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• Definition: Homomorphic encryption is a cryptographic technique that 
allows computations to be performed on encrypted data without 
requiring decryption.

• Raw data can remain fully encrypted while it’s being processed, 
manipulated, and run through various algorithms.
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What is Homomorphic Encryption?

4

• Definition: Homomorphic encryption is a cryptographic technique that 
allows computations to be performed on encrypted data without 
requiring decryption.

• Raw data can remain fully encrypted while it’s being processed, 
manipulated, and run through various algorithms.

• Idealized in 1978, fully realized in 2009 by Craig Gentry
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Homomorphic Encryption for Dummies
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“Anybody can come and they can stick their hands inside the gloves
and manipulate what’s inside the locked box. They can’t pull it out,
but they can manipulate it; they can process it… Then they finish
and the person with the secret key has to come and open it up—
and only they can extract the finished product out of there.”
-- Craig Gentry

https://www.youtube.com/watch?v=pXb39wj5ShI

https://www.youtube.com/watch?v=pXb39wj5ShI
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Computing on Ciphertexts (Simple Math)
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https://chain.link/education-hub/homomorphic-encryption
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Computing on Ciphertexts (More sophisticated math)
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https://chain.link/education-hub/homomorphic-encryption



CS489 Spring 2024 

Homomorphic Encryption in the Wild
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https://dualitytech.com/blog/homomorphic-encryption-making-it-real/

https://dualitytech.com/blog/homomorphic-encryption-making-it-real/


CS489 Spring 2024 

Homomorphic Encryption in the Wild

● Used as a tool in many real-world scenarios:
○ https://www.ibm.com/security/services/homomorphic-encryption
○ https://www.statcan.gc.ca/en/data-science/network/homomorphic-encryption
○ https://www.statcan.gc.ca/en/data-science/network/statistical-analysis-

homomorphic-encryption
○ https://www.intel.com/content/www/us/en/developer/tools/homomorphic-

encryption/overview.html
○ https://www.microsoft.com/en-us/research/project/microsoft-seal/

9

https://www.ibm.com/security/services/homomorphic-encryption
https://www.statcan.gc.ca/en/data-science/network/homomorphic-encryption
https://www.statcan.gc.ca/en/data-science/network/statistical-analysis-homomorphic-encryption
https://www.statcan.gc.ca/en/data-science/network/statistical-analysis-homomorphic-encryption
https://www.intel.com/content/www/us/en/developer/tools/homomorphic-encryption/overview.html
https://www.intel.com/content/www/us/en/developer/tools/homomorphic-encryption/overview.html
https://www.microsoft.com/en-us/research/project/microsoft-seal/
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E.g., Homomorphic Encryption for Secure Voting
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● Microsoft’s ElectionGuard



So what is this all about?
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Homomorphic Encryption
Consider the following: 

Two ciphertexts use the same key, c = EK(x), d = EK(y)
Let f() be a function that operates over plaintext x and y
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Consider the following: 

Two ciphertexts use the same key, c = EK(x), d = EK(y)
Let f() be a function that operates over plaintext x and y

Goal: the existence of a function g() such that 
g(c, d) = EK(f(x, y))
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Homomorphic Encryption
Consider the following: 

Two ciphertexts use the same key, c = EK(x), d = EK(y)
Let f() be a function that operates over plaintext x and y

Goal: the existence of a function g() such that 
g(c, d) = EK(f(x, y))
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g() is a homomorphic function on the ciphertexts c, d, …
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Partial versus Fully Homomorphic Encryption

…either multiplication or 
addition but not both. 

15

The function on the plaintexts is: 

…either multiplication or 
addition, or both

Partial HE Fully HE
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4 Shades of Homomorphic Encryption

16

https://chain.link/education-hub/homomorphic-encryption

and/or

https://chain.link/education-hub/homomorphic-encryption
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4 Shades of Homomorphic Encryption
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https://chain.link/education-hub/homomorphic-encryption

Only useful for simpler operations. Relatively efficient.

and/or

https://chain.link/education-hub/homomorphic-encryption
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4 Shades of Homomorphic Encryption
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https://chain.link/education-hub/homomorphic-encryption

# of operations that can be performed is bounded and the accuracy of 
the computation may degrade as more operations are performed.

and/or

https://chain.link/education-hub/homomorphic-encryption
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4 Shades of Homomorphic Encryption
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https://chain.link/education-hub/homomorphic-encryption

Can perform an arbitrary # of computations on encrypted data, if it 
has a pre-defined set of computations specified ahead of time.

and/or

https://chain.link/education-hub/homomorphic-encryption
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4 Shades of Homomorphic Encryption
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https://chain.link/education-hub/homomorphic-encryption

Enables any # of computations to be performed on encrypted data 
without a predefined sequence or limit. Computationally expensive.

and/or

https://chain.link/education-hub/homomorphic-encryption


A partial homomorphic encryption 
scheme based on El Gamal

21
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Recap: ElGamal Public Key Cryptosystem
● Let p be a prime such that the DLP in (Zp

*,.) is infeasible
● Let α be a generator in Zp

* and a a secret value
● PubK ={(p,α, β): β≡αa (mod p)}

● For message m and secret random k in Zp-1: 
○ eK(m,k) = (y1, y2),  where y1 = αk mod p and y2 = mβk mod p

● For y1, y2 in Zp
*:

o dK(y1, y2)= y2(y1
a)-1 mod p

22

Public key is p,α, β
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Consider Multiplicative HE
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f(x, y) = x ⋅ y

Private key: a, public key: αa

Instead of k, choose r and s

y1 ≡ αk (mod p)Bob’s PubK à (p, α, β)

Bob’s PrivK à a y2 ≡ m βk (mod p)  
β≡αa (mod p)
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Consider Multiplicative HE

24

f(x, y) = x ⋅ y

Private key: a, public key: αa

Instead of k, choose r and s

y1 ≡ αk (mod p)Bob’s PubK à (p, α, β)

Bob’s PrivK à a y2 ≡ m βk (mod p)  
β≡αa (mod p)

Goal: show how the multiplication of ciphertexts corresponds to the multiplication 
of plaintexts.
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Consider Multiplicative HE

25

f(x, y) = x ⋅ y

Private key: a, public key: αa

c1 = αr, c2 = x αra;
d1 = αs, d2 = y αsa

Instead of k, choose r and s

y1 ≡ αk (mod p)Bob’s PubK à (p, α, β)

Bob’s PrivK à a y2 ≡ m βk (mod p)  
β≡αa (mod p)

Idea: Create ciphertexts for the two different plaintexts
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Consider Multiplicative HE
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f(x, y) = x ⋅ y

Private key: a, public key: αa

g(c, d):
○e1 = c1 ⋅ d1 = αr αs = αr+s

○e2 = c2 ⋅ d2 = xy αra αsa = xy αa(r+s)

c1 = αr, c2 = x αra;
d1 = αs, d2 = y αsa

Instead of k, choose r and s

y1 ≡ αk (mod p)Bob’s PubK à (p, α, β)

Bob’s PrivK à a y2 ≡ m βk (mod p)  
β≡αa (mod p)

Idea: combine ciphertexts of 
two different plaintexts
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Consider Multiplicative HE
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f(x, y) = x ⋅ y

Private key: a, public key: αa

g(c, d) = xy αa(r+s)

xy = xy αa(r+s) / αa(r+s)

c1 = αr, c2 = x αra;
d1 = αs, d2 = y αsa

Instead of k, choose r and s

y1 ≡ αk (mod p)Bob’s PubK à (p, α, β)

Bob’s PrivK à a y2 ≡ m βk (mod p)  
β≡αa (mod p)

Idea: decrypt the combined ciphertext
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Consider Additive HE
Multiplicative: The math of ElGamal ensures that multiplying the 
encrypted values corresponds to multiplying the original values.

Additive: Here, we no longer have the same nice properties of how 
exponents play together.

• “Crazy” idea: Something like g(EK(αx), EK(αy)) = EA(αx+y) could work
o But we would need to break the discrete log of αx+y to retrieve the sum

§ Only really works for small x and y

28



The Paillier Partially Homomorphic 
Encryption Scheme

29
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Paillier’s Encryption Scheme
• Proposed by Pascal Pailler in 1999

• The Paillier cryptosystem is a public-key cryptosystem known for its 
additive homomorphic properties.

• The security of the Paillier cryptosystem is based on the difficulty of the 
composite residuosity class problem
• This problem involves determining whether a given number is an n-th residue modulo n2

for a composite n.

30
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Paillier’s Encryption Scheme
• Proposed by Pascal Pailler in 1999.

• The Paillier cryptosystem is a public-key cryptosystem known for its 
additive homomorphic properties.

• The security of the Paillier cryptosystem is based on the difficulty of the 
composite residuosity class problem.
• Determining whether a given number is an n-th residue modulo n2 for a composite n.

31
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Paillier’s Encryption Scheme
● Let p, q be two large primes; N = pq
● Ciphertexts are mod N2

32
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Paillier’s Encryption Scheme
● Let p, q be two large primes; N = pq
● Ciphertexts are mod N2

● Choose r; plaintext m (mod p) is encrypted as gm rN (mod N2)

33

g is a generator
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Paillier’s Encryption Scheme

● Let p, q be two large primes; N = pq
● Ciphertexts are mod N2

● Choose r; plaintext m (mod p) is encrypted as gm rN (mod N2)

34
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Paillier’s Encryption Scheme
● Let p, q be two large primes; N = pq
● Ciphertexts are mod N2

● Choose r; plaintext m (mod p) is encrypted as gm rN (mod N2)

● Multiply encryption of m1 and m2: 
E(m1,r1) ⋅ E(m2,r2) mod N2 = 
gm1 ⋅ gm2 ⋅ r1

N ⋅ r2
N mod N2 = 

gm1+m2 ⋅ (r1 ⋅ r2)N mod N2

35

From the product of ciphertexts to addition of plaintexts
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Paillier’s Encryption Scheme

● Multiply encryption of m1 and m2: 
E(m1,r1) ⋅ E(m2,r2) mod N2 = 
gm1 ⋅ gm2 ⋅ r1

N ⋅ r2
N mod N2 = 

gm1+m2 ⋅ (r1 ⋅ r2)N mod N2

● If factorization of N is known, breaking the DL is efficient
⇒ Efficient additive HE, even for large numbers

36
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Paillier’s Encryption Scheme

● Multiply encryption of m1 and m2: 
E(m1,r1) ⋅ E(m2,r2) mod N2 = 
gm1 ⋅ gm2 ⋅ r1

N ⋅ r2
N mod N2 = 

gm1+m2 ⋅ (r1 ⋅ r2)N mod N2

● If factorization of N is known, breaking the DL is efficient
⇒ Efficient additive HE, even for large numbers

37

Simplica Numara!



DGHV:
A Fully Homomorphic Encryption Scheme

38
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Fully Homomorphic Encryption (FHE)
• Many schemes now, usually abbreviated by the first letters of 

the last names of the authors
• Different security assumptions (not factoring or discrete log)
o Lattice problems: Learning with errors, …

39

Examples:
● First construction by Gentry in 2009
● E.g. FV, BGV, or DGHV (not used in practice)
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The DGHV Fully Homomorphic Encryption Scheme

• FHE scheme whose security is based on the difficulty of the 
approximate greatest common divisor (AGCD) problem.
o Finding the greatest common divisor of a set of integers that are close to multiples 

of a secret integer.

40

https://medium.com/@j248360/explaining-the-dghv-encryption-scheme-1acb6cd74dd6
https://www.esat.kuleuven.be/cosic/blog/co6gc-homomorphic-encryption-part-1-computing-with-secrets/
https://github.com/coron/fhe

https://medium.com/@j248360/explaining-the-dghv-encryption-scheme-1acb6cd74dd6
https://www.esat.kuleuven.be/cosic/blog/co6gc-homomorphic-encryption-part-1-computing-with-secrets/
https://github.com/coron/fhe
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Consider Simplified DGHV (not used in practice)
• m ∈ {0, 1}
• Secret key: prime p

41
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Consider Simplified DGHV (not used in practice)
• m ∈ {0, 1}
• Secret key: prime p

• Encryption
o Choose q, r such that r < p --> r is random noise
o c = q.p + 2.r + m

42
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Consider Simplified DGHV (not used in practice)
• m ∈ {0, 1}
• Secret key: prime p

• Encryption
o Choose q, r such that r < p --> r is random noise
o c = q.p + 2.r + m

• Decryption
o m = c mod 2 ⊕ (⌊c/p⌋ mod 2)

43
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Computing with Simplified DGHV
● Ciphertexts
○c1 = q1.p + 2.r1 + m1
○c2 = q2.p + 2.r2 + m2

44
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Computing with Simplified DGHV
● Ciphertexts
○c1 = q1.p + 2.r1 + m1
○c2 = q2.p + 2.r2 + m2

● Addition
○c1 + c2 = (q1+q2).p + 2.(r1+r2) + m1 + m2

45

Note that noise grows linearly
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Computing with Simplified DGHV
● Ciphertexts
○c1 = q1.p + 2.r1 + m1
○c2 = q2.p + 2.r2 + m2

● Addition
○c1 + c2 = (q1+q2).p + 2.(r1+r2) + m1 + m2

● Multiplication
○c1 ⋅ c2 = q’.p + 2.r’ + m1.m2

○ r’ = 2.r1.r2 + r1.m2 + r2.m1
○q′= q1⋅q2⋅p + q1⋅m2 + q2 ⋅ m1

46

Note the increased growth of the noise.
(no longer linear). One gets a new 
ciphertext with noise roughly twice larger 
than in the original ciphertexts c1 and c2.



The bootstrapping problem in FHE

47
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Bootstrapping… in Fully HE Schemes
• If r > p/2 ⇒ decryption fails on DGHV
• Also a problem for other schemes.

• If the noise grows too much, it can corrupt the encrypted 
data and make it unusable

• Each operation increases the noise, so one must control
this growth

48
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Bootstrapping… in Fully HE Schemes
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• To obtain a FHE scheme, (i.e. unlimited addition and 
multiplication on ciphertexts), one must reduce the 
amount of noise in a ciphertext

• Bootstrapping is a procedure that reduces noise
• Still, bootstrapping is slow in most fully HE schemes
• Thus, w/ fully HE, aim to avoid subsequent 

multiplications
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Practical FHE Schemes
● FV, BGV, BFV, CKKS
○Lattice-based encryption schemes
○Encrypt vectors (usually as polynomials)

● TFHE
○Fully HE over the Torus
○Usually encrypts bits
○Very fast bootstrapping (frequently performed)
○https://tfhe.github.io/tfhe/

50

https://tfhe.github.io/tfhe/
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Try it… on your own J
● Download Microsoft’s SEAL library and hack away!
○https://www.microsoft.com/en-us/research/project/microsoft-seal/

51

https://www.microsoft.com/en-us/research/project/microsoft-seal/
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A Few Announcements

● Assignment 3 is due today 3pm
o No-penalty late policy period until Friday 3pm

● Extra office hours this Friday: 2pm—3pm at DC 2631

● Student Course Perceptions – Available now until July 30
o https://perceptions.uwaterloo.ca/

52

https://perceptions.uwaterloo.ca/


Midterm 2 Q&A
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Thanks for tagging along!


