
CS489/698
Privacy, Cryptography,

Network and Data Security

Spring 2024, Monday/Wednesday 11:30am-12:50pm

Public Key Cryptography (RSA)

CS489 Spring 2024

Assignment One
● Available on Learn today at 3pm
● Due May 29th, 3pm
● Written and programming

2

CS489 Spring 2024

Cryptography Organization

3

Symmetric Asymmetric

Ciphers Hash
Functions

Message
Auth. codes PRFs PKE Digital

Signatures
Key

Exchange

Stream

Block

C C

Organization display source: Doug Stebila

CS489 Spring 2024

Cryptography Organization

4

Symmetric Asymmetric

Ciphers Hash
Functions

Message
Auth. codes PRFs PKE Digital

Signatures
Key

Exchange

Stream

Block

CS489 Spring 2024

Cryptography Organization

5

Symmetric Asymmetric

Hash
Functions

Message
Auth. codes PRFs PKE Digital

Signatures
Key

Exchange

Stream

Block

Ciphers

CS489 Spring 2024

Public Key Cryptography, “1970s”

6

Examples:
● RSA, ElGamal, ECC, NTRU

CS489 Spring 2024

Steps for Public Key Cryptography?

1. Bob generates pair

2. Bob gives everyone the public key

3. Alice encrypts m and sends it

4. Bob decrypts using private key

5. Eve and Alice can’t decrypt, only have encryption key
7

CS489 Spring 2024

Steps for Public Key Cryptography?

1. Bob generates pair

2. Bob gives everyone the public key

3. Alice encrypts m and sends it

4. Bob decrypts using private key

5. Eve and Alice can’t decrypt, only have encryption key
8

It must be hard to derive the private key from the
public key

CS489 Spring 2024

Requirements for PKE

● The encryption function? Must be easy to compute
● The inverse, decryption? Must be hard for anyone without

the key vs.

9

Thus, we require so called “one-way” functions for this.

CS489 Spring 2024

Requirements for PKE

● The encryption function? Must be easy to compute
● The inverse, decryption? Must be hard for anyone without

the key vs.

10

Thus, we require so called “one-way” functions for this.

But because of decryption,
we need a “trapdoor”

CS489 Spring 2024

Time for Textbook RSA
● A clever arithmetic trick based on a “trapdoor permutation”
● Modular arithmetic: integer numbers that “wrap around”

11

Fun (?) Facts::
● RSA was the first popular public-key encryption method, published in 1977

Left to right: Ron Rivest, Adi Shamir, and Leonard Adleman.

CS489 Spring 2024

Prime Numbers
● Prime: a natural number that can only be divided by 1 or itself

● Primes and factorization: An integer number can be written as a
unique product of prime numbers
o E.g., 1234567 = 127 * 9721

12

How to know if a number is prime?
o Run a primality test algorithm (Solovay-Strassen,
Miller-Rabin, etc.)

How to discover a number’s factors?
o Run a factorization algorithm (Pollard p-1, etc.)

CS489 Spring 2024

Time for Textbook RSA
● Overview:

(xe)d ≡ x mod N

● Computational difficulty of the factoring problem
○ Given two large primes p.q = N, it is very hard to factor N.

13

Easy for me to pick e, d, and
n that satisfy that equation

Ugh. I know e and n and can’t find d!!!

CS489 Spring 2024

Time for Textbook RSA
● Encryption:

y = xe mod N

The ciphertext is equal to x multiplied by itself e times modulo N.

Public key is given by PubK = (e, N)

14

CS489 Spring 2024

Time for Textbook RSA
● Decryption:

x = yd mod N = (xe)d mod N = xed mod N

Decryption relies on number d such that e.d = 1 mod N, and where
xed mod N = x1 mod N = x

○ In other words, d is the multiplicative inverse of e mod N

Private key is given by PrivK = (d)

15

CS489 Spring 2024

Key Generation (how to choose e and d)
● Pick two random primes p and q, such that p.q = N
● Generate 𝝋(N) = (p-1).(q-1)

o all relative primes to (p−1)(q−1) form a group with respect to multiplication and are invertible

● Pick e as a random prime smaller than 𝜑(N)
o e chosen as relative prime to (p−1)(q−1) to ensure it has a multiplicative inverse mod (p−1)(q−1)

● Generate d (the inverse of e mod 𝜑(N))
o e.d = 1 mod 𝜑(N)
o Can be obtained via the extended Euclidean algorithm

16

If gcd(a,b) = 1, then we say that a and b are relatively prime (or coprime).

CS489 Spring 2024

Extended Euclidean Algorithm
● Given two integers a and b, the algorithm finds integers r and s such

that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r
is the modular multiplicative inverse of a modulo b.

● Idea: start with the GCD and recursively work your way backwards.

17

Say N = 40, e = 7

e.d = 1 mod 𝜑(N)

7d = 1 mod 40

CS489 Spring 2024

Extended Euclidean Algorithm
● Given two integers a and b, the algorithm finds integers r and s such

that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r
is the modular multiplicative inverse of a modulo b.

● Idea: start with the GCD and recursively work your way backwards.

18

Say N = 40, e = 7

e.d = 1 mod 𝜑(N)

7d = 1 mod 40

Euclidean Algorithm:

40 = 5 * 7 + 5

CS489 Spring 2024

Extended Euclidean Algorithm
● Given two integers a and b, the algorithm finds integers r and s such

that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r
is the modular multiplicative inverse of a modulo b.

● Idea: start with the GCD and recursively work your way backwards.

19

Say N = 40, e = 7

e.d = 1 mod 𝜑(N)

7d = 1 mod 40

Euclidean Algorithm:

40 = 5 * 7 + 5
7 = 1 * 5 + 2

CS489 Spring 2024

Extended Euclidean Algorithm
● Given two integers a and b, the algorithm finds integers r and s such

that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r
is the modular multiplicative inverse of a modulo b.

● Idea: start with the GCD and recursively work your way backwards.

20

Say N = 40, e = 7

e.d = 1 mod 𝜑(N)

7d = 1 mod 40

Euclidean Algorithm:

40 = 5 * 7 + 5
7 = 1 * 5 + 2
5 = 2 * 2 + 1

Stop at last non-zero remainder
gcd(7, 40) = 1

CS489 Spring 2024

Extended Euclidean Algorithm
● Given two integers a and b, the algorithm finds integers r and s such

that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r
is the modular multiplicative inverse of a modulo b.

● Idea: start with the GCD and recursively work your way backwards.

21

Say N = 40, e = 7

e.d = 1 mod 𝜑(N)

7d = 1 mod 40

Extended Euclidean (backtrack):

1 = 5 - 2 * 2

1 = 5 – 2 * 2

Euclidean Algorithm:

40 = 5 * 7 + 5
7 = 1 * 5 + 2
5 = 2 * 2 + 1

Stop at last non-zero remainder
gcd(7, 40) = 1

CS489 Spring 2024

Extended Euclidean Algorithm
● Given two integers a and b, the algorithm finds integers r and s such

that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r
is the modular multiplicative inverse of a modulo b.

● Idea: start with the GCD and recursively work your way backwards.

22

Say N = 40, e = 7

e.d = 1 mod 𝜑(N)

7d = 1 mod 40

Extended Euclidean (backtrack):

1 = 5 - 2 * 2
1 = 5 - 2 (7 – 1 * 5)
1 = 5 – 2 * 7 + 2 * 5
1 = 3 * 5 – 2 * 7

2 = 7 – 1 * 5

Euclidean Algorithm:

40 = 5 * 7 + 5
7 = 1 * 5 + 2
5 = 2 * 2 + 1

Stop at last non-zero remainder
gcd(7, 40) = 1

CS489 Spring 2024

Extended Euclidean Algorithm
● Given two integers a and b, the algorithm finds integers r and s such

that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r
is the modular multiplicative inverse of a modulo b.

● Idea: start with the GCD and recursively work your way backwards.

23

Say N = 40, e = 7

e.d = 1 mod 𝜑(N)

7d = 1 mod 40

Euclidean Algorithm:

40 = 5 * 7 + 5
7 = 1 * 5 + 2
5 = 2 * 2 + 1

Stop at last non-zero remainder
gcd(7, 40) = 1

Extended Euclidean (backtrack):

1 = 5 - 2 * 2
1 = 5 - 2 (7 – 1 * 5)
1 = 5 – 2 * 7 + 2 * 5
1 = 3 * 5 – 2 * 7
1 = 3 (40 – 5 * 7) – 2 * 7
1 = 3 * 40 - 17 * 7

5 = 40 – 5 * 7

CS489 Spring 2024

Extended Euclidean Algorithm
● Given two integers a and b, the algorithm finds integers r and s such

that r.a + s.b = gcd(a, b). When a and b are coprime, gcd(a, b) = 1, and r
is the modular multiplicative inverse of a modulo b.

● Idea: start with the GCD and recursively work your way backwards.

24

Say N = 40, e = 7

e.d = 1 mod 𝜑(N)

7d = 1 mod 40

Extended Euclidean (backtrack):

1 = 5 - 2 * 2
1 = 5 - 2 (7 – 1 * 5)
1 = 5 – 2 * 7 + 2 * 5
1 = 3 * 5 – 2 * 7
1 = 3 (40 – 5 * 7) – 2 * 7
1 = 3 * 40 - 17 * 7
d = -17 = 23 mod 40

Euclidean Algorithm:

40 = 5 * 7 + 5
7 = 1 * 5 + 2
5 = 2 * 2 + 1

Stop at last non-zero remainder
gcd(7, 40) = 1

CS489 Spring 2024

Textbook RSA (summary)
1. Choose two “large primes” p and q (secretly)
2. Compute n = p*q
3. “Choose” value e and find d such that (xe)d ≡ x mod n
4. Public key: (e, n)
5. Private key: d
6. Encryption: y = xe mod n
7. Decryption: yd mod n

25

CS489 Spring 2024

Example (Tiny RSA)
Parameters:

● p=53, q=101, N=5353
● 𝜑(N) = (53-1).(101-1) = 5200
● e=139 (random pick)

● d=1459 (extended Euclidean)

● Message:
● x=20

26

Encryption:

y = 20139 mod 5353 = 5274

Decryption:

X = 52741459 mod 5353 = 20

x = yd mod N

y = xe mod N

Nice!

CS489 Spring 2024

Example (Tiny RSA)
Parameters:

● p=53, q=101, N=5353
● 𝜑(N) = (53-1).(101-1) = 5200
● e=139 (random pick)

● d=1459 (extended Euclidean)

● Message:
● x=20

27

Encryption:

y = 20139 mod 5353 = 5274

Decryption:

X = 52741459 mod 5353 = 20

x = yd mod N

y = xe mod N

Applying e or d to encrypt does not really
matter from a functionality perspective

CS489 Spring 2024

Attacking RSA
Parameters:

● p=53, q=101, N=5353
● 𝜑(N) = (53-1).(101-1) = 5200
● e=139
● d=1459

● y = 5274

28

I know e and N…
What can I do to find d?

Attack idea:
- Factor N to obtain p and q
- Obtain 𝜑(N)
- From 𝜑(N) and e, generate d

just like Alice would

CS489 Spring 2024

Attacking RSA
Parameters:

● p=53, q=101, N=5353
● 𝜑(N) = (53-1).(101-1) = 5200
● e=139
● d=1459

● y = 5274

29

I know e and N…
What can I do to find d?

Attack idea:
- Factor N to obtain p and q
- Obtain 𝜑(N)
- From 𝜑(N) and e, generate d

just like Alice would

WARNING: Factoring is

hard..but

CS489 Spring 2024

Factoring and RSA
● You want to factor the public modulus?

● Good news, abundant literature on
factoring algorithms

● Bad news, “appropriate” primes will not
be defeated

30

CS489 Spring 2024

Factoring and RSA
● You want to factor the public modulus?

● Good news, abundant literature on
factoring algorithms

● Bad news, “appropriate” primes will not
be defeated

31

Bad primes: easily factored

CS489 Spring 2024

Strawman Approach at Factoring
● Try to divide a number by all numbers smaller than it until

you find a number a that divides N

● Then, carry on to divide N with a+1 and so on…

● We end up with a list of factors of N

32

Way too computationally expensive.

CS489 Spring 2024

A Smarter Approach at Factoring
● We only need to test prime numbers (not every a < N)

● We only need to test those smaller than √𝑁
o If both p and q are larger than N, then p.q > N, which is impossible

33

CS489 Spring 2024

A Smarter Approach at Factoring
● We only need to test prime numbers (not every a < N)

● We only need to test those smaller than √𝑁
o If both p and q are larger than N, then p.q > N, which is impossible

34

Still too computationally expensive for large N.

N = 4096 bits requires about 2128 operations

CS489 Spring 2024

Attacking ”bad primes”
● Some primes are not suited to be used for RSA, as they

make N easier to factor

● Examples:
o Either p or q are small numbers
o p and q are too close together
o p and q are both close to 2b, where b is a given bound
o N = pr.qs and r > log p
o …

35

Let’s dive into an example…

CS489 Spring 2024

Fermat’s Little Theorem
● The theorem states:

o ap ≡ a mod p , for prime p and integer a

o Special case when p is co-prime with integer a à gcd(p,a) = 1
ap-1 ≡ 1 mod p

o This is also true for any multiple of p-1 (you keep wrapping around):
ak(p-1) ≡ 1 mod p

o We can rewrite as:
ak(p-1) -1 = p.r

36

CS489 Spring 2024

Can we use this to find factors of N?
● Consider we have N = p.q

o Recall:
ak(p-1) -1 = p.r

o Putting this together, we have:
gcd(ak(p-1)-1, N) =
= gcd(p.r, p.q) =
= p

37

CS489 Spring 2024

Can we use this to find factors of N?
● Consider we have N = p.q

o Recall:
ak(p-1) -1 = p.r

o Putting this together, we have:
gcd(ak(p-1)-1, N) =
= gcd(p.r, p.q) =
= p

38

This allow us to find a factor of N!

CS489 Spring 2024

Can we use this to find factors of N?
● Consider we have N = p.q

o Recall:
ak(p-1) -1 = p.r

o Putting this together, we have:
gcd(ak(p-1)-1, N) =
= gcd(p.r, p.q) =
= p

39

This allow us to find a factor of N!

But how does this help us? We don't know p,
nor do we have a way of calculating k.

CS489 Spring 2024

Inputs: Odd integer N and a “bound” b

The Pollard p-1 Factoring Algorithm

1. a = 2
2. for j =2 to b

a. Do a ≡ aj mod N

3. d = gcd(a-1,N)
4. if 1 < d < N

a. Then return (d)
b. Else return (“failure”)

40

● We guess k(p-1) by bruteforce

● Place a to the power of integers
with a lot of prime factors. Likely
that the factors of p−1 are there.

à ak! mod N

● Calculate gcd(ak(p-1) -1,N)

● If it is not equal to one, we found a
factor

CS489 Spring 2024

The Pollard p-1 Factoring Algorithm
Let’s factor N = 713:

21 ≡ 2 mod 713, gcd(1,713)==1

22 ≡ 4 mod 713, gcd(3,713)==1

43 ≡ 64 mod 713, gcd(63,713)==1

644 ≡ 326 mod 713, gcd(325,713)==1

3265 ≡ 311 mod 713, gcd(310,713)==31

41

1. a = 2
2. for j =2 to B

a. Do a ≡ aj mod N

3. d = gcd(a-1,N)
4. if 1 < d < N

a. Then return (d)
b. Else return (“failure”)

713/31 = 23

23 * 31 = 713

a d

CS489 Spring 2024

The case of “smooth” factors
● A prime is deemed smooth if it has multiple small factors

p-1 = p1
e1 . p2

e2 …, ∀pi
ei, pi

ei ≤B

o Pollard p-1 algorithm is useful when p is smooth

o Its iterative approach is more likely to include p −1 sooner rather than later

42

CS489 Spring 2024

So far so good, but…

43

WARNING: this was

textbook RSA, do not use!!!

CS489 Spring 2024

Why not “Textbook RSA”? Example

● Compute N
● Compute Y1 = Ee(1011). Verify the decryption works
● Compute Y2 = Ee (4). Verify the decryption works
● Compute Dd(Y1* Y2). What is happening…and why?

44

Example: (Tiny RSA), p=53, q=101, e=139, d=1459

Encryption: y ≡ xe (mod N), Decryption: x = yd (mod N)

Note::
● The * here indicates multiplication/compute a product

CS489 Spring 2024

Why not “Textbook RSA”? Example

● Compute N
● Compute Y1 = Ee(1011). Verify the decryption works
● Compute Y2 = Ee (4). Verify the decryption works
● Compute Dd(Y1* Y2). What is happening…and why?

45

Example: (Tiny RSA), p=53, q=101, e=139, d=1459

Encryption: y ≡ xe (mod N), Decryption: x = yd (mod N)

Note::
● The * here indicates multiplication/compute a product

A: The decryption is the product of the original plaintexts!!!

CS489 Spring 2024

Malleability

● It is possible to transform a ciphertext into another
ciphertext that decrypts to a related plaintext

● Undesirable (most of the time)

46

A: y1 * y2 = (x1)e * (x2)e = (x1 * x2)e

CS489 Spring 2024

RSA and a Chosen Ciphertext Attack

● Alice is using RSA, public key (e, n)

● Bob sends y = Ee(x)

● We are Eve! We snag y.
● Alice…is confident about textbook RSA, will decrypt any

ciphertext except y for us

47

Goal: Ask Alice to decrypt something (other than y) that helps us learn x

CS489 Spring 2024

Executing CCA on Textbook RSA

48

● Alice is using RSA, public key (e, n)

● Bob sends y = Ee(x)

● We-Eve ask Alice to decrypt y2 = 2e * y1

I am so clever mwahaha

Q: Decrypts to?

Q: Decrypts to?

CS489 Spring 2024

Executing CCA on Textbook RSA

49

● Alice is using RSA, public key (e, n)

● Bob sends y = Ee(x)

● We-Eve ask Alice to decrypt y2 = 2e * y1

I am so clever mwahaha

Q: Decrypts to?

A: decryption gives (2e * y1)d ≡ 2x

CS489 Spring 2024

Executing CCA on Textbook RSA

50

● Alice is using RSA, public key (e, n)

● Bob sends y = Ee(x)

● We-Eve ask Alice to decrypt y2 = 2e*y1

I am so clever mwahaha

Q: Decrypts to?

Q: Decrypts to?

A: decryption gives (2e * y1)d ≡ 2x

Textbook RSA: vulnerable to CCA
Note: Can be addressed with padding techniques

CS489 Spring 2024

Show Naive RSA Encryption is not IND-CPA Secure

1. Eve produces two plaintexts, x0 and x1

51

CS489 Spring 2024

Show Naive RSA Encryption is not IND-CPA Secure

1. Eve produces two plaintexts, x0 and x1

2. “Challenger” encrypts an x as y* <- xb
e (mod N), secret b

52

CS489 Spring 2024

Show Naive RSA Encryption is not IND-CPA Secure

1. Eve produces two plaintexts, x0 and x1

2. “Challenger” encrypts an x as y* <- xb
e (mod N), secret b

3. Eve’s goal? Determine b ∈ {0,1}

53

CS489 Spring 2024

Show Naive RSA Encryption is not IND-CPA Secure

1. Eve produces two plaintexts, x0 and x1

2. “Challenger” encrypts an x as y* <- xb
e (mod N), secret b

3. Eve’s goal? Determine b ∈ {0,1}
4. Sooo, Eve computes y <- x1

e (mod N)

If y* = y then Eve knows xb = x1
If y* <> y then Eve knows xb = x0

54

CS489 Spring 2024

Show Naive RSA Encryption is not IND-CPA Secure

1. Eve produces two plaintexts, x0 and x1

2. “Challenger” encrypts an x as y* <- xb
e (mod N), secret b

3. Eve’s goal? Determine b ∈ {0,1}
4. Sooo, Eve computes y <- x1

e (mod N)

If y* = y then Eve knows xb = x1
If y* <> y then Eve knows xb = x0

55

I win.

Thank you
deterministic
algorithm

CS489 Spring 2024

Adversaries and their Goals

56

You’ve assumed
my goal is the
secret/private
key…

CS489 Spring 2024

Adversaries and their Goals

57

You’ve assumed
my goal is the
secret/private
key…

…but less ambitious
goals can be very
effective…

CS489 Spring 2024

Adversaries and their Goals

58

You’ve assumed
my goal is the
secret/private
key…

…but less ambitious
goals can be very
effective…

We better figure this out.

Yup.

CS489 Spring 2024

Goal 1: Total Break

59

● Win the secret key k or
● Win Bob’s private key kb

● Can decrypt any yi for:

yi = Ek(x) or yi = Ekb(x)

● All messages using
compromised k
revealed

● Unless detected game
over

CS489 Spring 2024

Goal 2: Partial Break

60

● Decrypt a ciphertext y
(without the key)

● Learn some specific
information about a
message x from y

**Need to occur with non-
negligible probability.

● Some (or a) message
revealed

CS489 Spring 2024

Goal 3: Distinguishable Ciphertexts

61

● P{learn b ∈ {0,1}}
exceeds ½

● Distinguish between
E(x1) and E(x2) or
between E(x) and
E(random string)

● The ciphertexts are
leaking small/some
information…

CS489 Spring 2024

Semantic Security of RSA

● We saw CCA against Naive RSA

● We showed IND-CPA on Naive RSA

62

CS489 Spring 2024

Fix it? Ciphertext Distinguishability

● If E() is deterministic, fail
● Thus, require some randomization

63

Goal: prove (given comp. assumptions) no information regarding x is
revealed in polynomial time by examining y = E(x)

RSA-OAEP: Optimal Asymmetric Encryption Padding

CS489 Spring 2024

Practicality of Public-Key vs. Symmetric-Key

64

1. Longer keys
2. Slower
3. Different keys for E(x) and D(y)

1. Shorter keys
2. Faster
3. Same key for E(x) and D(y)

CS489 Spring 2024

Practicality of Public-Key vs. Symmetric-Key

65

1. Longer keys
2. Slower
3. Different keys for E(x) and D(y)

1. Shorter keys
2. Faster
3. Same key for E(x) and D(y)

Still need to send that

shorter key

CS489 Spring 2024

Hybrid Cryptography
● Combine the two!!!!!!!
● Pick a random “128-bit” key K for a symmetric-key system
● Encrypt the large message with the key K (e.g., using AES)

And then…

● Encrypt the key K using a public-key system!
● Send the encrypted message and encrypted key to Bob

66

CS489 Spring 2024

Hybrid Cryptography
● Combine the two!!!!!!!
● Pick a random “128-bit” key K for a symmetric-key system
● Encrypt the large message with the key K (e.g., using AES)

And then…

● Encrypt the key K using a public-key system!
● Send the encrypted message and encrypted key to Bob

67

Hybrid cryptography is used in (many) applications on the internet

CS489 Spring 2024

Just Checking…
Public: (eA, dA) Public: (eB, dB)

Secret: K Secret: ?

● Enc/Dec functions: Ekey(*), Dkey(*)
● Alice wants to send a large message m to Bob,

68

Q: How should Alice build the message efficiently? How does Bob recover m?

CS489 Spring 2024

Just Checking…
Public: (eA, dA) Public: (eB, dB)

Secret: K Secret: ?

● Enc/Dec functions: Ekey(*), Dkey(*)
● Alice wants to send a large message m to Bob,

69

Q: How should Alice build the message efficiently? How does Bob recover m?

A: Alice computes y1 = EeB(K), y2 = EK(x) and sends <y1||y2>
Bob recovers K = DdB(y1) and then x = DK(y2)

Up next: More Cryptography…

70

Symmetric Asymmetric

Ciphers Hash
Functions

Message
Auth. codes PRFs Digital

Signatures
Key

Exchange

Stream

Block

RSA

PKE

IND-CCA security types

