
CS489/698
Privacy, Cryptography,

Network and Data Security

Spring 2024, Monday/Wednesday 11:30am-12:50pm

Discrete Logarithm, Diffie-Hellman, ElGamal

Groups?

2

CS489 Spring 2024

Groups - Sets with specific properties
A group is a set of elements (usually numbers) that are
related to each other according to well-defined operations.

● Consider a group of prime order q, or 𝑍!∗

● This boils down to the set of non-zero integers between 1 and q-1 modulo q à A finite group

● For q = 5, we have group 𝑍!∗ = {1,2,3,4}

● In this group, operations are carried out mod 5:
● 3 * 4 = 12 mod 5 = 2

● 23 = 2 * 2 * 2 = 8 mod 5 = 3

3

CS489 Spring 2024

Group axioms
To be a group, these sets should respect some axioms

● Closure
● Identity existence
● Associativity
● Inverse existence

● Groups can also be commutative and cyclic (up next)

4

Let’s take a look at some of these axioms (using multiplication as the operation)

CS489 Spring 2024

Closure
● For every x,y in the group, x * y is in the group

○ i.e., the multiplication of two group elements falls within the group too

● Example:

○ in 𝑍!∗, 2* 3 = 6 mod 5 = 1

5

CS489 Spring 2024

Identity Existence
● There is an element e such that e * x = x * e = x

○ i.e., has an element e such that any element times e outputs the element itself

● Example:

○ In any 𝑍#∗ , the identity element is 1

○ For 𝑍!∗ ∶ 1 * 3 = 3 mod 5 = 3

6

CS489 Spring 2024

Associativity
● For any x, y, z in the group, (x * y) * z = x * (y * z)

● Example:

○ For 𝑍!∗ ∶ (2 * 3) * 4 = 1 * 4 = 2 * (3 * 4) = 2 * 2 = 4

7

CS489 Spring 2024

Inverse Existence

8

● For any x in the group, there is a y such that x * y = y * x = 1

● Example:
○ For 𝑍!∗ ∶ 2 * 3 = 1 , 3 * 2 = 1 (2 and 3 are inverses)

○ 4 * 4 = 16 mod 5 = 1 (4 is its own inverse)

CS489 Spring 2024

Abelian Groups

9

● Abelian groups are groups which are commutative
● This means that x * y = y * x for any group elements x and y

● Example:
○ For 𝑍!∗ ∶ 3 * 4 = 2 , 4 * 3 = 2

CS489 Spring 2024

Cyclic groups
● A group is called cyclic if there is at least one element g

such that its powers (g1, g2, g3, …) mod p span all distinct
group elements.
o g is called the “generator” of the group

• Example:
○ For 𝑍!∗, there are two generators (2 and 3):

■ 21 = 2, 22 = 4, 23 = 3, 24 = 1
■ 31 =3, 32 = 4, 33 = 2, 34 = 1

10

CS489 Spring 2024

Cyclic subgroups
● We can have cyclic subgroups within larger finite groups

• Example:
○ Given field F607, we can consider a cyclic subgroup of order p=5 as 𝑍!∗:

11

Discrete Logarithm Problem

12

CS489 Spring 2024

The Discrete Logarithm Problem

13

h = gx , find x
It’s supposed to be
hard to find x

I bet we can use that

But don’t forget about me

CS489 Spring 2024

The Discrete Logarithm Problem

14

h = gx , find x

Discrete: we are dealing with integers instead of real numbers

Logarithm: we are looking for the logarithm of x base g

o e.g., log2 256 = 8 , since 28 = 256

CS489 Spring 2024

The Discrete Logarithm Problem
Given (g,h) ∈ G x G, find x ∈ Zq* such that:

h = gx

Here, G is a multiplicative group of prime order q, just like we saw during
the examples. (But q is thousands of bits long)

15

CS489 Spring 2024

Solutions to the Discrete Logarithm Problem?

If there’s one solution, there are infinitely many

(thank you Fermat’s little theorem and modular arithmetic “wrap-around”)

16

CS489 Spring 2024

How to solve DLP in cyclic groups of prime order?
● Is the group cyclic, finite, and abelian?

17

Baby-step/Giant-step
algorithms!!!

Has a generator that
spans all elements

Has a limited
number of elements

Multiplication is
commutative

CS489 Spring 2024

Baby-Step/Giant-Step Algorithm?
● A cyclic group G = <g> which has prime order p
● h ∈ G, goal: find x (mod p) such that h = gx

● Every element x ∈ G can be written as: x = i + j*⌈sqrt(p)⌉
o For integers m, i, j satisfying 0 ≤ i, j ≤ m.

Then:
h = gj + j*⌈sqrt(p)⌉

gi = h . (g-⌈sqrt(p)⌉)j

18

Ah, more
rewriting tricks

CS489 Spring 2024

Baby-Step/Giant-Step Algorithm? Notation.
● logg x mod p is obtained by comparing two lists:

gi = h . (g-⌈sqrt(p)⌉)j

When we find a coincidence, the equality holds and then x = i + j*⌈sqrt(p)⌉

19

Can we divide
and conquer?

CS489 Spring 2024

Baby-step/Giant-Step Algorithm
1. x = i + j*⌈sqrt(p)⌉

20

gi = h . (g-⌈sqrt(p)⌉)j

CS489 Spring 2024

Baby-step/Giant-Step Algorithm
1. x = i + j*⌈sqrt(p)⌉

2. 0≤ i, j < ⌈sqrt(p)⌉

21

Since 0≤x≤p, …

gi = h . (g-⌈sqrt(p)⌉)j

CS489 Spring 2024

Baby-step/Giant-Step Algorithm
1. x = i + j*⌈sqrt(p)⌉

2. 0≤ i, j < ⌈sqrt(p)⌉

3. Baby-step: gi ⟵ gi for 0≤ i < ⌈sqrt(p)⌉

22

gi = h . (g-⌈sqrt(p)⌉)j

Let’s build some tables!

CS489 Spring 2024

Baby-step/Giant-Step Algorithm
1. x = i + j*⌈sqrt(p)⌉

2. 0≤ i, j < ⌈sqrt(p)⌉

3. Baby-step: gi ⟵ gi for 0≤ i < ⌈sqrt(p)⌉

23

Produces pairs: (gi,i)

gi = h . (g-⌈sqrt(p)⌉)j

CS489 Spring 2024

Baby-step/Giant-Step Algorithm
1. x = i + j*⌈sqrt(p)⌉

2. 0≤ i, j < ⌈sqrt(p)⌉

3. Baby-step: gi ⟵ gi for 0≤ i < ⌈sqrt(p)⌉

4. Giant-step: hj ⟵h*g–j ⌈sqrt(p)⌉ , for 0 ≤ j < ⌈sqrt(p)⌉

24

Produces pairs: (hj,j)

gi = h . (g-⌈sqrt(p)⌉)j

CS489 Spring 2024

Baby-step/Giant-Step Algorithm
1. x = i + j*⌈sqrt(p)⌉

2. 0≤ i, j < ⌈sqrt(p)⌉

3. Baby-step: gi ⟵ gi for 0≤ i < ⌈sqrt(p)⌉

4. Giant-step: hj ⟵h*g–j ⌈sqrt(p)⌉ , for 0 ≤ j < ⌈sqrt(p)⌉

25

Produces pairs: (hj,j)

Overall time and space O(sqrt(p))

gi = h . (g-⌈sqrt(p)⌉)j

CS489 Spring 2024

Baby-step/Giant-Step Algorithm
1. x = i + j*⌈sqrt(p)⌉

2. 0≤ i, j < ⌈sqrt(p)⌉

3. Baby-step: gi ⟵ gi for 0≤ i < ⌈sqrt(p)⌉

4. Giant-step: hj ⟵h*g–j ⌈sqrt(p)⌉ , for 0 ≤ j < ⌈sqrt(p)⌉

26

Produces pairs: (hj,j)

Overall time and space O(sqrt(p))

Note: For DLP in group G to be

“difficult enough” (e.g., 2
128

operations), needs prime order

subgroup of size greater than 22
56

CS489 Spring 2024

DLP Example, 182 = 64x(mod 607)
● Consider the subgroup of order 101(𝑍%&%∗) in F607, generated by g=64

27

i 64i (mod 607) i “ ”

0 6

1 7

2 8

3 9

4 10

5 -

Baby-step: gi⟵ gi for 0≤ i < ⌈sqrt(p)⌉

g = 64
⌈sqrt(p)⌉ = 11

CS489 Spring 2024

DLP Example, 182 = 64x(mod 607)

28

i 64i (mod 607) i “ “

0 1 6 330

1 64 7 482

2 454 8 498

3 527 9 308

4 343 10 288

5 100 -

Baby-step: gi⟵ gi for 0≤ i < ⌈sqrt(p)⌉

g = 64
⌈sqrt(p)⌉ = 11

CS489 Spring 2024

DLP Example, 182 = 64x(mod 607)

29

i 182* 64-11*j (mod 607) i

0 6

1 7

2 8

3 9

4 10

5 -

Giant-step: hj⟵h*g–j ⌈sqrt(p)⌉

g = 64
⌈sqrt(p)⌉ = 11

CS489 Spring 2024

DLP Example, 182 = 64x(mod 607)

30

i i 64i (mod 607)

0 1 6 330

1 64 7 482

2 454 8 498

3 527 9 308

4 343 10 288

5 100 -

j j 182* 64-11*j (mod 607)

0 182 6 60

1 143 7 394

2 69 8 483

3 271 9 76

4 343 10 580

5 573 -

Collision?

CS489 Spring 2024

DLP Example, 182 = 64x(mod 607)

31

i i 64i (mod 607)

0 1 6 330

1 64 7 482

2 454 8 498

3 527 9 308

4 343 10 288

5 100 -

j j 182* 64-11*j (mod 607)

0 182 6 60

1 143 7 394

2 69 8 483

3 271 9 76

4 343 10 580

5 573 -

Collision?

CS489 Spring 2024

DLP Example, 182 = 64x(mod 607)

32

i i 64i (mod 607)

0 1 6 330

1 64 7 482

2 454 8 498

3 527 9 308

4 343 10 288

5 100 -

j j 182* 64-11*j (mod 607)

0 182 6 60

1 143 7 394

2 69 8 483

3 271 9 76

4 343 10 580

5 573 -

Collision?

Match when i=4 and j=4.
(i is not necessarily equal to j, but it happened on this run ¯_(ツ)_/¯

CS489 Spring 2024

DLP Example, 182 = 64x(mod 607)

33

i i 64i (mod 607)

0 1 6 330

1 64 7 482

2 454 8 498

3 527 9 308

4 343 10 288

5 100 -

j j 182* 64-11*j (mod 607)

0 182 6 60

1 143 7 394

2 69 8 483

3 271 9 76

4 343 10 580

5 573 -

Collision?

So: x = 4 + 4*11 = 48.

CS489 Spring 2024

DLP Example, 182 = 64x(mod 607)

34

i i 64i (mod 607)

0 1 6 330

1 64 7 482

2 454 8 498

3 527 9 308

4 343 10 288

5 100 -

j j 182* 64-11*j (mod 607)

0 182 6 60

1 143 7 394

2 69 8 483

3 271 9 76

4 343 10 580

5 573 -

Collision?

So: x = 4 + 4*11 = 48.
Verify: 6448 (mod 607) = 182

Diffie-Hellman

35

CS489 Spring 2024

Diffie-Hellman Key Exchange
A public-key protocol published in 1976 by Whitfield Diffie and
Martin Hellman

Allows two parties that have no prior knowledge of each other to
jointly establish a shared secret key over an insecure channel

Key used to encrypt subsequent communications using a
symmetric key cipher

36

CS489 Spring 2024

Diffie-Hellman Key Exchange

37

● Used for establishing a shared secret (lacks authentication; we’ll see why this is bad)

● Assume as public parameters generator g and prime p
● Alice (resp. Bob) generates private value a (resp. b)

CS489 Spring 2024

Diffie-Hellman Key Exchange

38

● Used for establishing a shared secret (lacks authentication; we’ll see why this is bad)

● Assume as public parameters generator g and prime p
● Alice (resp. Bob) generates private value a (resp. b)

Ba = (gb)a = gba

(B = gb mod p)

(A = ga mod p, g, p)

Ab = (ga)b = gab

Alice and Bob can derive the same value by exchanging
public values and combining them with their private ones!

CS489 Spring 2024

Diffie-Hellman Key Exchange

39

● Used for establishing a shared secret (lacks authentication; we’ll see why this is bad)

● Assume as public parameters generator g and prime p
● Alice (resp. Bob) generates private value a (resp. b)

Ba = (gb)a = gba

B = gb mod p

A = ga mod p

Ab = (ga)b = gab

Resist keying temptation: the shared value should not
immediately be used as a key. Gab is a random element
inside a group, but not necessarily a random bit string

CS489 Spring 2024

Diffie-Hellman Key Exchange – Visualization

40

CS489 Spring 2024

Diffie-Hellman relies on the DLP

DH can be broken by recovering the private value
a from the public value ga

41

The adversary must not be able to solve the DLP

CS489 Spring 2024

The Decisional Diffie-Hellman Problem

Given g, ga, gb distinguish gab from random gc

42

● An adversary should be unable to learn nothing about the secret gab

after observing public values ga and gb

o Assume gab and gc occur with the same probability

CS489 Spring 2024

The Decisional Diffie-Hellman Problem

Given g, ga, gb distinguish gab from random gc

43

● An adversary should be unable to learn nothing about the secret gab

after observing public values ga and gb

o Assume gab and gc occur with the same probability

ElGamal relies on the DDH assumptionUseful assumption beyond DH key exchange!

ElGamal

44
● 1985 by Taher ElGamal

CS489 Spring 2024

ElGamal Public Key Cryptosystem
● Let p be a prime such that the DLP in (Zp

*,.) is infeasible
● Let α be a generator in Zp

*

● PubK ={(p,α, a, β): β≡αa (mod p)}

● For message m and secret random k in Zp-1:
○ eK(m,k) = (y1, y2), where y1 = αk mod p and y2 = mβk mod p

● For y1, y2 in Zp
*:

o dK(y1, y2)= y2(y1
a)-1 mod p

45

CS489 Spring 2024

ElGamal: The Keys
1. Bob picks a “large” prime p and a generator α.

a. Assume message m is an integer 0 < m < p

2. Bob picks secret integer a

3. Bob computes β≡αa (mod p)

46

CS489 Spring 2024

ElGamal: The Keys
1. Bob picks a “large” prime p and a generator α.

a. Assume message m is an integer 0 < m < p

2. Bob picks secret integer a

3. Bob computes β≡αa (mod p)

4. Bob’s public key is (p, α, β)

47

CS489 Spring 2024

ElGamal: The Keys
1. Bob picks a “large” prime p and a generator α.

a. Assume message m is an integer 0 < m < p

2. Bob picks secret integer a

3. Bob computes β≡αa (mod p)

4. Bob’s public key is (p, α, β)

5. Bob’s private key is a

48

CS489 Spring 2024

ElGamal: Encryption

49

I choose secret integer k

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a

CS489 Spring 2024

ElGamal: Encryption

50

I choose secret integer k

Compute y1 ≡ αk (mod p)

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a

CS489 Spring 2024

ElGamal: Encryption

51

I choose secret integer k

Compute y1 ≡ αk (mod p)

Compute y2≡ βk m (mod p)

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a

CS489 Spring 2024

ElGamal: Encryption

52

I choose secret integer k

Compute y1 ≡ αk (mod p)

Compute y2≡ βk m (mod p)

Send y1 and y2 to Bob

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a

CS489 Spring 2024

ElGamal: Decryption

53

I choose secret integer k

Compute y1 ≡ αk (mod p)

Compute y2≡ βk m (mod p)

Send y1 and y2 to Bob

Compute y1y2
-a ≡ m (mod p)

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a

CS489 Spring 2024

ElGamal: Decryption

54

I choose secret integer k

Compute y1 ≡ αk (mod p)

Compute y2≡ βk m (mod p)

Send y1 and y2 to Bob

Compute y1y2
-a ≡ m (mod p)

Bob can decrypt since:
y2y1-a ≡ βk m (αk)-a ≡ m (mod p)

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a

CS489 Spring 2024

ElGamal Informal Summary
● The plaintext m is “hidden” by multiplying it by βk to get y2

55

I receive ct = (y1,y2)

CS489 Spring 2024

ElGamal Informal Summary
● The plaintext m is “hidden” by multiplying it by βk to get y2

● The ciphertext includes αk so that Bob can compute βk

from αk (because Bob knows a)

56

I receive ct = (y1,y2)

CS489 Spring 2024

ElGamal Informal Summary
● The plaintext m is “hidden” by multiplying it by βk to get y2

● The ciphertext includes αk so that Bob can compute βk

from αk (because Bob knows a)
● Thus, Bob can “reveal” m by dividing y2 by βk

57

I receive ct = (y1,y2)

CS489 Spring 2024

ElGamal Informal Summary
● The plaintext m is “hidden” by multiplying it by βk to get y2

● The ciphertext includes αk so that Bob can compute βk

from αk (because Bob knows a)
● Thus, Bob can “reveal” m by dividing y2 by βk

58

I receive ct = (y1,y2)

Let’s see an example!

CS489 Spring 2024

Example
● Let p=2579 , α = 2 , β = 2765 mod 2579 = 949

59

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a = 765

CS489 Spring 2024

Example
● Let p=2579 , α = 2 , β = 2765 mod 2579 = 949

60

I want to send m=1299 to Bob. I
choose k = 853 for my random integer

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a = 765

CS489 Spring 2024

Example
● Let p=2579 , α = 2 , β = 2765 mod 2579 = 949

61

I want to send m=1299 to Bob. I
choose k = 853 for my random integer

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a = 765

y1 ≡ αk (mod p)

y2≡ βk m (mod p)

CS489 Spring 2024

Example
● Let p=2579 , α = 2 , β = 2765 mod 2579 = 949

● y1 = 2853 mod 2579 = 435
● y2=1299*949853 mod 2579 = 2396

62

I want to send m=1299 to Bob. I
choose k = 853 for my random integer

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a = 765

y1 ≡ αk (mod p)

y2≡ βk m (mod p)

Send y1, y2 to Bob

CS489 Spring 2024

Example
● Bob now has y1 and y2

o y1 = 2853 mod 2579 = 435
o y2=1299*949853 mod 2579 = 2396

63

I received y = (435, 2396)

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a = 765

CS489 Spring 2024

Example
● Bob now has y1 and y2

o y1 = 2853 mod 2579 = 435
o y2=1299*949853 mod 2579 = 2396

● m = 2396 * 435-765 mod 2759 = 1299

64

I received y = (435, 2396)

y2y1
-a ≡ βk m (αk)-a ≡ m (mod p)

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a = 765

CS489 Spring 2024

Example
● Bob now has y1 and y2

o y1 = 2853 mod 2579 = 435
o y2=1299*949853 mod 2579 = 2396

● m = 2396 * 435-765 mod 2759 = 1299

65

I received y = (435, 2396)

y2y1
-a ≡ βk m (αk)-a ≡ m (mod p)

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a = 765

Nice! That’s the plaintext I
wanted to send.

CS489 Spring 2024

Example
● Bob now has y1 and y2

o y1 = 2853 mod 2579 = 435
o y2=1299*949853 mod 2579 = 2396

● m = 2396 * 435-765 mod 2759 = 1299

66

I received y = (435, 2396)

y2y1
-a ≡ βk m (αk)-a ≡ m (mod p)

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a = 765

Nice! That’s the plaintext I
wanted to send.

Insecure if the adversary
can compute a=logαβ

CS489 Spring 2024

Example
● Bob now has y1 and y2

o y1 = 2853 mod 2579 = 435
o y2=1299*949853 mod 2579 = 2396

● m = 2396 * 435-765 mod 2759 = 1299

67

I received y = (435, 2396)

y2y1
-a ≡ βk m (αk)-a ≡ m (mod p)

β≡αa (mod p)

Bob’s PubK à (p, α, β)
Bob’s PrivK à a = 765

Nice! That’s the plaintext I
wanted to send.

Insecure if the adversary
can compute a=logαβ

To be secure, DLP must be
infeasible in Zp*

Network Security - Next class

68

