
CS489/698
Privacy, Cryptography,

Network and Data Security

Spring 2024, Monday/Wednesday 11:30am-12:50pm 

Public Key Cryptography (RSA)
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Assignment One
● Available on Learn today at 3pm
● Due May 29th, 3pm
● Written and programming
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Public Key Cryptography, “1970s”
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Examples:
● RSA, ElGamal, ECC, NTRU
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Steps for Public Key Cryptography?

1. Bob generates pair

2. Bob gives everyone the public key 

3. Alice encrypts m and sends it

4. Bob decrypts using private key

5. Eve and Alice can’t decrypt, only have encryption key
7
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Steps for Public Key Cryptography?

1. Bob generates pair

2. Bob gives everyone the public key 

3. Alice encrypts m and sends it

4. Bob decrypts using private key

5. Eve and Alice can’t decrypt, only have encryption key
8

It must be hard to derive the private key from the 
public key
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Requirements for PKE

● The encryption function? Must be easy to compute
● The inverse, decryption? Must be hard for anyone without 

the key       vs.

9

Thus, we require so called “one-way” functions for this.
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Requirements for PKE

● The encryption function? Must be easy to compute
● The inverse, decryption? Must be hard for anyone without 

the key       vs.

10

Thus, we require so called “one-way” functions for this.

But because of decryption, 
we need a “trapdoor”
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Time for Textbook RSA
● A clever arithmetic trick based on a “trapdoor permutation”
● Modular arithmetic: integer numbers that “wrap around”

11

Fun (?) Facts::
● RSA was the first popular public-key encryption method, published in 1977

Left to right: Ron Rivest, Adi Shamir, and Leonard Adleman.
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Prime Numbers
● Prime: a natural number that can only be divided by 1 or itself

● Primes and factorization: An integer number can be written as a 
unique product of prime numbers
o E.g., 1234567 = 127 * 9721
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How to know if a number is prime?
o Run a primality test algorithm (Solovay-Strassen, 
Miller-Rabin, etc.)

How to discover a number’s factors?
o Run a factorization algorithm (Pollard p-1, etc.)
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Time for Textbook RSA
● Overview:

(xe)d ≡ x mod N

● Computational difficulty of the factoring problem
○ Given two large primes p.q = N, it is very hard to factor N.
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Easy for me to pick e, d, and 
n that satisfy that equation

Ugh. I know e and n and can’t find d!!!
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Time for Textbook RSA
● Encryption:

y = xe mod N

The ciphertext is equal to x multiplied by itself e times modulo N.

Public key is given by PubK = (e, N)

14
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Time for Textbook RSA
● Decryption:

x = yd mod N = (xe)d mod N = xed mod N

Decryption relies on number d such that e.d = 1 mod N, and where        
xed mod N = x1 mod N = x 

○ In other words, d is the multiplicative inverse of e mod N

Private key is given by PrivK = (d)

15
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Key Generation (how to choose e and d)
● Pick two random primes p and q, such that p.q = N
● Generate 𝝋(N) = (p-1).(q-1)

o all relative primes to (p−1)(q−1) form a group with respect to multiplication and are invertible

● Pick e as a random prime smaller than 𝜑(N) 
o e chosen as relative prime to (p−1)(q−1) to ensure it has a multiplicative inverse mod (p−1)(q−1) 

● Generate d (the inverse of e mod 𝜑(N) ) 
o e.d = 1 mod 𝜑(N)
o Can be obtained via the extended Euclidean algorithm

16

If gcd(a,b) = 1, then we say that a and b are relatively prime (or coprime).
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Extended Euclidean Algorithm
● Given two integers a and b, the algorithm finds integers r and s such 

that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r 
is the modular multiplicative inverse of a modulo b.

● Idea: start with the GCD and recursively work your way backwards.

17

Say N = 40, e = 7

e.d = 1 mod 𝜑(N)

7d = 1 mod 40
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Extended Euclidean Algorithm
● Given two integers a and b, the algorithm finds integers r and s such 

that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r 
is the modular multiplicative inverse of a modulo b.

● Idea: start with the GCD and recursively work your way backwards.
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Say N = 40, e = 7

e.d = 1 mod 𝜑(N)

7d = 1 mod 40

Euclidean Algorithm:

40 = 5 * 7 + 5
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Extended Euclidean Algorithm
● Given two integers a and b, the algorithm finds integers r and s such 

that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r 
is the modular multiplicative inverse of a modulo b.

● Idea: start with the GCD and recursively work your way backwards.

19

Say N = 40, e = 7

e.d = 1 mod 𝜑(N)

7d = 1 mod 40

Euclidean Algorithm:

40 = 5 * 7 + 5
7 = 1 * 5 + 2
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Extended Euclidean Algorithm
● Given two integers a and b, the algorithm finds integers r and s such 

that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r 
is the modular multiplicative inverse of a modulo b.

● Idea: start with the GCD and recursively work your way backwards.

20

Say N = 40, e = 7

e.d = 1 mod 𝜑(N)

7d = 1 mod 40

Euclidean Algorithm:

40 = 5 * 7 + 5
7 = 1 * 5 + 2
5 = 2 * 2 + 1

Stop at last non-zero remainder
gcd(7, 40) = 1
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Extended Euclidean Algorithm
● Given two integers a and b, the algorithm finds integers r and s such 

that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r 
is the modular multiplicative inverse of a modulo b.

● Idea: start with the GCD and recursively work your way backwards.
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Say N = 40, e = 7

e.d = 1 mod 𝜑(N)

7d = 1 mod 40

Extended Euclidean (backtrack):

1 = 5 - 2 * 2

1 = 5 – 2 * 2

Euclidean Algorithm:

40 = 5 * 7 + 5
7 = 1 * 5 + 2
5 = 2 * 2 + 1

Stop at last non-zero remainder
gcd(7, 40) = 1
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Extended Euclidean Algorithm
● Given two integers a and b, the algorithm finds integers r and s such 

that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r 
is the modular multiplicative inverse of a modulo b.

● Idea: start with the GCD and recursively work your way backwards.
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Say N = 40, e = 7

e.d = 1 mod 𝜑(N)

7d = 1 mod 40

Extended Euclidean (backtrack):

1 = 5 - 2 * 2
1 = 5 - 2 (7 – 1 * 5)
1 = 5 – 2 * 7 + 2 * 5
1 = 3 * 5 – 2 * 7

2 = 7 – 1 * 5

Euclidean Algorithm:

40 = 5 * 7 + 5
7 = 1 * 5 + 2
5 = 2 * 2 + 1

Stop at last non-zero remainder
gcd(7, 40) = 1
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Extended Euclidean Algorithm
● Given two integers a and b, the algorithm finds integers r and s such 

that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r 
is the modular multiplicative inverse of a modulo b.

● Idea: start with the GCD and recursively work your way backwards.
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Say N = 40, e = 7

e.d = 1 mod 𝜑(N)

7d = 1 mod 40

Euclidean Algorithm:

40 = 5 * 7 + 5
7 = 1 * 5 + 2
5 = 2 * 2 + 1

Stop at last non-zero remainder
gcd(7, 40) = 1

Extended Euclidean (backtrack):

1 = 5 - 2 * 2
1 = 5 - 2 (7 – 1 * 5)
1 = 5 – 2 * 7 + 2 * 5
1 = 3 * 5 – 2 * 7
1 = 3 (40 – 5 * 7) – 2 * 7
1 = 3 * 40 - 17 * 7

5 = 40 – 5 * 7
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Extended Euclidean Algorithm
● Given two integers a and b, the algorithm finds integers r and s such 

that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r 
is the modular multiplicative inverse of a modulo b.

● Idea: start with the GCD and recursively work your way backwards.
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Say N = 40, e = 7

e.d = 1 mod 𝜑(N)

7d = 1 mod 40

Extended Euclidean (backtrack):

1 = 5 - 2 * 2
1 = 5 - 2 (7 – 1 * 5)
1 = 5 – 2 * 7 + 2 * 5
1 = 3 * 5 – 2 * 7
1 = 3 (40 – 5 * 7) – 2 * 7
1 = 3 * 40 - 17 * 7
d = -17 = 23 mod 40

Euclidean Algorithm:

40 = 5 * 7 + 5
7 = 1 * 5 + 2
5 = 2 * 2 + 1

Stop at last non-zero remainder
gcd(7, 40) = 1
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Textbook RSA (summary)
1. Choose two “large primes” p and q (secretly)
2. Compute n = p*q
3. “Choose” value e and find d such that (xe)d ≡ x mod n
4. Public key: (e, n)
5. Private key: d
6. Encryption:  y = xe mod n
7. Decryption: yd mod n

25
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Example (Tiny RSA)
Parameters:

● p=53, q=101, N=5353
● 𝜑(N) = (53-1).(101-1) = 5200
● e=139 (random pick)

● d=1459 (extended Euclidean)

● Message:
● x=20

26

Encryption:

y = 20139 mod 5353 = 5274

Decryption:

X = 52741459 mod 5353 = 20

x = yd mod N 

y = xe mod N

Nice!
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Example (Tiny RSA)
Parameters:

● p=53, q=101, N=5353
● 𝜑(N) = (53-1).(101-1) = 5200
● e=139 (random pick)

● d=1459 (extended Euclidean)

● Message:
● x=20

27

Encryption:

y = 20139 mod 5353 = 5274

Decryption:

X = 52741459 mod 5353 = 20

x = yd mod N 

y = xe mod N

Applying e or d to encrypt does not really 
matter from a functionality perspective
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Attacking RSA
Parameters:

● p=53, q=101, N=5353
● 𝜑(N) = (53-1).(101-1) = 5200
● e=139 
● d=1459

● y = 5274

28

I know e and N…
What can I do to find d?

Attack idea:
- Factor N to obtain p and q
- Obtain 𝜑(N)
- From 𝜑(N) and e, generate d

just like Alice would
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Attacking RSA
Parameters:

● p=53, q=101, N=5353
● 𝜑(N) = (53-1).(101-1) = 5200
● e=139 
● d=1459

● y = 5274

29

I know e and N…
What can I do to find d?

Attack idea:
- Factor N to obtain p and q
- Obtain 𝜑(N)
- From 𝜑(N) and e, generate d

just like Alice would

WARNING: Factoring is 

hard..but
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Factoring and RSA
● You want to factor the public modulus?

● Good news, abundant literature on 
factoring algorithms

● Bad news, “appropriate” primes will not 
be defeated

30
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Factoring and RSA
● You want to factor the public modulus?

● Good news, abundant literature on 
factoring algorithms

● Bad news, “appropriate” primes will not 
be defeated

31

Bad primes: easily factored
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Strawman Approach at Factoring
● Try to divide a number by all numbers smaller than it until 

you find a number a that divides N

● Then, carry on to divide N with a+1 and so on…

● We end up with a list of factors of N

32

Way too computationally expensive.
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A Smarter Approach at Factoring
● We only need to test prime numbers (not every a < N)

● We only need to test those smaller than √𝑁
o If both p and q are larger than N, then p.q > N, which is impossible

33
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A Smarter Approach at Factoring
● We only need to test prime numbers (not every a < N)

● We only need to test those smaller than √𝑁
o If both p and q are larger than N, then p.q > N, which is impossible

34

Still too computationally expensive for large N.

N = 4096 bits requires about 2128 operations
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Attacking ”bad primes”
● Some primes are not suited to be used for RSA, as they 

make N easier to factor

● Examples:
o Either p or q are small numbers
o p and q are too close together
o p and q are both close to 2b, where b is a given bound
o N = pr.qs and r > log p
o …

35

Let’s dive into an example…
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Fermat’s Little Theorem
● The theorem states:

o ap ≡ a mod p , for prime p and integer a

o Special case when p is co-prime with integer a à gcd(p,a) = 1
ap-1 ≡ 1 mod p 

o This is also true for any multiple of p-1 (you keep wrapping around):
ak(p-1) ≡ 1 mod p

o We can rewrite as:
ak(p-1) -1 = p.r

36
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Can we use this to find factors of N?
● Consider we have N = p.q

o Recall:
ak(p-1) -1 = p.r

o Putting this together, we have:
gcd(ak(p-1)-1, N) = 
= gcd(p.r, p.q) = 
= p

37
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Can we use this to find factors of N?
● Consider we have N = p.q

o Recall:
ak(p-1) -1 = p.r

o Putting this together, we have:
gcd(ak(p-1)-1, N) = 
= gcd(p.r, p.q) = 
= p

38

This allow us to find a factor of N!
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Can we use this to find factors of N?
● Consider we have N = p.q

o Recall:
ak(p-1) -1 = p.r

o Putting this together, we have:
gcd(ak(p-1)-1, N) = 
= gcd(p.r, p.q) = 
= p

39

This allow us to find a factor of N!

But how does this help us? We don't know p, 
nor do we have a way of calculating k.
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Inputs: Odd integer N and a “bound” b

The Pollard p-1 Factoring Algorithm

1. a = 2
2. for j =2 to b

a. Do a ≡ aj mod N

3. d = gcd(a-1,N)
4. if 1 < d < N

a. Then return (d)
b. Else return (“failure”)

40

● We guess k(p-1) by bruteforce

● Place a to the power of integers 
with a lot of prime factors. Likely 
that the factors of p−1 are there.

à ak! mod N

● Calculate gcd(ak(p-1) -1,N )

● If it is not equal to one, we found a 
factor
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The Pollard p-1 Factoring Algorithm
Let’s factor N = 713:

21 ≡ 2 mod 713, gcd(1,713)==1

22 ≡ 4 mod 713, gcd(3,713)==1

43 ≡ 64 mod 713, gcd(63,713)==1

644 ≡ 326 mod 713, gcd(325,713)==1

3265 ≡ 311 mod 713, gcd(310,713)==31

41

1. a = 2
2. for j =2 to B

a. Do a ≡ aj mod N

3. d = gcd(a-1,N)
4. if 1 < d < N

a. Then return (d)
b. Else return (“failure”)

713/31 = 23

23 * 31 = 713

a d
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The case of “smooth” factors
● A prime is deemed smooth if it has multiple small factors

p-1 = p1
e1 . p2

e2 …, ∀pi
ei, pi

ei ≤B

o Pollard p-1 algorithm is useful when p is smooth

o Its iterative approach is more likely to include p −1 sooner rather than later

42
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So far so good, but…

43

WARNING: this was 

textbook RSA, do not use!!!
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Why not “Textbook RSA”? Example

● Compute N
● Compute Y1 = Ee(1011). Verify the decryption works
● Compute Y2 = Ee (4). Verify the decryption works
● Compute Dd(Y1* Y2). What is happening…and why?

44

Example: (Tiny RSA), p=53, q=101, e=139, d=1459

Encryption: y  ≡ xe (mod N), Decryption:  x = yd (mod N)

Note::
● The * here indicates multiplication/compute a product
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Why not “Textbook RSA”? Example

● Compute N
● Compute Y1 = Ee(1011). Verify the decryption works
● Compute Y2 = Ee (4). Verify the decryption works
● Compute Dd(Y1* Y2). What is happening…and why?

45

Example: (Tiny RSA), p=53, q=101, e=139, d=1459

Encryption: y  ≡ xe (mod N), Decryption:  x = yd (mod N)

Note::
● The * here indicates multiplication/compute a product

A: The decryption is the product of the original plaintexts!!!
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Malleability

● It is possible to transform a ciphertext into another 
ciphertext that decrypts to a related plaintext

● Undesirable (most of the time)

46

A: y1 * y2 = (x1)e * (x2)e = (x1 * x2)e
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RSA and a Chosen Ciphertext Attack

● Alice is using RSA, public key (e, n)

● Bob sends y = Ee(x)                  

● We are Eve! We snag y. 
● Alice…is confident about textbook RSA, will decrypt any 

ciphertext except y for us

47

Goal: Ask Alice to decrypt something (other than y) that helps us learn x
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Executing CCA on Textbook RSA

48

● Alice is using RSA, public key (e, n)

● Bob sends y = Ee(x)                  

● We-Eve ask Alice to decrypt y2 = 2e * y1

I am so clever mwahaha

Q: Decrypts to?

Q: Decrypts to?
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Executing CCA on Textbook RSA
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● Alice is using RSA, public key (e, n)

● Bob sends y = Ee(x)                  

● We-Eve ask Alice to decrypt y2 = 2e * y1

I am so clever mwahaha

Q: Decrypts to?

A: decryption gives (2e * y1)d ≡ 2x
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Executing CCA on Textbook RSA

50

● Alice is using RSA, public key (e, n)

● Bob sends y = Ee(x)                  

● We-Eve ask Alice to decrypt y2 = 2e*y1

I am so clever mwahaha

Q: Decrypts to?

Q: Decrypts to?

A: decryption gives (2e * y1)d ≡ 2x

Textbook RSA: vulnerable to CCA
Note: Can be addressed with padding techniques
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Show Naive RSA Encryption is not IND-CPA Secure

1. Eve produces two plaintexts, x0 and x1

51
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Show Naive RSA Encryption is not IND-CPA Secure

1. Eve produces two plaintexts, x0 and x1

2. “Challenger” encrypts an x as y* <- xb
e (mod N), secret b

52
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Show Naive RSA Encryption is not IND-CPA Secure

1. Eve produces two plaintexts, x0 and x1

2. “Challenger” encrypts an x as y* <- xb
e (mod N), secret b

3. Eve’s goal? Determine b ∈ {0,1}

53
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Show Naive RSA Encryption is not IND-CPA Secure

1. Eve produces two plaintexts, x0 and x1

2. “Challenger” encrypts an x as y* <- xb
e (mod N), secret b

3. Eve’s goal? Determine b ∈ {0,1}
4. Sooo, Eve computes y <- x1

e (mod N)

If y* = y then Eve knows xb = x1
If y* <> y then Eve knows xb = x0

54
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Show Naive RSA Encryption is not IND-CPA Secure

1. Eve produces two plaintexts, x0 and x1

2. “Challenger” encrypts an x as y* <- xb
e (mod N), secret b

3. Eve’s goal? Determine b ∈ {0,1}
4. Sooo, Eve computes y <- x1

e (mod N)

If y* = y then Eve knows xb = x1
If y* <> y then Eve knows xb = x0

55

I win.

Thank you 
deterministic 
algorithm
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Adversaries and their Goals

56

You’ve assumed 
my goal is the 
secret/private 
key…
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Adversaries and their Goals
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You’ve assumed 
my goal is the 
secret/private 
key…

…but less ambitious 
goals can be very 
effective…
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Adversaries and their Goals
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You’ve assumed 
my goal is the 
secret/private 
key…

…but less ambitious 
goals can be very 
effective…

We better figure this out.

Yup.
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Goal 1: Total Break

59

● Win the secret key k or
● Win Bob’s private key kb

● Can decrypt any yi for:  

yi = Ek(x) or yi = Ekb(x)

● All messages using 
compromised k 
revealed

● Unless detected game 
over
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Goal 2: Partial Break

60

● Decrypt a ciphertext y 
(without the key)

● Learn some specific 
information about a 
message x from y

**Need to occur with non-
negligible probability.

● Some (or a) message 
revealed
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Goal 3: Distinguishable Ciphertexts

61

● P{learn b ∈ {0,1}}
exceeds ½

● Distinguish  between 
E(x1) and E(x2) or 
between E(x) and 
E(random string) 

● The ciphertexts are 
leaking small/some 
information…
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Semantic Security of RSA

● We saw CCA against Naive RSA

● We showed IND-CPA on Naive RSA

62
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Fix it? Ciphertext Distinguishability

● If E( ) is deterministic, fail
● Thus, require some randomization

63

Goal: prove (given comp. assumptions) no information regarding x is 
revealed in polynomial time by examining y =  E(x)

RSA-OAEP: Optimal Asymmetric Encryption Padding
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Practicality of Public-Key vs. Symmetric-Key 

64

1. Longer keys
2. Slower
3. Different keys for E(x) and D(y)

1. Shorter keys
2. Faster
3. Same key for E(x) and D(y)
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Practicality of Public-Key vs. Symmetric-Key 

65

1. Longer keys
2. Slower
3. Different keys for E(x) and D(y)

1. Shorter keys
2. Faster
3. Same key for E(x) and D(y)

Still need to send that 

shorter key
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Hybrid Cryptography
● Combine the two!!!!!!!
● Pick a random “128-bit” key K for a symmetric-key system
● Encrypt the large message with the key K (e.g., using AES)

And then…

● Encrypt the key K using a public-key system!
● Send the encrypted message and encrypted key to Bob

66
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Hybrid Cryptography
● Combine the two!!!!!!!
● Pick a random “128-bit” key K for a symmetric-key system
● Encrypt the large message with the key K (e.g., using AES)

And then…

● Encrypt the key K using a public-key system!
● Send the encrypted message and encrypted key to Bob

67

Hybrid cryptography is used in (many) applications on the internet
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Just Checking…
Public: (eA, dA)                                         Public: (eB, dB)

Secret: K                                                  Secret: ?

● Enc/Dec functions: Ekey(*), Dkey(*)
● Alice wants to send a large message m to Bob, 

68

Q: How should Alice build the message efficiently? How does Bob recover m?
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Just Checking…
Public: (eA, dA)                                         Public: (eB, dB)

Secret: K                                                  Secret: ?

● Enc/Dec functions: Ekey(*), Dkey(*)
● Alice wants to send a large message m to Bob, 

69

Q: How should Alice build the message efficiently? How does Bob recover m?

A: Alice computes y1 = EeB(K), y2 = EK(x) and sends <y1||y2>
Bob recovers K = DdB(y1) and then x = DK(y2)



Up next: More Cryptography…

70

Symmetric Asymmetric

Ciphers Hash 
Functions

Message 
Auth. codes PRFs Digital 

Signatures
Key 

Exchange

Stream

Block

RSA

PKE

IND-CCA security types


