{2}=1299 * 949853 \bmod 2579=2396$

$$
\mathbf{y}_{2} \mathbf{y}_{1}{ }^{-a} \equiv \beta^{k} m\left(a^{k}\right)^{-a} \equiv m(\bmod p)
$$

- $m=2396 * 435^{-765} \bmod 2759=1299$

Example

- Bob now has \mathbf{y}_{1} and \mathbf{y}_{2}
- $y_{1}=2^{853} \bmod 2579=435$
- $y_{2}=1299 * 949853 \bmod 2579=2396$

$$
y_{2} \mathbf{y}_{1}{ }^{-a} \equiv \beta^{k} m\left(a^{k}\right)^{-a} \equiv m(\bmod p)
$$

- $m=2396 * 435^{-765} \bmod 2759=1299$

> Nice! That's the plaintext I wanted to send.

Example

- Bob now has \mathbf{y}_{1} and \mathbf{y}_{2}
- $y_{1}=2^{853} \bmod 2579=435$
- $y_{2}=1299 * 949853 \bmod 2579=2396$

$$
\mathbf{y}_{2} \mathbf{y}_{1} \mathbf{a}^{-\mathrm{a}} \equiv \beta^{\mathrm{k}} \mathrm{~m}\left(\mathrm{a}^{\mathrm{k}}\right)^{-\mathrm{a}} \equiv \mathrm{~m}(\bmod p)
$$

- $\mathrm{m}=2396 * 435^{-765} \bmod 2759=1299$

Nice! That's the plaintext I

 wanted to send.Insecure if the adversary can compute $\mathbf{a}=\log _{a} \beta$

Example

- Bob now has \mathbf{y}_{1} and \mathbf{y}_{2}
- $y_{1}=2853 \bmod 2579=435$
- $y_{2}=1299 * 949853 \bmod 2579=2396$

$$
\mathbf{y}_{2} \mathbf{y}_{1}{ }^{-\mathrm{a}} \equiv \beta^{\mathrm{k}} \mathrm{~m}\left(\alpha^{\mathrm{k}}\right)^{-\mathrm{a}} \equiv \mathrm{~m}(\bmod \mathrm{p})
$$

- $\mathrm{m}=2396 * 435^{-765} \bmod 2759=1299$

Nice! That's the plaintext I wanted to send.

Insecure if the adversary can compute $\mathbf{a}=\log _{\mathrm{a}} \beta$

To be secure, DLP must be infeasible in $\boldsymbol{Z}_{\mathrm{p}}{ }^{\text {* }}$

Network Security - Next class

