
CS489/698
Privacy, Cryptography,

Network and Data Security
A pinch of Homomorphic Encryption

Spring 2024, Monday/Wednesday 11:30am-12:50pm

What is Homomorphic Encryption?

2

CS489 Spring 2024

What is Homomorphic Encryption?

3

• Definition: Homomorphic encryption is a cryptographic technique that
allows computations to be performed on encrypted data without
requiring decryption.

• Raw data can remain fully encrypted while it’s being processed,
manipulated, and run through various algorithms.

CS489 Spring 2024

What is Homomorphic Encryption?

4

• Definition: Homomorphic encryption is a cryptographic technique that
allows computations to be performed on encrypted data without
requiring decryption.

• Raw data can remain fully encrypted while it’s being processed,
manipulated, and run through various algorithms.

• Idealized in 1978, fully realized in 2009 by Craig Gentry

CS489 Spring 2024

Homomorphic Encryption for Dummies

5

“Anybody can come and they can stick their hands inside the gloves
and manipulate what’s inside the locked box. They can’t pull it out,
but they can manipulate it; they can process it… Then they finish
and the person with the secret key has to come and open it up—
and only they can extract the finished product out of there.”
-- Craig Gentry

https://www.youtube.com/watch?v=pXb39wj5ShI

https://www.youtube.com/watch?v=pXb39wj5ShI

CS489 Spring 2024

Computing on Ciphertexts (Simple Math)

6

https://chain.link/education-hub/homomorphic-encryption

CS489 Spring 2024

Computing on Ciphertexts (More sophisticated math)

7

https://chain.link/education-hub/homomorphic-encryption

CS489 Spring 2024

Homomorphic Encryption in the Wild

8

https://dualitytech.com/blog/homomorphic-encryption-making-it-real/

https://dualitytech.com/blog/homomorphic-encryption-making-it-real/

CS489 Spring 2024

Homomorphic Encryption in the Wild

● Used as a tool in many real-world scenarios:
○ https://www.ibm.com/security/services/homomorphic-encryption
○ https://www.statcan.gc.ca/en/data-science/network/homomorphic-encryption
○ https://www.statcan.gc.ca/en/data-science/network/statistical-analysis-

homomorphic-encryption
○ https://www.intel.com/content/www/us/en/developer/tools/homomorphic-

encryption/overview.html
○ https://www.microsoft.com/en-us/research/project/microsoft-seal/

9

https://www.ibm.com/security/services/homomorphic-encryption
https://www.statcan.gc.ca/en/data-science/network/homomorphic-encryption
https://www.statcan.gc.ca/en/data-science/network/statistical-analysis-homomorphic-encryption
https://www.statcan.gc.ca/en/data-science/network/statistical-analysis-homomorphic-encryption
https://www.intel.com/content/www/us/en/developer/tools/homomorphic-encryption/overview.html
https://www.intel.com/content/www/us/en/developer/tools/homomorphic-encryption/overview.html
https://www.microsoft.com/en-us/research/project/microsoft-seal/

CS489 Spring 2024

E.g., Homomorphic Encryption for Secure Voting

10

● Microsoft’s ElectionGuard

So what is this all about?

11

CS489 Spring 2024

Homomorphic Encryption
Consider the following:

Two ciphertexts use the same key, c = EK(x), d = EK(y)
Let f() be a function that operates over plaintext x and y

12

CS489 Spring 2024

Homomorphic Encryption
Consider the following:

Two ciphertexts use the same key, c = EK(x), d = EK(y)
Let f() be a function that operates over plaintext x and y

Goal: the existence of a function g() such that
g(c, d) = EK(f(x, y))

13

CS489 Spring 2024

Homomorphic Encryption
Consider the following:

Two ciphertexts use the same key, c = EK(x), d = EK(y)
Let f() be a function that operates over plaintext x and y

Goal: the existence of a function g() such that
g(c, d) = EK(f(x, y))

14

g() is a homomorphic function on the ciphertexts c, d, …

CS489 Spring 2024

Partial versus Fully Homomorphic Encryption

…either multiplication or
addition but not both.

15

The function on the plaintexts is:

…either multiplication or
addition, or both

Partial HE Fully HE

CS489 Spring 2024

4 Shades of Homomorphic Encryption

16

https://chain.link/education-hub/homomorphic-encryption

and/or

https://chain.link/education-hub/homomorphic-encryption

CS489 Spring 2024

4 Shades of Homomorphic Encryption

17

https://chain.link/education-hub/homomorphic-encryption

Only useful for simpler operations. Relatively efficient.

and/or

https://chain.link/education-hub/homomorphic-encryption

CS489 Spring 2024

4 Shades of Homomorphic Encryption

18

https://chain.link/education-hub/homomorphic-encryption

of operations that can be performed is bounded and the accuracy of
the computation may degrade as more operations are performed.

and/or

https://chain.link/education-hub/homomorphic-encryption

CS489 Spring 2024

4 Shades of Homomorphic Encryption

19

https://chain.link/education-hub/homomorphic-encryption

Can perform an arbitrary # of computations on encrypted data, if it
has a pre-defined set of computations specified ahead of time.

and/or

https://chain.link/education-hub/homomorphic-encryption

CS489 Spring 2024

4 Shades of Homomorphic Encryption

20

https://chain.link/education-hub/homomorphic-encryption

Enables any # of computations to be performed on encrypted data
without a predefined sequence or limit. Computationally expensive.

and/or

https://chain.link/education-hub/homomorphic-encryption

A partial homomorphic encryption
scheme based on El Gamal

21

CS489 Spring 2024

Recap: ElGamal Public Key Cryptosystem
● Let p be a prime such that the DLP in (Zp

*,.) is infeasible
● Let α be a generator in Zp

* and a a secret value
● PubK ={(p,α, β): β≡αa (mod p)}

● For message m and secret random k in Zp-1:
○ eK(m,k) = (y1, y2), where y1 = αk mod p and y2 = mβk mod p

● For y1, y2 in Zp
*:

o dK(y1, y2)= y2(y1
a)-1 mod p

22

Public key is p,α, β

CS489 Spring 2024

Consider Multiplicative HE

23

f(x, y) = x ⋅ y

Private key: a, public key: αa

Instead of k, choose r and s

y1 ≡ αk (mod p)Bob’s PubK à (p, α, β)

Bob’s PrivK à a y2 ≡ m βk (mod p)
β≡αa (mod p)

CS489 Spring 2024

Consider Multiplicative HE

24

f(x, y) = x ⋅ y

Private key: a, public key: αa

Instead of k, choose r and s

y1 ≡ αk (mod p)Bob’s PubK à (p, α, β)

Bob’s PrivK à a y2 ≡ m βk (mod p)
β≡αa (mod p)

Goal: show how the multiplication of ciphertexts corresponds to the multiplication
of plaintexts.

CS489 Spring 2024

Consider Multiplicative HE

25

f(x, y) = x ⋅ y

Private key: a, public key: αa

c1 = αr, c2 = x αra;
d1 = αs, d2 = y αsa

Instead of k, choose r and s

y1 ≡ αk (mod p)Bob’s PubK à (p, α, β)

Bob’s PrivK à a y2 ≡ m βk (mod p)
β≡αa (mod p)

Idea: Create ciphertexts for the two different plaintexts

CS489 Spring 2024

Consider Multiplicative HE

26

f(x, y) = x ⋅ y

Private key: a, public key: αa

g(c, d):
○e1 = c1 ⋅ d1 = αr αs = αr+s

○e2 = c2 ⋅ d2 = xy αra αsa = xy αa(r+s)

c1 = αr, c2 = x αra;
d1 = αs, d2 = y αsa

Instead of k, choose r and s

y1 ≡ αk (mod p)Bob’s PubK à (p, α, β)

Bob’s PrivK à a y2 ≡ m βk (mod p)
β≡αa (mod p)

Idea: combine ciphertexts of
two different plaintexts

CS489 Spring 2024

Consider Multiplicative HE

27

f(x, y) = x ⋅ y

Private key: a, public key: αa

g(c, d) = xy αa(r+s)

xy = xy αa(r+s) / αa(r+s)

c1 = αr, c2 = x αra;
d1 = αs, d2 = y αsa

Instead of k, choose r and s

y1 ≡ αk (mod p)Bob’s PubK à (p, α, β)

Bob’s PrivK à a y2 ≡ m βk (mod p)
β≡αa (mod p)

Idea: decrypt the combined ciphertext

CS489 Spring 2024

Consider Additive HE
Multiplicative: The math of ElGamal ensures that multiplying the
encrypted values corresponds to multiplying the original values.

Additive: Here, we no longer have the same nice properties of how
exponents play together.

• “Crazy” idea: Something like g(EK(αx), EK(αy)) = EA(αx+y) could work
o But we would need to break the discrete log of αx+y to retrieve the sum

§ Only really works for small x and y

28

The Paillier Partially Homomorphic
Encryption Scheme

29

CS489 Spring 2024

Paillier’s Encryption Scheme
• Proposed by Pascal Pailler in 1999

• The Paillier cryptosystem is a public-key cryptosystem known for its
additive homomorphic properties.

• The security of the Paillier cryptosystem is based on the difficulty of the
composite residuosity class problem
• This problem involves determining whether a given number is an n-th residue modulo n2

for a composite n.

30

CS489 Spring 2024

Paillier’s Encryption Scheme
• Proposed by Pascal Pailler in 1999.

• The Paillier cryptosystem is a public-key cryptosystem known for its
additive homomorphic properties.

• The security of the Paillier cryptosystem is based on the difficulty of the
composite residuosity class problem.
• Determining whether a given number is an n-th residue modulo n2 for a composite n.

31

CS489 Spring 2024

Paillier’s Encryption Scheme
● Let p, q be two large primes; N = pq
● Ciphertexts are mod N2

32

CS489 Spring 2024

Paillier’s Encryption Scheme
● Let p, q be two large primes; N = pq
● Ciphertexts are mod N2

● Choose r; plaintext m (mod p) is encrypted as gm rN (mod N2)

33

g is a generator

CS489 Spring 2024

Paillier’s Encryption Scheme

● Let p, q be two large primes; N = pq
● Ciphertexts are mod N2

● Choose r; plaintext m (mod p) is encrypted as gm rN (mod N2)

34

CS489 Spring 2024

Paillier’s Encryption Scheme
● Let p, q be two large primes; N = pq
● Ciphertexts are mod N2

● Choose r; plaintext m (mod p) is encrypted as gm rN (mod N2)

● Multiply encryption of m1 and m2:
E(m1,r1) ⋅ E(m2,r2) mod N2 =
gm1 ⋅ gm2 ⋅ r1

N ⋅ r2
N mod N2 =

gm1+m2 ⋅ (r1 ⋅ r2)N mod N2

35

From the product of ciphertexts to addition of plaintexts

CS489 Spring 2024

Paillier’s Encryption Scheme

● Multiply encryption of m1 and m2:
E(m1,r1) ⋅ E(m2,r2) mod N2 =
gm1 ⋅ gm2 ⋅ r1

N ⋅ r2
N mod N2 =

gm1+m2 ⋅ (r1 ⋅ r2)N mod N2

● If factorization of N is known, breaking the DL is efficient
⇒ Efficient additive HE, even for large numbers

36

CS489 Spring 2024

Paillier’s Encryption Scheme

● Multiply encryption of m1 and m2:
E(m1,r1) ⋅ E(m2,r2) mod N2 =
gm1 ⋅ gm2 ⋅ r1

N ⋅ r2
N mod N2 =

gm1+m2 ⋅ (r1 ⋅ r2)N mod N2

● If factorization of N is known, breaking the DL is efficient
⇒ Efficient additive HE, even for large numbers

37

Simplica Numara!

DGHV:
A Fully Homomorphic Encryption Scheme

38

CS489 Spring 2024

Fully Homomorphic Encryption (FHE)
• Many schemes now, usually abbreviated by the first letters of

the last names of the authors
• Different security assumptions (not factoring or discrete log)
o Lattice problems: Learning with errors, …

39

Examples:
● First construction by Gentry in 2009
● E.g. FV, BGV, or DGHV (not used in practice)

CS489 Spring 2024

The DGHV Fully Homomorphic Encryption Scheme

• FHE scheme whose security is based on the difficulty of the
approximate greatest common divisor (AGCD) problem.
o Finding the greatest common divisor of a set of integers that are close to multiples

of a secret integer.

40

https://medium.com/@j248360/explaining-the-dghv-encryption-scheme-1acb6cd74dd6
https://www.esat.kuleuven.be/cosic/blog/co6gc-homomorphic-encryption-part-1-computing-with-secrets/
https://github.com/coron/fhe

https://medium.com/@j248360/explaining-the-dghv-encryption-scheme-1acb6cd74dd6
https://www.esat.kuleuven.be/cosic/blog/co6gc-homomorphic-encryption-part-1-computing-with-secrets/
https://github.com/coron/fhe

CS489 Spring 2024

Consider Simplified DGHV (not used in practice)
• m ∈ {0, 1}
• Secret key: prime p

41

CS489 Spring 2024

Consider Simplified DGHV (not used in practice)
• m ∈ {0, 1}
• Secret key: prime p

• Encryption
o Choose q, r such that r < p --> r is random noise
o c = q.p + 2.r + m

42

CS489 Spring 2024

Consider Simplified DGHV (not used in practice)
• m ∈ {0, 1}
• Secret key: prime p

• Encryption
o Choose q, r such that r < p --> r is random noise
o c = q.p + 2.r + m

• Decryption
o m = c mod 2 ⊕ (⌊c/p⌋ mod 2)

43

CS489 Spring 2024

Computing with Simplified DGHV
● Ciphertexts
○c1 = q1.p + 2.r1 + m1
○c2 = q2.p + 2.r2 + m2

44

CS489 Spring 2024

Computing with Simplified DGHV
● Ciphertexts
○c1 = q1.p + 2.r1 + m1
○c2 = q2.p + 2.r2 + m2

● Addition
○c1 + c2 = (q1+q2).p + 2.(r1+r2) + m1 + m2

45

Note that noise grows linearly

CS489 Spring 2024

Computing with Simplified DGHV
● Ciphertexts
○c1 = q1.p + 2.r1 + m1
○c2 = q2.p + 2.r2 + m2

● Addition
○c1 + c2 = (q1+q2).p + 2.(r1+r2) + m1 + m2

● Multiplication
○c1 ⋅ c2 = q’.p + 2.r’ + m1.m2

○ r’ = 2.r1.r2 + r1.m2 + r2.m1
○q′= q1⋅q2⋅p + q1⋅m2 + q2 ⋅ m1

46

Note the increased growth of the noise.
(no longer linear). One gets a new
ciphertext with noise roughly twice larger
than in the original ciphertexts c1 and c2.

The bootstrapping problem in FHE

47

CS489 Spring 2024

Bootstrapping… in Fully HE Schemes
• If r > p/2 ⇒ decryption fails on DGHV
• Also a problem for other schemes.

• If the noise grows too much, it can corrupt the encrypted
data and make it unusable

• Each operation increases the noise, so one must control
this growth

48

CS489 Spring 2024

Bootstrapping… in Fully HE Schemes

49

• To obtain a FHE scheme, (i.e. unlimited addition and
multiplication on ciphertexts), one must reduce the
amount of noise in a ciphertext

• Bootstrapping is a procedure that reduces noise
• Still, bootstrapping is slow in most fully HE schemes
• Thus, w/ fully HE, aim to avoid subsequent

multiplications

CS489 Spring 2024

Practical FHE Schemes
● FV, BGV, BFV, CKKS
○Lattice-based encryption schemes
○Encrypt vectors (usually as polynomials)

● TFHE
○Fully HE over the Torus
○Usually encrypts bits
○Very fast bootstrapping (frequently performed)
○https://tfhe.github.io/tfhe/

50

https://tfhe.github.io/tfhe/

CS489 Spring 2024

Try it… on your own J
● Download Microsoft’s SEAL library and hack away!
○https://www.microsoft.com/en-us/research/project/microsoft-seal/

51

https://www.microsoft.com/en-us/research/project/microsoft-seal/

CS489 Spring 2024

A Few Announcements

● Assignment 3 is due today 3pm
o No-penalty late policy period until Friday 3pm

● Extra office hours this Friday: 2pm—3pm at DC 2631

● Student Course Perceptions – Available now until July 30
o https://perceptions.uwaterloo.ca/

52

https://perceptions.uwaterloo.ca/

Midterm 2 Q&A

53

54

Thanks for tagging along!

