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Block/Stream Ciphers, Public Key Cryptography…
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Size of message on textbook RSA
● Overview:

(xe)d ≡ x mod N
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x has to be strictly smaller 
than N, otherwise decryption 
will produce erroneous values.
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Size of message on textbook RSA
● Overview:

(xe)d ≡ x mod N

5

x has to be strictly smaller 
than N, otherwise decryption 
will produce erroneous values.

Ok! So we can break the 
message in chunks! But 
perhaps we’re better served 
with hybrid schemes…
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Can we Detect Messages Changed in Transit?

7

…wait…is this the 
message Alice sent?
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Can we Detect Messages Changed in Transit?

8

…wait…is this the 
message Alice sent?

Checksums, appended so Bob can verify it
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Not. Good. Enough.
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Goal: Make it hard for Mallory to find a second message with the same 
checksum as the “real” one

Checksums are 
deterministic…I can 
construct fake ones. 
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Towards Integrity: Cryptographic Hash Functions
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x

I execute a hash function

Common examples:
● MD5, SHA-1, SHA-2, SHA-3 (aka Keccak after 2012)
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Towards Integrity: Cryptographic Hash Functions
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x

I execute a hash function

Common examples:
● MD5, SHA-1, SHA-2, SHA-3 (aka Keccak after 2012)

Takes an arbitrary length 
string, and computes a 

fixed length string. 
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Towards Integrity: Cryptographic Hash Functions

12

x y=h(x)

I execute a hash function

Outputs a 

message digest

Common examples:
● MD5, SHA-1, SHA-2, SHA-3 (aka Keccak after 2012)
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Towards Integrity: Cryptographic Hash Functions
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x

I execute a hash function

Common examples:
● MD5, SHA-1, SHA-2, SHA-3 (aka Keccak after 2012)

Q: Why is this useful?

y=h(x)
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Properties: Preimage-Resistance
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x y=h(x)

Goal: Given y, “hard” to find x such that h(x) = y
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Properties: Second Preimage-Resistance
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x y=h(x)

Goal: Given x, “hard” to find x’ <> x such that h(x) = h(x’)
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Properties: Collision-Resistance
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x y=h(x)

Goal: It’s hard to find any two distinct x, x’ such that h(x) = h(x’)
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Properties: Collision-Resistance
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x y=h(x)

Goal: It’s hard to find any two distinct x, x’ such that h(x) = h(x’)

Note
: in 2nd-preimage, x

was fixed, here we have 

free choice of values 
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Making it too hard to break these properties?
● SHA-1: takes 2160 work to find a preimage or second image

● SHA-1: takes 280 to find a collision using brute-force search
o If there are 2n digests, we need to try an average 2n/2 messages to find 2 with the same digest
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Making it too hard to break these properties?
● SHA-1: takes 2160 work to find a preimage or second image

● SHA-1: takes 280 to find a collision using brute-force search
o If there are 2n digests, we need to try an average 2n/2 messages to find 2 with the same digest

● Collisions are always easier to find than preimages or second 
preimages due to the birthday paradox

19
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The birthday paradox
● If there are n people in a room, what is the probability that 

at least two people have the same birthday?

● For n = 2: P(2) = 1 – !"#
!"$

● For n = 3: P(3) = 1 – !"#
!"$ x  !"!!"$

● For n people: P(n) = 1 – !"#
!"$

x  !"!
!"$

x … x !"$%&%'
!"$

20
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Collisions and the Birthday Paradox
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Collisions are easier due to the birthday paradox

What’s the probability two of us have 
the same birthday?
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Collisions and the Birthday Paradox
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Collisions are easier due to the birthday paradox

What’s the probability two of us have 
the same birthday?

There’s 23 of us, so larger than 50%!!
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Collisions and the Birthday Paradox
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Collisions are easier due to the birthday paradox
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Collisions and the Birthday Paradox

24

Collisions are easier due to the birthday paradox

There’s 40 of us, so almost 90%!!
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Collisions and the Birthday Paradox

25

Collisions are easier due to the birthday paradox

There’s 60 of us, it’s more than 99%!!!
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Collisions and the Birthday Paradox

26

Collisions are easier due to the birthday paradox

There’s 60 of us, it’s more than 99%!!!

Not the end of our 

problems…
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How about a bad example? (Integrity over Conf.) 
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[m, h(m)] ???

Q: What can Mallory do to send the message she wants (change it)?
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How about a bad example? (Integrity over Conf.) 

28

[m, h(m)] ???

[m, h(m)] [m’, h(m’)]

Q: What can Mallory do to send the message she wants (change it)?

A: Just change it…Mallory can compute the new hash herself.
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How about a less bad example? (Integrity & Conf.)
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[Ek(m), h(Ek(m))] ???

Q: What can Mallory do to send the message she wants (change it)?
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How about a less bad example? (Integrity & Conf.)

30

[Ek(m), h(Ek(m))] ???

[Ek(m), h(Ek(m))] [m’, h(m’)]

Q: What can Mallory do to send the message she wants (change it)?

A: Still just change it.
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Limitations for Cryptographic Hash Functions
● Integrity guarantees only when there is a secure 

way of sending/storing the message digest

31

I could publish 
the hash
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Limitations for Cryptographic Hash Functions
● Integrity guarantees only when there is a secure 

way of sending/storing the message digest
● E.g.:

32

I could publish 
the hash of my 
public key on a 
business card

Good idea! Although the key would 
be too big to place on the card, I 
could use the hash to… verify it!
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Limitations for Cryptographic Hash Functions
● Integrity guarantees only when there is a secure 

way of sending/storing the message digest
● E.g.:

33

I could publish 
the hash of my 
public key on a 
business card

Good idea! Although the key would 
be too big to place on the card, I 
could use the hash to… verify it!

What if…
we don’t have an 

exter
nal/p

hysic
al channel? 
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Authentication and Hash Functions
● Use “keyed hash functions”
● Requires a key to generate or 

check the hash value (a.k.a., tag)

34

Called: Message authentication codes (MACs)
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Message Authentication Codes (MACs)
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Use “keyed hash functions” 
e.g., SHA-1-HMAC, SHA-256-HMAC, CBC-MAC

I don’t have the 
key to generate 
or check the 
values…
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Combine Ciphers and MACs

36

Confidentiality Integrity
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Combine Ciphers and MACs
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Confidentiality Integrity

Practical systems need both
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But how to combine them? Three possibilities
● MAC-then-Encrypt

● Encrypt-and-MAC

● Encrypt-then-MAC
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But how to combine them? Three possibilities
● MAC-then-Encrypt

● Encrypt-and-MAC

● Encrypt-then-MAC

39

Ideally, there is an authenticated 
encryption mode that combines 

them…but…



CS489 Spring 2024 

Let’s make it work?

40

● Alice and Bob have a secret key k for a                         
cryptosystem

● Also, a secret key K’ for their MAC

How can Alice build a message for Bob in the following three scenarios? 
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MAC-then-Encrypt

41

● Alice and Bob have a secret key k for a cryptosystem and 
a secret key K’ for their MAC

● Compute the MAC on the message, then                    
encrypt the message and MAC together, and                   
send that ciphertext.

41

[Ek(m||MACK’(m))]
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Encrypt-and-MAC

42

● Alice and Bob have a secret key k for a cryptosystem and 
a secret key K’ for their MAC

● Compute the MAC on the message, the                  
encryption of the message, and send both.

42

[Ek(m)||MACK’(m)]



CS489 Spring 2024 

Encrypt-then-MAC

43

● Alice and Bob have a secret key k for a cryptosystem and 
a secret key K’ for their MAC

● Encrypt the message, compute the MAC on                      
the encryption, send encrypted message and                     
MAC

43

[Ek(m)||MACK’(Ek(m))]
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Which order is correct?

44

Q: Which should be recommended then?

Ek(m||MACK’(m)) vs. Ek(m)||MACK’(m) vs. Ek(m)||MACK’(Ek(m))
MAC-then-encrypt Encrypt-and-MAC Encrypt-then-MAC
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The Doom Principle 

45

“if you have to perform any cryptographic operation before verifying the MAC 

on a message you’ve received, it will somehow inevitably lead to doom.”
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The Doom Principle 
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“if you have to perform any cryptographic operation before verifying the MAC 

on a message you’ve received, it will somehow inevitably lead to doom.”

Q: What are possible problems that can arise from the orderings?
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The Doom Principle 

• MAC-then-Encrypt: Allows an adversary to force Bob into decrypting the 
ciphertext before verifying the MAC. May lead to a padding oracle attack

• Encrypt-and-MAC: Allows an adversary to force Bob into decrypting the 
ciphertext to verify the MAC. May lead to a chosen-ciphertext attack

47

Q: What are possible problems that can arise from the orderings?
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The Doom of MAC-then-Encrypt

• Padding oracle attack: The idea is for the attacker to send modified 
ciphertexts to Bob and observe how he responds. 

• With CBC, by modifying the last block of the ciphertext in a way that alters 
the block’s padding, the attacker can tell if the padding is valid or not. 

• If the padding is invalid, the system might respond differently (e.g., with an 
error message that is padding-specific). This information leakage allows 
the attacker to gradually decrypt the ciphertext byte by byte.

48

Observation: To verify the MAC, Bob has first to decrypt the message, since the 
MAC is part of the encrypted payload
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The Doom of Encrypt-and-MAC

• MACs are meant to provide integrity

• MACs are often implemented by a deterministic algorithm without an 
explicit random input (essentially, for a given key and message, the 
output of the MAC is always the same).

• If a deterministic MAC is used, then there is no guarantee that the tag 
Ek(m)||MACK’(m) will not leak information about the secret message m.

49

Q: What happens if the MAC has no mechanism to provide confidentiality?
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Which order is correct?

50

Usually: we want the receiver to verify the MAC first!

Recommended: Encrypt-then-MAC, Ek(m)||MACK’(Ek(m))

Sweet!

• Encrypt-then-MAC: Allows Bob to check the MAC of the ciphertext 
before performing any decryption whatsoever (e.g., prevent attacks
by immediately closing a connection if the MAC fails)



More properties that matter? 

51
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Repudiation
[Ek(m)||MACK’(Ek(m))] [Ek(m)||MACK’(Ek(m))]

Alice sent m, and I received the 
same m she sent. 
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Repudiation
[Ek(m)||MACK’(Ek(m))] [Ek(m)||MACK’(Ek(m))]

Confidentiality Integrity Authentication
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Repudiation
[Ek(m)||MACK’(Ek(m))] [Ek(m)||MACK’(Ek(m))]

Confidentiality Integrity Authentication

Almost, but not quite a signature
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Repudiation
[Ek(m)||MACK’(Ek(m))] [Ek(m)||MACK’(Ek(m))]

Almost, but not quite a 
signature…So…you’re saying Bob can’t 
prove Alice sent m? 
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signature…So…you’re saying Bob can’t 
prove Alice sent m? 

Q: Why can’t Bob prove it?
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Repudiation
[Ek(m)||MACK’(Ek(m))] [Ek(m)||MACK’(Ek(m))]

Almost, but not quite a 
signature…So…you’re saying Bob can’t 
prove Alice sent m? 

Q: Why can’t Bob prove it?

A: Either Alice or Bob could create any message and MAC 
combo…also Carol doesn’t know the secret keys.
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Implications? Repudiation Con’t

58

?? Alice sent m, look: [Ek(m)||MACK’(Ek(m))]

Uhh…did she?
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Implications? Repudiation Con’t

59

?? Alice sent m, look: [Ek(m)||MACK’(Ek(m))]

Uhh…did she?

No! Bob made up the message! 
And calculated the MAC himself!!
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Implications? Repudiation Con’t

60

?? Alice sent m, look: [Ek(m)||MACK’(Ek(m))]

Uhh…did she?

No! Bob made up the message! 
And calculated the MAC himself!!

Repudiation Property: For some applications this property is good (e.g., 
private conversations)…others less good (e.g., e-commerce…). 
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Digital Signatures - For When Repudiation is Bad
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?? Alice sent m, she signed it!

She did!
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Properties and Goals from Digital Signatures 

62

If Bob receives a message with Alice’s digital              
signature then it should mean: 
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If Bob receives a message with Alice’s digital              
signature then it should mean: 

● Alice sent it (not      ), like a MAC
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Properties and Goals from Digital Signatures 
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If Bob receives a message with Alice’s digital              
signature then it should mean: 

● Alice sent it (not      ), like a MAC
● The message was not altered after sending, like a MAC
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Properties and Goals from Digital Signatures 

65

If Bob receives a message with Alice’s digital              
signature then it should mean: 

● Alice sent it (not      ), like a MAC
● The message was not altered after sending, like a MAC
● The above two properties should be provable to a third 

party, not like a MAC
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Properties and Goals from Digital Signatures 

66

If Bob receives a message with Alice’s digital              
signature then it should mean: 

● Alice sent it (not      ), like a MAC
● The message was not altered after sending, like a MAC
● The above two properties should be provable to a third 

party, not like a MAC

Achievable? Use techniques similar to public-key crypto (last class)
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Making Digital Signatures

67

1. A pair of keys

2. Everyone gets each other public verification key 

3. Alice signs with private signing key 

4. Bob verifies using Alice’s public verification key

5. If it verifies correctly, success, valid signature
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Digital Signatures at a Glance

68
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Faster Signatures, aka More Hybrids
● Signing large messages, slow
● However, a hash is much smaller than the message…
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Faster Signatures, aka More Hybrids
● Signing large messages, slow
● However, a hash is much smaller than the message…
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m||sig

sig = Signsk(h(m))

Verifyvk(sig, h(m))?
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Faster Signatures, aka More Hybrids
● Signing large messages, slow
● However, a hash is much smaller than the message…

● Finally, authenticity and confidentiality are separate, you 
need to include both if you want to achieve both

71

m||sig

sig = Signsk(h(m))

Verifyvk(sig, h(m))?
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The Key Management Problem

72

Bob? Alice?

Q: How can Alice and Bob be sure they’re talking to each other?



CS489 Spring 2024 

The Key Management Problem
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Bob? Alice?

Q: How can Alice and Bob be sure they’re talking to each other?

A: By having each other’s verification key!
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The Key Management Problem
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Bob? Alice?

Q: How can Alice and Bob be sure they’re talking to each other?

A: By having each other’s verification key!

Q: But how do they get the keys…
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The Key Management Problem…Solutions?

75

Bob? Alice?

Q: But how do they get the keys…

A: Know it personally (manual keying e.g., SSH)

A: Trust a friend (web of trust e.g, PGP)

A: Trust some third party to tell them (CAs, e.g., TLS/SSL)



Nex up: More Cryptography…

76

Symmetric Asymmetric

Hash 
Functions

Message 
Auth. codes PRFs Digital 

Signatures
Key 

Exchange

Stream

Block

RSA

PKE

IND-CCA security types

Ciphers

Discrete Log…


