CS489/698 Privacy, Cryptography, Network and Data Security

Discrete Logarithm, Diffie-Hellman, ElGamal

Spring 2024, Monday/Wednesday 11:30am-12:50pm

Groups?

Groups - Sets with specific properties

A **group** is a set of elements (usually numbers) that are related to each other according to well-defined operations.

- Consider a group of prime order **q**, or Z_q^*
 - This boils down to the set of non-zero integers between 1 and q-1 modulo $q \rightarrow A$ finite group
 - For q = 5, we have group $Z_5^* = \{1, 2, 3, 4\}$
 - In this group, operations are carried out mod 5:
 - 3 * 4 = 12 mod 5 = 2
 - 2³ = 2 * 2 * 2 = 8 mod 5 = 3

Group axioms

To be a group, these sets should respect some axioms

- Closure
- Identity existence
- Associativity
- Inverse existence
- Groups can also be <u>commutative</u> and <u>cyclic</u> (up next)

Let's take a look at some of these axioms (using multiplication as the operation)

Closure

- For every x,y in the group, x * y is in the group
 - i.e., the multiplication of two group elements falls within the group too

- Example:
 - in Z_5^* , 2* 3 = 6 mod 5 = 1

Identity Existence

- There is an element **e** such that e * x = x * e = x
 - i.e., has an element **e** such that any element times **e** outputs the element itself

- Example:
 - In any Z_q^* , the identity element is 1
 - For $Z_5^* : 1 * 3 = 3 \mod 5 = 3$

Associativity

• For any x, y, z in the group, (x * y) * z = x * (y * z)

- Example:
 - For Z_5^* : (2 * 3) * 4 = 1 * 4 = 2 * (3 * 4) = 2 * 2 = 4

Inverse Existence

• For any **x** in the group, there is a **y** such that x * y = y * x = 1

• Example:

- For Z_5^* : 2 * 3 = 1, 3 * 2 = 1 (2 and 3 are inverses)
- 4 * 4 = 16 mod 5 = 1 (4 is its own inverse)

Abelian Groups

- Abelian groups are groups which are **commutative**
- This means that x * y = y * x for any group elements x and y

- Example:
 - For $Z_5^*: 3 * 4 = 2$, 4 * 3 = 2

Cyclic groups

- A group is called cyclic if there is at least one element g such that its powers (g¹, g², g³, ...) mod p span all distinct group elements.
 - **g** is called the "generator" of the group

• Example:

- For Z_5^* , there are two generators (2 and 3):
 - 2¹ = 2, 2² = 4, 2³ = 3, 2⁴ = 1
 - 3¹ =3, 3² = 4, 3³ = 2, 3⁴ = 1

Cyclic subgroups

• We can have cyclic **subgroups** within larger finite groups

- Example:
 - Given field F_{607} , we can consider a cyclic subgroup of order p=5 as Z_5^* :

Discrete Logarithm Problem

The Discrete Logarithm Problem

 $h = g^x$, find x

But don't forget about me

CS489 Spring 2024

The Discrete Logarithm Problem

$h = g^x$, find x

Discrete: we are dealing with integers instead of real numbers

Logarithm: we are looking for the logarithm of **x** base **g**

• e.g., $\log_2 256 = 8$, since $2^8 = 256$

The Discrete Logarithm Problem

Given $(g,h) \in \mathbf{G} \times \mathbf{G}$, find $x \in \mathbf{Z}_q^*$ such that:

$h = g^{x}$

Here, **G** is a multiplicative group of prime order **q**, just like we saw during the examples. (But **q** is thousands of bits long)

Solutions to the Discrete Logarithm Problem?

If there's one solution, there are infinitely many

(thank you Fermat's little theorem and modular arithmetic "wrap-around")

How to solve DLP in cyclic groups of prime order?

• Is the group cyclic, finite, and abelian?

Has a generator that spans all elements

Has a limited number of elements

Multiplication is commutative

- A cyclic group **G** = <g> which has prime order **p**
- $h \in G$, goal: find x (mod p) such that $h = g^x$
- Every element $\mathbf{x} \in G$ can be written as: $\mathbf{x} = i + j*[sqrt(p)]$

 $\bigcirc \quad \text{For integers } m, \, i, \, j \text{ satisfying } 0 \leq i, \, j \leq m.$

Baby-Step/Giant-Step Algorithm? Notation.

• **log**_g **x** mod **p** is obtained by comparing two lists:

 $g^i = h \cdot (g^{-[sqrt(p)]})^j$

When we find a coincidence, the equality holds and then x = i + j*[sqrt(p)]

1. x = i + j*[sqrt(p)]

- 1. x = i + j*[sqrt(p)]
- 2. 0≤ i, j < [sqrt(p)]

- 1. x = i + j*[sqrt(p)]
- 2. 0≤ i, j < [sqrt(p)]
- 3. Baby-step: $g_i \leftarrow g^i$ for $0 \le i \le [sqrt(p)]$

 $g^{i} = h \cdot (g^{-[sqrt(p)]})^{j}$

Let's build some tables!

- 1. x = i + j*[sqrt(p)]
- 2. 0≤ i, j < [sqrt(p)]
- 3. Baby-step: $g_i \leftarrow g^i$ for $0 \le i \le [sqrt(p)]$

 $g^{i} = h \cdot (g^{-[sqrt(p)]})^{j}$

- 1. x = i + j*[sqrt(p)]
- 2. 0≤ i, j < [sqrt(p)]
- 3. Baby-step: $g_i \leftarrow g^i$ for $0 \le i \le [sqrt(p)]$
- 4. Giant-step: $h_j \leftarrow h^*g^{-j \lceil sqrt(p) \rceil}$, for $0 \le j < \lceil sqrt(p) \rceil$

 $g^{i} = h \cdot (g^{-[sqrt(p)]})^{j}$

- 1. x = i + j*[sqrt(p)]
- 2. 0≤ i, j < [sqrt(p)]
- 3. Baby-step: $g_i \leftarrow g^i$ for $0 \le i \le [sqrt(p)]$
- 4. Giant-step: $h_j \leftarrow h^*g^{-j \lceil sqrt(p) \rceil}$, for $0 \le j < \lceil sqrt(p) \rceil$

Overall time and space O(Sqrt(p))

 $g^{i} = h \cdot (g^{-[sqrt(p)]})^{j}$

DLP Example, $182 = 64^{x} \pmod{607}$

• Consider the subgroup of order $101(Z_{101}^*)$ in F_{607} , generated by g=64

i	64 ⁱ (mod 607)	i	"
0	1	6	330
1	64	7	482
2	454	8	498
3	527	9	308
4	343	10	288
5	100	-	

Baby-step: $g_i \leftarrow g^i$ for $0 \le i < [sqrt(p)]$ [sqrt(p)] = 11

g = 64

Giant-step: $h_j \leftarrow h^*g^{-j [sqrt(p)]}$ g = 64 [sqrt(p)] = 11

M	

i	182* 64 ^{-11*j} (mod 607)	i	
0		6	
1		7	
2		8	
3		9	
4		10	
5		-	

i		i	64 ⁱ (mod 607)		j		j	182* 64 ^{-11*j} (mod 607)
0	1	6	330		0	182	6	60
1	64	7	482		1	143	7	394
2	454	8	498	Collision?	2	69	8	483
3	527	9	308		3	271	9	76
4	343	10	288		4	343	10	580
5	100	-			5	573	-	

DLP Example, $182 = 64^{x} \pmod{607}$

i		i	64 ⁱ (mod 607)		j		j	182* 64 ^{-11*j} (mod 607)
0	1	6	330		0	182	6	60
1	64	7	482		1	143	7	394
2	454	8	498	Collision?	2	69	8	483
3	527	9	308		3	271	9	76
4	343	10	288		4	343	10	580
5	100	-			5	573	-	

CS489 Spring 2024

CS489 Spring 2024

CS489 Spring 2024

Diffie-Hellman

A public-key protocol published in 1976 by Whitfield Diffie and Martin Hellman

Allows two parties that have no prior knowledge of each other to jointly establish a shared secret key over an insecure channel

Key used to encrypt subsequent communications using a symmetric key cipher

- Used for establishing a <u>shared secret</u> (lacks authentication; we'll see why this is <u>bad</u>)
- Assume as public parameters generator **g** and prime **p**
- Alice (resp. Bob) generates private value **a** (resp. **b**)

- Used for establishing a <u>shared secret</u> (lacks authentication; we'll see why this is bad)
- Assume as public parameters generator **g** and prime **p**
- Alice (resp. Bob) generates private value **a** (resp. **b**)

- Used for establishing a <u>shared secret</u> (lacks authentication; we'll see why this is bad)
- Assume as public parameters generator **g** and prime **p**
- Alice (resp. Bob) generates private value **a** (resp. **b**)

Diffie-Hellman Key Exchange – Visualization

Diffie-Hellman relies on the DLP

DH can be broken by recovering the private value **a** from the public value **g**^a

The Decisional Diffie-Hellman Problem

Given **g**, \mathbf{g}^{a} , \mathbf{g}^{b} distinguish \mathbf{g}^{ab} from random \mathbf{g}^{c}

- An adversary should be unable to learn nothing about the secret g^{ab} after observing public values g^a and g^b
 - $\circ~$ Assume g^{ab} and g^c occur with the same probability

The Decisional Diffie-Hellman Problem

Given **g**, \mathbf{g}^{a} , \mathbf{g}^{b} distinguish \mathbf{g}^{ab} from random \mathbf{g}^{c}

- An adversary should be unable to learn nothing about the secret g^{ab} after observing public values g^a and g^b
 - $\circ~$ Assume g^{ab} and g^c occur with the same probability

Useful assumption **beyond** DH key exchange!

ElGamal relies on the DDH assumption

ElGamal

ElGamal Public Key Cryptosystem

- Let **p** be a prime such that the DLP in $(\mathbf{Z}_{p}^{*'})$ is infeasible
- Let α be a generator in \mathbf{Z}_{p}^{*}
- **PubK** ={(p, α , a, β): $\beta \equiv \alpha^a \pmod{p}$ }
- For message **m** and secret random **k** in Z_{p-1} : • $e_{\kappa}(m,k) = (y_1, y_2)$, where $y_1 = \alpha^k \mod p$ and $y_2 = m\beta^k \mod p$
- For y_1, y_2 in Z_p^* :
 - \bigcirc d_K(y₁, y₂)= y₂(y₁^a)⁻¹ mod p

ElGamal: The Keys

- 1. Bob picks a "large" prime **p** and a generator **α**.
 - a. Assume message m is an integer 0 < m < p
- 2. Bob picks secret integer a
- 3. Bob computes $\beta \equiv \alpha^a \pmod{p}$

ElGamal: The Keys

- 1. Bob picks a "large" prime **p** and a generator **α**.
 - a. Assume message m is an integer 0 < m < p
- 2. Bob picks secret integer **a**
- 3. Bob computes $\beta \equiv \alpha^a \pmod{p}$
- 4. Bob's public key is ($\mathbf{p}, \mathbf{a}, \mathbf{\beta}$)

ElGamal: The Keys

- 1. Bob picks a "large" prime **p** and a generator **α**.
 - a. Assume message m is an integer 0 < m < p
- 2. Bob picks secret integer **a**
- 3. Bob computes $\beta \equiv \alpha^a \pmod{p}$
- 4. Bob's public key is (p, α, β) \bigcirc
- 5. Bob's private key is a

Bob's $Pub_{K} \rightarrow (p, \alpha, \beta)$

Bob's $Priv_{K} \rightarrow a$

β \equiv α^a (mod p)

ElGamal: Encryption

I choose secret integer **k**

CS489 Spring 2024

Bob's $Pub_K \rightarrow (p, \alpha, \beta)$

Bob's $Priv_{\kappa} \rightarrow a$

β \equiv α^a (mod p)

ElGamal: Encryption

Bob's Priv_{κ} \rightarrow a

β \equiv α^a (mod p)

ElGamal: Encryption

ElGamal: Encryption

Send **y**₁ and **y**₂ to Bob

ElGamal: Decryption

ElGamal: Decryption

• The plaintext m is "hidden" by multiplying it by β^k to get y_2

- The plaintext m is "hidden" by multiplying it by β^k to get y_2
- The ciphertext includes α^k so that Bob can compute β^k from α^k (because Bob knows a)

- The plaintext m is "hidden" by multiplying it by β^k to get y_2
- The ciphertext includes α^k so that Bob can compute β^k from α^k (because Bob knows a)
- Thus, Bob can "reveal" m by dividing y_2 by β^k

- The plaintext m is "hidden" by multiplying it by β^k to get y_2
- The ciphertext includes α^k so that Bob can compute β^k from α^k (because Bob knows a)
- Thus, Bob can "reveal" m by dividing y_2 by β^k

Bob's $Pub_{K} \rightarrow (p, \alpha, \beta)$ Bob's $Priv_{K} \rightarrow a = 765$ $\beta \equiv \alpha^{a} \pmod{p}$

59

CS489 Spring 2024

• Let **p**=2579, **α** = 2, **β** = 2⁷⁶⁵ mod 2579 = 949

β \equiv α^a (mod p)

Let p=2579, α = 2, β = 2⁷⁶⁵ mod 2579 = 949

I want to send m=1299 to Bob. I choose **k** = 853 for my random integer

• Let **p**=2579, **α** = 2, **β** = 2⁷⁶⁵ mod 2579 = 949

I want to send **m**=1299 to Bob. I choose **k** = 853 for my random integer $\begin{aligned} \mathbf{y}_1 &\equiv \alpha^k \; (\text{mod } p) \\ \mathbf{y}_2 &\equiv \beta^k \; m \; (\text{mod } p) \end{aligned}$

I want to send **m**=1299 to Bob. I choose **k** = 853 for my random integer $\mathbf{y}_1 \equiv \mathbf{a}^k \pmod{\mathbf{p}}$ $\mathbf{y}_2 \equiv \beta^k \text{ m (mod p)}$

Example

Bob's $Pub_{\kappa} \rightarrow (p, \alpha, \beta)$ Bob's $Priv_{K} \rightarrow a = 765$ **β** \equiv α^a (mod p)

• Let **p**=2579, **α** = 2, **β** = 2⁷⁶⁵ mod 2579 = 949

• $y_1 = 2^{853} \mod 2579 = 435$

• $y_2 = 1299 \times 949^{853} \mod 2579 = 2396$

Send y_1 , y_2 to Bob

- Bob now has **y**₁ and **y**₂
 - \circ y₁ = 2⁸⁵³ mod 2579 = 435
 - \circ y₂=1299*949⁸⁵³ mod 2579 = 2396

- Bob now has y₁ and y₂
 - \circ y₁ = 2⁸⁵³ mod 2579 = 435
 - y₂=1299*949⁸⁵³ mod 2579 = 2396

- $\boldsymbol{y_2y_1}^{\textbf{-a}} \equiv \beta^k \ m \ (\alpha^k)^{\textbf{-a}} \equiv m \ (mod \ p)$
- m = 2396 * 435⁻⁷⁶⁵ mod 2759 = 1299

- Bob now has y₁ and y₂
 - \circ y₁ = 2⁸⁵³ mod 2579 = 435
 - \circ y₂=1299*949⁸⁵³ mod 2579 = 2396

- $\boldsymbol{y_2y_1}^{\textbf{-a}} \equiv \beta^k \ m \ (\alpha^k)^{\textbf{-a}} \equiv m \ (mod \ p)$
- m = 2396 * 435⁻⁷⁶⁵ mod 2759 = 1299

66

Example

- Bob now has y₁ and y₂
 - \circ y₁ = 2⁸⁵³ mod 2579 = 435
 - y₂=1299*949⁸⁵³ mod 2579 = 2396

- 2206 * 125 765 mod 2750 1200
- m = 2396 * 435⁻⁷⁶⁵ mod 2759 = 1299

 $\mathbf{y}_{2}\mathbf{y}_{1}^{-\mathbf{a}} \equiv \beta^{k} \operatorname{m} (\alpha^{k})^{-\mathbf{a}} \equiv \operatorname{m} (\operatorname{mod} p)$

Bob's $Pub_{K} \rightarrow (p, \alpha, \beta)$ Bob's $Priv_{K} \rightarrow a = 765$

β \equiv α^a (mod p)

- Bob now has y₁ and y₂
 - \circ y₁ = 2⁸⁵³ mod 2579 = 435
 - \circ y₂=1299*949⁸⁵³ mod 2579 = 2396

- $\boldsymbol{y_2y_1}^{\textbf{-a}} \equiv \beta^k \ m \ (\alpha^k)^{\textbf{-a}} \equiv m \ (mod \ p)$
- m = 2396 * 435⁻⁷⁶⁵ mod 2759 = 1299

Insecure if the adversary can compute $a = log_{\alpha}\beta$

To be secure, DLP must be infeasible in Z_p*

Network Security - Next class