
CS489/698
Privacy, Cryptography,

Network and Data Security

Spring 2024, Monday/Wednesday 11:30am-12:50pm

Integrity and Authenticated Encryption

CS489 Spring 2024

Block/Stream Ciphers, Public Key Cryptography…

2

CS489 Spring 2024

Size of message on textbook RSA
● Overview:

(xe)d ≡ x mod N

3

CS489 Spring 2024

Size of message on textbook RSA
● Overview:

(xe)d ≡ x mod N

4

x has to be strictly smaller
than N, otherwise decryption
will produce erroneous values.

CS489 Spring 2024

Size of message on textbook RSA
● Overview:

(xe)d ≡ x mod N

5

x has to be strictly smaller
than N, otherwise decryption
will produce erroneous values.

Ok! So we can break the
message in chunks! But
perhaps we’re better served
with hybrid schemes…

6

Symmetric Asymmetric

Hash
Functions

Message
Auth. codes PRFs Digital

Signatures
Key

Exchange

Stream

Block

Ciphers

RSA

IND-CCA security types

PKE

CS489 Spring 2024

Can we Detect Messages Changed in Transit?

7

…wait…is this the
message Alice sent?

CS489 Spring 2024

Can we Detect Messages Changed in Transit?

8

…wait…is this the
message Alice sent?

Checksums, appended so Bob can verify it

CS489 Spring 2024

Not. Good. Enough.

9

Goal: Make it hard for Mallory to find a second message with the same
checksum as the “real” one

Checksums are
deterministic…I can
construct fake ones.

CS489 Spring 2024

Towards Integrity: Cryptographic Hash Functions

10

x

I execute a hash function

Common examples:
● MD5, SHA-1, SHA-2, SHA-3 (aka Keccak after 2012)

CS489 Spring 2024

Towards Integrity: Cryptographic Hash Functions

11

x

I execute a hash function

Common examples:
● MD5, SHA-1, SHA-2, SHA-3 (aka Keccak after 2012)

Takes an arbitrary length
string, and computes a

fixed length string.

CS489 Spring 2024

Towards Integrity: Cryptographic Hash Functions

12

x y=h(x)

I execute a hash function

Outputs a

message digest

Common examples:
● MD5, SHA-1, SHA-2, SHA-3 (aka Keccak after 2012)

CS489 Spring 2024

Towards Integrity: Cryptographic Hash Functions

13

x

I execute a hash function

Common examples:
● MD5, SHA-1, SHA-2, SHA-3 (aka Keccak after 2012)

Q: Why is this useful?

y=h(x)

CS489 Spring 2024

Properties: Preimage-Resistance

14

x y=h(x)

Goal: Given y, “hard” to find x such that h(x) = y

CS489 Spring 2024

Properties: Second Preimage-Resistance

15

x y=h(x)

Goal: Given x, “hard” to find x’ <> x such that h(x) = h(x’)

CS489 Spring 2024

Properties: Collision-Resistance

16

x y=h(x)

Goal: It’s hard to find any two distinct x, x’ such that h(x) = h(x’)

CS489 Spring 2024

Properties: Collision-Resistance

17

x y=h(x)

Goal: It’s hard to find any two distinct x, x’ such that h(x) = h(x’)

Note
: in 2nd-preimage, x

was fixed, here we have

free choice of values

CS489 Spring 2024

Making it too hard to break these properties?
● SHA-1: takes 2160 work to find a preimage or second image

● SHA-1: takes 280 to find a collision using brute-force search
o If there are 2n digests, we need to try an average 2n/2 messages to find 2 with the same digest

18

CS489 Spring 2024

Making it too hard to break these properties?
● SHA-1: takes 2160 work to find a preimage or second image

● SHA-1: takes 280 to find a collision using brute-force search
o If there are 2n digests, we need to try an average 2n/2 messages to find 2 with the same digest

● Collisions are always easier to find than preimages or second
preimages due to the birthday paradox

19

CS489 Spring 2024

The birthday paradox
● If there are n people in a room, what is the probability that

at least two people have the same birthday?

● For n = 2: P(2) = 1 – !"#
!"$

● For n = 3: P(3) = 1 – !"#
!"$ x !"!!"$

● For n people: P(n) = 1 – !"#
!"$

x !"!
!"$

x … x !"$%&%'
!"$

20

CS489 Spring 2024

Collisions and the Birthday Paradox

21

Collisions are easier due to the birthday paradox

What’s the probability two of us have
the same birthday?

CS489 Spring 2024

Collisions and the Birthday Paradox

22

Collisions are easier due to the birthday paradox

What’s the probability two of us have
the same birthday?

There’s 23 of us, so larger than 50%!!

CS489 Spring 2024

Collisions and the Birthday Paradox

23

Collisions are easier due to the birthday paradox

CS489 Spring 2024

Collisions and the Birthday Paradox

24

Collisions are easier due to the birthday paradox

There’s 40 of us, so almost 90%!!

CS489 Spring 2024

Collisions and the Birthday Paradox

25

Collisions are easier due to the birthday paradox

There’s 60 of us, it’s more than 99%!!!

CS489 Spring 2024

Collisions and the Birthday Paradox

26

Collisions are easier due to the birthday paradox

There’s 60 of us, it’s more than 99%!!!

Not the end of our

problems…

CS489 Spring 2024

How about a bad example? (Integrity over Conf.)

27

[m, h(m)] ???

Q: What can Mallory do to send the message she wants (change it)?

CS489 Spring 2024

How about a bad example? (Integrity over Conf.)

28

[m, h(m)] ???

[m, h(m)] [m’, h(m’)]

Q: What can Mallory do to send the message she wants (change it)?

A: Just change it…Mallory can compute the new hash herself.

CS489 Spring 2024

How about a less bad example? (Integrity & Conf.)

29

[Ek(m), h(Ek(m))] ???

Q: What can Mallory do to send the message she wants (change it)?

CS489 Spring 2024

How about a less bad example? (Integrity & Conf.)

30

[Ek(m), h(Ek(m))] ???

[Ek(m), h(Ek(m))] [m’, h(m’)]

Q: What can Mallory do to send the message she wants (change it)?

A: Still just change it.

CS489 Spring 2024

Limitations for Cryptographic Hash Functions
● Integrity guarantees only when there is a secure

way of sending/storing the message digest

31

I could publish
the hash

CS489 Spring 2024

Limitations for Cryptographic Hash Functions
● Integrity guarantees only when there is a secure

way of sending/storing the message digest
● E.g.:

32

I could publish
the hash of my
public key on a
business card

Good idea! Although the key would
be too big to place on the card, I
could use the hash to… verify it!

CS489 Spring 2024

Limitations for Cryptographic Hash Functions
● Integrity guarantees only when there is a secure

way of sending/storing the message digest
● E.g.:

33

I could publish
the hash of my
public key on a
business card

Good idea! Although the key would
be too big to place on the card, I
could use the hash to… verify it!

What if…
we don’t have an

exter
nal/p

hysic
al channel?

CS489 Spring 2024

Authentication and Hash Functions
● Use “keyed hash functions”
● Requires a key to generate or

check the hash value (a.k.a., tag)

34

Called: Message authentication codes (MACs)

CS489 Spring 2024

Message Authentication Codes (MACs)

35

Use “keyed hash functions”
e.g., SHA-1-HMAC, SHA-256-HMAC, CBC-MAC

I don’t have the
key to generate
or check the
values…

CS489 Spring 2024

Combine Ciphers and MACs

36

Confidentiality Integrity

CS489 Spring 2024

Combine Ciphers and MACs

37

Confidentiality Integrity

Practical systems need both

CS489 Spring 2024

But how to combine them? Three possibilities
● MAC-then-Encrypt

● Encrypt-and-MAC

● Encrypt-then-MAC

38

CS489 Spring 2024

But how to combine them? Three possibilities
● MAC-then-Encrypt

● Encrypt-and-MAC

● Encrypt-then-MAC

39

Ideally, there is an authenticated
encryption mode that combines

them…but…

CS489 Spring 2024

Let’s make it work?

40

● Alice and Bob have a secret key k for a
cryptosystem

● Also, a secret key K’ for their MAC

How can Alice build a message for Bob in the following three scenarios?

CS489 Spring 2024

MAC-then-Encrypt

41

● Alice and Bob have a secret key k for a cryptosystem and
a secret key K’ for their MAC

● Compute the MAC on the message, then
encrypt the message and MAC together, and
send that ciphertext.

41

[Ek(m||MACK’(m))]

CS489 Spring 2024

Encrypt-and-MAC

42

● Alice and Bob have a secret key k for a cryptosystem and
a secret key K’ for their MAC

● Compute the MAC on the message, the
encryption of the message, and send both.

42

[Ek(m)||MACK’(m)]

CS489 Spring 2024

Encrypt-then-MAC

43

● Alice and Bob have a secret key k for a cryptosystem and
a secret key K’ for their MAC

● Encrypt the message, compute the MAC on
the encryption, send encrypted message and
MAC

43

[Ek(m)||MACK’(Ek(m))]

CS489 Spring 2024

Which order is correct?

44

Q: Which should be recommended then?

Ek(m||MACK’(m)) vs. Ek(m)||MACK’(m) vs. Ek(m)||MACK’(Ek(m))
MAC-then-encrypt Encrypt-and-MAC Encrypt-then-MAC

CS489 Spring 2024

The Doom Principle

45

“if you have to perform any cryptographic operation before verifying the MAC

on a message you’ve received, it will somehow inevitably lead to doom.”

CS489 Spring 2024

The Doom Principle

46

“if you have to perform any cryptographic operation before verifying the MAC

on a message you’ve received, it will somehow inevitably lead to doom.”

Q: What are possible problems that can arise from the orderings?

CS489 Spring 2024

The Doom Principle

• MAC-then-Encrypt: Allows an adversary to force Bob into decrypting the
ciphertext before verifying the MAC. May lead to a padding oracle attack

• Encrypt-and-MAC: Allows an adversary to force Bob into decrypting the
ciphertext to verify the MAC. May lead to a chosen-ciphertext attack

47

Q: What are possible problems that can arise from the orderings?

CS489 Spring 2024

The Doom of MAC-then-Encrypt

• Padding oracle attack: The idea is for the attacker to send modified
ciphertexts to Bob and observe how he responds.

• With CBC, by modifying the last block of the ciphertext in a way that alters
the block’s padding, the attacker can tell if the padding is valid or not.

• If the padding is invalid, the system might respond differently (e.g., with an
error message that is padding-specific). This information leakage allows
the attacker to gradually decrypt the ciphertext byte by byte.

48

Observation: To verify the MAC, Bob has first to decrypt the message, since the
MAC is part of the encrypted payload

CS489 Spring 2024

The Doom of Encrypt-and-MAC

• MACs are meant to provide integrity

• MACs are often implemented by a deterministic algorithm without an
explicit random input (essentially, for a given key and message, the
output of the MAC is always the same).

• If a deterministic MAC is used, then there is no guarantee that the tag
Ek(m)||MACK’(m) will not leak information about the secret message m.

49

Q: What happens if the MAC has no mechanism to provide confidentiality?

CS489 Spring 2024

Which order is correct?

50

Usually: we want the receiver to verify the MAC first!

Recommended: Encrypt-then-MAC, Ek(m)||MACK’(Ek(m))

Sweet!

• Encrypt-then-MAC: Allows Bob to check the MAC of the ciphertext
before performing any decryption whatsoever (e.g., prevent attacks
by immediately closing a connection if the MAC fails)

More properties that matter?

51

CS489 Spring 2024

Repudiation
[Ek(m)||MACK’(Ek(m))] [Ek(m)||MACK’(Ek(m))]

Alice sent m, and I received the
same m she sent.

CS489 Spring 2024

Repudiation
[Ek(m)||MACK’(Ek(m))] [Ek(m)||MACK’(Ek(m))]

Confidentiality Integrity Authentication

CS489 Spring 2024

Repudiation
[Ek(m)||MACK’(Ek(m))] [Ek(m)||MACK’(Ek(m))]

Confidentiality Integrity Authentication

Almost, but not quite a signature

CS489 Spring 2024

Repudiation
[Ek(m)||MACK’(Ek(m))] [Ek(m)||MACK’(Ek(m))]

Almost, but not quite a
signature…So…you’re saying Bob can’t
prove Alice sent m?

CS489 Spring 2024

Repudiation
[Ek(m)||MACK’(Ek(m))] [Ek(m)||MACK’(Ek(m))]

Almost, but not quite a
signature…So…you’re saying Bob can’t
prove Alice sent m?

Q: Why can’t Bob prove it?

CS489 Spring 2024

Repudiation
[Ek(m)||MACK’(Ek(m))] [Ek(m)||MACK’(Ek(m))]

Almost, but not quite a
signature…So…you’re saying Bob can’t
prove Alice sent m?

Q: Why can’t Bob prove it?

A: Either Alice or Bob could create any message and MAC
combo…also Carol doesn’t know the secret keys.

CS489 Spring 2024

Implications? Repudiation Con’t

58

?? Alice sent m, look: [Ek(m)||MACK’(Ek(m))]

Uhh…did she?

CS489 Spring 2024

Implications? Repudiation Con’t

59

?? Alice sent m, look: [Ek(m)||MACK’(Ek(m))]

Uhh…did she?

No! Bob made up the message!
And calculated the MAC himself!!

CS489 Spring 2024

Implications? Repudiation Con’t

60

?? Alice sent m, look: [Ek(m)||MACK’(Ek(m))]

Uhh…did she?

No! Bob made up the message!
And calculated the MAC himself!!

Repudiation Property: For some applications this property is good (e.g.,
private conversations)…others less good (e.g., e-commerce…).

CS489 Spring 2024

Digital Signatures - For When Repudiation is Bad

61

?? Alice sent m, she signed it!

She did!

CS489 Spring 2024

Properties and Goals from Digital Signatures

62

If Bob receives a message with Alice’s digital
signature then it should mean:

CS489 Spring 2024

Properties and Goals from Digital Signatures

63

If Bob receives a message with Alice’s digital
signature then it should mean:

● Alice sent it (not), like a MAC

CS489 Spring 2024

Properties and Goals from Digital Signatures

64

If Bob receives a message with Alice’s digital
signature then it should mean:

● Alice sent it (not), like a MAC
● The message was not altered after sending, like a MAC

CS489 Spring 2024

Properties and Goals from Digital Signatures

65

If Bob receives a message with Alice’s digital
signature then it should mean:

● Alice sent it (not), like a MAC
● The message was not altered after sending, like a MAC
● The above two properties should be provable to a third

party, not like a MAC

CS489 Spring 2024

Properties and Goals from Digital Signatures

66

If Bob receives a message with Alice’s digital
signature then it should mean:

● Alice sent it (not), like a MAC
● The message was not altered after sending, like a MAC
● The above two properties should be provable to a third

party, not like a MAC

Achievable? Use techniques similar to public-key crypto (last class)

CS489 Spring 2024

Making Digital Signatures

67

1. A pair of keys

2. Everyone gets each other public verification key

3. Alice signs with private signing key

4. Bob verifies using Alice’s public verification key

5. If it verifies correctly, success, valid signature

CS489 Spring 2024

Digital Signatures at a Glance

68

CS489 Spring 2024

Faster Signatures, aka More Hybrids
● Signing large messages, slow
● However, a hash is much smaller than the message…

69

CS489 Spring 2024

Faster Signatures, aka More Hybrids
● Signing large messages, slow
● However, a hash is much smaller than the message…

70

m||sig

sig = Signsk(h(m))

Verifyvk(sig, h(m))?

CS489 Spring 2024

Faster Signatures, aka More Hybrids
● Signing large messages, slow
● However, a hash is much smaller than the message…

● Finally, authenticity and confidentiality are separate, you
need to include both if you want to achieve both

71

m||sig

sig = Signsk(h(m))

Verifyvk(sig, h(m))?

CS489 Spring 2024

The Key Management Problem

72

Bob? Alice?

Q: How can Alice and Bob be sure they’re talking to each other?

CS489 Spring 2024

The Key Management Problem

73

Bob? Alice?

Q: How can Alice and Bob be sure they’re talking to each other?

A: By having each other’s verification key!

CS489 Spring 2024

The Key Management Problem

74

Bob? Alice?

Q: How can Alice and Bob be sure they’re talking to each other?

A: By having each other’s verification key!

Q: But how do they get the keys…

CS489 Spring 2024

The Key Management Problem…Solutions?

75

Bob? Alice?

Q: But how do they get the keys…

A: Know it personally (manual keying e.g., SSH)

A: Trust a friend (web of trust e.g, PGP)

A: Trust some third party to tell them (CAs, e.g., TLS/SSL)

Nex up: More Cryptography…

76

Symmetric Asymmetric

Hash
Functions

Message
Auth. codes PRFs Digital

Signatures
Key

Exchange

Stream

Block

RSA

PKE

IND-CCA security types

Ciphers

Discrete Log…

