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Prologue: a couple more DP properties
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Recap on Group privacy

3

Group privacy: Let 𝑀:𝒟 → ℛ be a mechanism that provides 𝜖-DP for 𝐷,𝐷′ 
that differ in one entry. Then, it provides 𝑘𝜖-DP for datasets 𝐷,𝐷′ that differ in 
𝑘 entries. 

If this is 𝜖-DP…. … then this is 2𝜖-DP
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Group privacy with 𝜖, 𝛿 -DP
● For approximate DP, 𝛿 gets an additional factor of 𝑘𝑒 !"# $ :
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Group privacy: Let 𝑀:𝒟 → ℛ be a mechanism that provides (𝜖, 𝛿)-DP for 
𝐷,𝐷′ that differ in one entry. Then, it provides (𝑘𝜖, 𝑘𝑒 #$% &𝛿)-DP for datasets 
𝐷,𝐷′ that differ in 𝑘 entries. 
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Sequential Composition

● When running 𝑘 mechanisms on the same sensitive dataset, and 
publishing all 𝑘 results, the 𝜖s and 𝛿s add up 
○ privacy decrease as we publish more results
○ i.e., more queries mean more leakage

● If we assume 𝛿 = 0, this boils down to 𝜖-DP

5

Naïve composition: Let 𝑀 = 𝑀%, 𝑀', … ,𝑀#  be a sequence of mechanisms, 
where 𝑀( is (𝜖(, 𝛿()-DP. Then 𝑀 is (∑()%# 𝜖( , ∑()%# 𝛿()-DP
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Sequential Composition
● However, if we allow the overall 𝛿 to be slightly larger, we can get a 

much smaller 𝜖:

● Note that the overall 𝜖 only grows on the order of 𝑘 now (loosely 
speaking), and that if we allow higher 𝛿′ then we can get a smaller 
overall 𝜖.

Advanced composition: Let 𝑀 = 𝑀%, 𝑀', … ,𝑀#  be a sequence of mechanisms, 
where 𝑀( is (𝜖, 𝛿)-DP. 

Then 𝑀 is 𝜖 2𝑘 ⋅ ln %
*! + #& +"$%

+",% , 𝑘𝛿 + 𝛿- -DP
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Sequential Composition
● However, if we allow the overall 𝛿 to be slightly larger, we can get a 

much smaller 𝜖:

● Note that the overall 𝜖 only grows on the order of 𝑘 now (loosely speaking), 
and that if we allow higher 𝛿′ then we can get a smaller overall 𝜖.

● 𝛿 <= 1/N
● 𝛿’ can be tuned to trade-off with 𝜖.

Advanced composition: Let 𝑀 = 𝑀%, 𝑀', … ,𝑀#  be a sequence of mechanisms, 
where 𝑀( is (𝜖, 𝛿)-DP. 

Then 𝑀 is 𝜖 2𝑘 ⋅ ln %
*! + #& +"$%

+",% , 𝑘𝛿 + 𝛿- -DP
A tighter analysis. In

tense math.
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Parallel Composition
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Parallel Composition: Let 𝑀 = (𝑀%, 𝑀', … ,𝑀#) be sequence of mechanisms, 
where 𝑀( is 𝜖(-DP. Let 𝐷%, 𝐷', … , 𝐷# let a deterministic partition of 𝐷. Publishing 
𝑀% 𝐷% , 𝑀' 𝐷' , … ,𝑀#(𝐷#) satisfies ( max

(∈ %,…,#
𝜖()-DP.

𝐷

𝐷!

𝐷"

𝐷#

𝑀! 𝐷!
𝜖!-DP

𝑀" 𝐷"
𝜖"-DP

𝑀# 𝐷#
𝜖#-DP

Overall: max(𝜖!, 𝜖", 𝜖#)-DP

• The partition of 𝐷 must be 
deterministic and have no overlaps
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Renyi Differential Privacy
● Differential privacy is a very ambitious privacy guarantee, that protects against 

a worst-case adversary that potentially knows 𝐷 and 𝐷′, and for all possible 
outputs of the mechanism.

● 𝜖 and 𝛿 provided a very limited and pessimistic description of the differences 
between Pr(𝑀 𝐷 ∈ 𝑆) and Pr(𝑀 𝐷- ∈ 𝑆).

● There are other relaxed notions of DP that capture other nuances between 
these distributions, allowing for a tighter analysis.
○ Relaxes how much we care about the worst case (sometimes very unlikely)
○ A popular one is Renyi Differential Privacy

9



CS489 Spring 2024 

Many other variations…
● An SOK from 

2020 
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https://petsymposium.org/popets/2020/popets-2020-0028.pdf


A noise mechanism for 𝜖, 𝛿 -DP 

11
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The Gaussian Mechanism
● So far, we have seen a mechanism (Laplace) for pure DP. Let’s see 

one for approximate DP.
● First, given a function 𝑓:𝒟 → ℝ! , we define the ℓ.-sensitivity as:

12

Δ' ≐ max
3,3!

| 𝑓 𝐷 − 𝑓 𝐷- |'
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The Gaussian Mechanism
● Given a function 𝑓:𝒟 → ℝ! , we define the ℓ.-sensitivity as:

● The Gaussian mechanism simply adds Gaussian noise to the 
output of the function:

13

Δ' ≐ max
3,3!

| 𝑓 𝐷 − 𝑓 𝐷- |'

Given a function 𝑓:𝒟 → ℝ# with ℓ'-sensitivity Δ', the Gaussian mechanism 
is defined as 𝑀 𝐷 = 𝑓 𝐷 + (𝑌%, 𝑌', … , 𝑌#) where each 𝑌( is independently 
distributed as   Y4 ∼ 𝑁(0, 𝜎') with 𝜎' = 2 ln %.'6

*
Δ''/𝜖'	

Similar to Laplace mechanism. Key differences:
 Δ2 instead of Δ1
 Adds Gaussian noise instead (still 0 mean)
 𝜎" a bit more complicated
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The Gaussian Mechanism
● Given a function 𝑓:𝒟 → ℝ! , we define the ℓ.-sensitivity as:

● The Gaussian mechanism simply adds Gaussian noise to the 
output of the function:

14

Δ' ≐ max
3,3!

| 𝑓 𝐷 − 𝑓 𝐷- |'

Given a function 𝑓:𝒟 → ℝ# with ℓ'-sensitivity Δ', the Gaussian mechanism 
is defined as 𝑀 𝐷 = 𝑓 𝐷 + (𝑌%, 𝑌', … , 𝑌#) where each 𝑌( is independently 
distributed as   Y4 ∼ 𝑁(0, 𝜎') with 𝜎' = 2 ln %.'6

*
Δ''/𝜖'	 .

The Gaussian mechanism 

provides 𝜖, 𝛿
-DP



CS489 Spring 2024 

Let’s think about this

15

The Gaussian mechanism 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 𝑌 ∼ 𝑁(0, 𝜎') 
with 𝜎' = 2 ln %.'6

* Δ''/𝜖' provides (𝜖, 𝛿)-DP.

Q: does the relationship between the privacy 
parameter 𝜖 and the noise variance 𝜎! make sense?



CS489 Spring 2024 

Let’s think about this

16

The Gaussian mechanism 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 𝑌 ∼ 𝑁(0, 𝜎') 
with 𝜎' = 2 ln %.'6

* Δ''/𝜖' provides (𝜖, 𝛿)-DP.

Q: does the relationship between the privacy 
parameter 𝜖 and the noise variance 𝜎! make sense? A: yes, to provide more privacy (lower 

𝜖) we need more noise (higher 𝜎").
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Let’s think about this
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The Gaussian mechanism 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 𝑌 ∼ 𝑁(0, 𝜎') 
with 𝜎' = 2 ln %.'6

* Δ''/𝜖' provides (𝜖, 𝛿)-DP.

Q: if we fix the noise level (𝜎), what is the 
relationship between 𝜖 and 𝛿, and why?
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Let’s think about this
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The Gaussian mechanism 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 𝑌 ∼ 𝑁(0, 𝜎') 
with 𝜎' = 2 ln %.'6

* Δ''/𝜖' provides (𝜖, 𝛿)-DP.

Q: if we fix the noise level (𝜎), what is the 
relationship between 𝜖 and 𝛿, and why?

A: for a fixed noise, 𝜖 and 𝛿 will be 
inversely proportional: if we want allow for 
a higher 𝛿 then that level of noise can 
provide lower 𝜖’s.
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Let’s think about this

This is not just for the Gaussian mechanism, but all 𝜖, 𝛿-DP mechanisms:

19

The Gaussian mechanism 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 𝑌 ∼ 𝑁(0, 𝜎') 
with 𝜎' = 2 ln %.'6

* Δ''/𝜖' provides (𝜖, 𝛿)-DP.

Smaller 𝜖, larger 𝛿 Higher 𝜖, smaller 𝛿

Q: if we fix the noise level (𝜎), what is the 
relationship between 𝜖 and 𝛿, and why?

A: for a fixed noise, 𝜖 and 𝛿 will be 
inversely proportional: if we want allow for 
a higher 𝛿 then that level of noise can 
provide lower 𝜖’s.



Primer on Machine Learning

20
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Machine learning: quick primer
● For simplicity, we will focus on a classification problem with supervised learning.

○ Unsupervised or Reinforcement learning are other types 

● We have a training set 𝐷 = { 𝑥%, 𝑦% , 𝑥', 𝑦' , … , 𝑥9, 𝑦9 } with 𝑛 samples. Given a 
sample (𝑥(, 𝑦(), 𝑥( are the features and 𝑦( is its label.

21
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Machine learning: quick primer
● For simplicity, we will focus on a classification problem with supervised learning.

○ Unsupervised or Reinforcement learning are other types 

● We have a training set 𝐷 = { 𝑥%, 𝑦% , 𝑥', 𝑦' , … , 𝑥9, 𝑦9 } with 𝑛 samples. Given a 
sample (𝑥(, 𝑦(), 𝑥( are the features and 𝑦( is its label.

● We want to produce a function 𝑓:𝒳 → 𝒴 that can predict a sample’s label from 
its features.

22
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Machine learning: quick primer
● For simplicity, we will focus on a classification problem with supervised learning.

○ Unsupervised or Reinforcement learning are other types 

● We have a training set 𝐷 = { 𝑥%, 𝑦% , 𝑥', 𝑦' , … , 𝑥9, 𝑦9 } with 𝑛 samples. Given a 
sample (𝑥(, 𝑦(), 𝑥( are the features and 𝑦( is its label.

● We want to produce a function 𝑓:𝒳 → 𝒴 that can predict a sample’s label from 
its features.

● We will use the training set to train such a function. Ideally, it should correctly 
predict labels for unseen samples (e.g., samples in a testing set).
○ We will say that a model generalizes well if it has high accuracy on unseen samples
○ A model overfits if it works perfectly for samples in the training set but does not generalize.

23
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Machine learning: quick primer

Train

𝐷

𝑥$, 𝑦$

𝑓
𝑥

𝑦=“Dog”

Usually, this gives confidence scores for each class: ( ;𝑦!, ;𝑦",…, ;𝑦$)
For example: [“Dog”, “Cat”, “Mouse” …]=[0.81, 0.10, 0.03, …]

24
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Neural networks
● There are many architectures for machine learning models (i.e., many 

structures for the function 𝑓).
● One of the most popular are neural networks.

𝑥!

𝑥!,#
𝑥!,$

𝑥!,%

Multiply by 
a weight w

∑(  )+b act(  )

Sum, add bias term b

Activation function
(we want this non-linear)

(More layers)

Training the model means tuning all w’s and b’s

,𝑦.
,𝑦#

,𝑦!

25
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Loss Functions
● We define a loss function that we want to minimize: ℓ(𝜃, 𝑥, 𝑦), where 𝜃 are the 

parameters w and b.
○ For example, a typical loss function is ℓ 𝜃, 𝑥, 𝑦 = ∑%−𝑦% log :𝑦%	where 𝑦% is only 1 for the 

true label of the sample, 𝑗. 

ℓ 𝜃, 𝑥, 𝑦 =U
>

−𝑦> log X𝑦>	
1.0

0.0

0.0

0.7

0.2

0.1

𝑦 :𝑦 = 𝑓&(𝑥)

26
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Training neural networks

𝑥$

𝑥$,!
𝑥$,"

𝑥$,(

w

∑(  )+b act(  )

(More layers)

• Since we have the training set 𝐷, 
it makes sense to minimize the 
empirical loss in this training set:

ℒ 𝜃, 𝐷 =
1
𝑁@

$

ℓ 𝜃, 𝑥$, 𝑦$

• In practice, the minimization is 
done using Stochastic Gradient 
Descent (SGD).

$𝑦!
$𝑦#

$𝑦$

27
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Gradient Descent
● The gradient of the loss ∇ℓ(𝜃, 𝑥, 𝑦) evaluated at (𝑥, 𝑦) is the derivative with 

respect to each parameter 𝜃( (every w and b).
● It tells us the direction in which 𝜃 should go to minimize the loss (for sample 

(𝑥, 𝑦)).

ℓ(𝜃, 𝑥, 𝑦)

𝜃

Minimal Loss

28
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Gradient Descent
● We could minimize the loss by running several steps (epochs) of Gradient 

Descent:
○ For each step 𝑡 ∈ [𝑇]:

𝜃C = 𝜃C$% − 𝜂∇ℒ(𝜃C$%, 𝐷)
○ 𝜂 is the learning rate

● This is expensive, so usually we do these iterations over a subset of the training 
sets (batches)

● Note 𝜃 represents parameters, 𝜂 and 𝑇 are hyper-parameters 

29
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Stochastic Gradient Descent – with Mini Batches
For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿	samples from 𝐷
2. For each (𝑥(, 𝑦() ∈ 𝐵	, compute the gradient g4 = ∇ℓ 𝜃C$%, 𝑥(, 𝑦(
3. Average the gradients 𝑔 = %

D
∑( 𝑔(

4. Descend 𝜃C = 𝜃C$% − 𝜂 ⋅ 𝑔

30



Inference Attacks in ML
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Attacking ML models

Train

Inference Attacks:
- Membership inference
- Attribute inference
- Property inference
- Model inversion

Evasion attacks
Model stealing attacks

Poisoning attacks
(targeted, untargeted, 

backdoors)

Whitebox: adversary sees the 
parameters 𝜃

Blackbox: adversary is only allowed 
to send queries

● There are many types of attacks against ML
● Later we will see that there are also different types 

of defenses

32
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Attacking ML models in Federated Learning

Inference Attacks:
(adv sees all intermediate 
gradients, can potentially 

send malicious 𝜃)
- Membership inference
- Attribute inference
- Property inference
- …

Poisoning 
attacks

(targeted, 
untargeted, 
backdoors)

● Federated Learning: a centralized server builds a model, a set of clients send 
updates (gradients) using their local datasets

Send updated model θ
Send gradients g

33
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Inference attacks

Train

?
Inference Attacks:

- Membership inference
- Attribute inference
- Property inference
- Model inversion

Membership Inference:
Is a given sample in the 
training set?

Attribute Inference:
Given a sample with 
some missing attributes, 
can we guess them?

Property Inference:
Given a property about 
the whole training set, 
can we guess if it’s true 
or not?

Model inversion:
Given a label, can we find 
a representative element 
of this class? (learn 𝑥 
from 𝑦)

34
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Inference attacks

Train

?
Inference Attacks:

- Membership inference
- Attribute inference
- Property inference
- Model inversion

Membership Inference:
Is a given sample in the 
training set?

Attribute Inference:
Given a sample with 
some missing attributes, 
can we guess them?

Property Inference:
Given a property about 
the whole training set, 
can we guess if it’s true 
or not?

Model inversion:
Given a label, can we find 
a representative element 
of this class? (learn 𝑥 
from 𝑦)

35
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● Given a sample (𝑥, 𝑦), and a model 𝑓 trained with dataset 𝐷, guess whether 𝑥, 𝑦 ∈ 𝐷.

● With only black-box access, and a model that outputs confidence scores:
○ 𝑓 𝑥 = [:𝑦!, :𝑦", … , :𝑦)], where :𝑦% are confidence scores for label 𝑗.

Membership Inference Attacks (MIAs)

Train

𝐷
𝑓

Black-box: the adversary queries 
the model (possibly more than once)
White-box: the adversary sees the 
model parameters 𝜃

Q: If you were the adversary, with a target sample (𝑥, 𝑦) and black-box access to the 
model 𝑓, how would you guess if the target sample is a member?

36
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Threshold Attacks
● Idea: the model will be more confident on samples it has seen during training.

Threshold attack
● This attack queries the model on sample 𝑥 and then measures the confidence score assigned to 

its true label 𝑦.
● If the confidence score is above some threshold, then the attack decides the sample is a member.

Yeom et al. "Privacy risk in machine learning: Analyzing the connection to overfitting." CSF, 2018.

Train

𝐷 𝑓 𝑥

𝑓(𝑥)

If 𝑓 𝑥 % > 𝑇, then 
(𝑥, 𝑦) is a member!

Q: how can the attacker compute this threshold?

37
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Neural Network-based Attacks
● Other MIAs use Machine Learning against Machine Learning.

38
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Neural Network-based Attacks
● Other MIAs use Machine Learning against Machine Learning.
● The first NN-based attack (which was also the first MIA) was proposed by 

Shokri et al.

Shokri, Reza, et al. "Membership inference attacks against machine learning models." IEEE symposium on security and privacy (SP), 2017.

Train

𝐷
𝑓HIJ Assumption: the adversary can 

generate data with a similar 
distribution as 𝐷.

Target model (adv has 
black-box access)

Training dataset 
(unknown to adv)

39
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Neural Network-based Attacks
● Other MIAs use Machine Learning against Machine Learning.
● The first NN-based attack (which was also the first MIA) was proposed by 

Shokri et al.

Shokri, Reza, et al. "Membership inference attacks against machine learning models." IEEE symposium on security and privacy (SP), 2017.

Train

𝐷
𝑓HIJ Assumption: the adversary can 

generate data with a similar 
distribution as 𝐷.

Target model (adv has 
black-box access)

Training dataset 
(unknown to adv)

40

Q: how realistic is this?
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Shokri et al.’s attack
1. Generate shadow training datasets 𝐷*!, 𝐷*", …, 𝐷*)(based on D’ with distribution similar to 𝐷).
2. Train 𝑘 shadow models 𝑓*!, … , 𝑓*) (same classification task as the target model).

Shokri, Reza, et al. "Membership inference attacks against machine learning models." IEEE symposium on security and privacy (SP), 2017.

Train

Train

𝐷&!

𝐷&$

𝑓&!

𝑓&$

41
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Shokri et al.’s attack
1. Generate shadow training datasets 𝐷*!, 𝐷*", …, 𝐷*)(based on D’ with distribution similar to 𝐷).
2. Train 𝑘 shadow models 𝑓*!, … , 𝑓*) (same classification task as the target model).

Shokri, Reza, et al. "Membership inference attacks against machine learning models." IEEE symposium on security and privacy (SP), 2017.

Train

Train

𝐷&!

𝐷&$

𝑓&!

𝑓&$

42

Works even with different 
models! (but better if you 
know the actual one)
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Shokri et al.’s attack
3. Generate shadow test data L𝐷*!, L𝐷*",…, L𝐷*).
4. For each shadow model 𝑖 ∈ [𝑘]: get the confidence scores for each sample in 𝐷*$ and L𝐷*$ . 

Create a dataset with [confidence scores, true label, membership] for each sample.

Shokri, Reza, et al. "Membership inference attacks against machine learning models." IEEE symposium on security and privacy (SP), 2017.

𝑓&'𝐷&'

J𝐷&' [confidence scores, true label, non-member]

[confidence scores, true label, member]
for each sample get this

get thisfor each sample

43
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Shokri et al.’s attack
5. With the new dataset, that contains [confidence scores, true label, membership status] 

computed with all the shadow models, train a new attack model 𝑓+,, to predict the 
membership status from [confidence scores, true label]

Shokri, Reza, et al. "Membership inference attacks against machine learning models." IEEE symposium on security and privacy (SP), 2017.

𝑥=[confidence scores, true label], 𝑦=[member/non-member]

Train

𝑓())
This model is a binary 
classifier that receives 
conf. scores and true 

label, and returns 
member/non-member

44
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Shokri et al.’s attack
6. Get the confidence scores of the target sample in the target model 𝑓,+-.
7. Evaluate those [confidence scores, true label] samples in the attack model 𝑓+,,.

Shokri, Reza, et al. "Membership inference attacks against machine learning models." IEEE symposium on security and privacy (SP), 2017.

𝑓())
Train

𝐷
𝑓HIJ 𝑥

𝑓)(*(𝑥)

(𝑓)(* 𝑥 , 𝑦)

membership
prediction

45
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Attribute Inference Attacks
● Each sample is 𝑧 = (𝑥, 𝑎, 𝑦), where 𝑥 is the features, 𝑎 is a privacy-sensitive attribute, and 𝑦 is 

the label.
● The adversary has a sample 𝑧 = (𝑥, ? , 𝑦), and wants to learn the attribute.
● Assume the space of all attributes is 𝒜 = {𝑎!, 𝑎", … , 𝑎.}
● Simple attack: query for all possible samples (𝑥, 𝑎!), …,(𝑥, 𝑎.). The true attribute is probably 

the one that yields a highest confidence score for the true class 𝑦.

Train

𝐷 𝑓 (𝑥, 𝑎()

𝑓((𝑥, 𝑎$))

̂𝚤 = 𝑎𝑟𝑔𝑚𝑎𝑥'𝑓 𝑥, 𝑎' %

46
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Defending against inference attacks
● Where do we defend?

Train

Input: add noise to inputs, 
generate synthetic training data, 

etc.

Model: add noise to the model 
weights

Output: add noise to the outputs of the model 
(this only works in the black-box setting)Training: add noise to the 

gradients or the loss function.

47



Defenses against inference attacks
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Differentially Private Stochastic Gradient Descent 
(DP-SGD) 
● Adds privacy during the training step, modifying SGD.
● Recall Differential Privacy: we want to limit the effect that a single training set sample has on 

the output (the “output” of the training algorithm is the model!)

SGD
For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿	samples from 𝐷.
2. For each (𝑥$, 𝑦$) ∈ 𝐵	, compute the 

gradient:
g/ = ∇ℓ 𝜃,0!, 𝑥$, 𝑦$

3. Average the gradients 𝑔 = !
1
∑$ 𝑔$.

4. Descend 𝜃, = 𝜃,0! − 𝜂 ⋅ 𝑔.

“Private” SGD
For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿	samples from 𝐷.
2. For each (𝑥$, 𝑦$) ∈ 𝐵	, compute the 

gradient: 
g/ = ∇ℓ 𝜃,0!, 𝑥$, 𝑦$

3. Average the gradients and add 
noise	𝑔 = !

1
(∑$ 𝑔$ +𝒩(0, 𝜎")).

4. Descend 𝜃, = 𝜃,0! − 𝜂 ⋅ 𝑔.

Q: Is it enough to add noise to the gradients?

49



CS489 Spring 2024 

Differentially Private Stochastic Gradient Descent 
(DP-SGD) 
● The gradient could potentially be unbounded à Here, unbounded sensitivity is bad for DP
● We clip the gradients to ensure their ℓ" norm is at most 𝐶.

○ 𝐶 is the clipping threshold (1 is usually a good value)
○ 𝐶 is independent of the data

SGD
For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿	samples from 𝐷.
2. For each (𝑥$, 𝑦$) ∈ 𝐵	, compute the 

gradient:
g/ = ∇ℓ 𝜃,0!, 𝑥$, 𝑦$

3. Average the gradients 𝑔 = !
1
∑$ 𝑔$.

4. Descend 𝜃, = 𝜃,0! − 𝜂 ⋅ 𝑔.

DP-SGD
For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿	samples from 𝐷.
2. For each (𝑥$, 𝑦$) ∈ 𝐵	, compute the gradient:

g/ = ∇ℓ 𝜃,0!, 𝑥$, 𝑦$
3. Clip the gradients: 𝑔$ = 𝑔$/max 1,

2% &
3

4. Sum the gradients 𝑔 = ∑$ 𝑔$.
5. Add noise:𝑔 = 𝑔 +𝒩(0, 𝜎"𝐶")
6. Descend 𝜃, = 𝜃,0! − 𝜂 ⋅

!
1
𝑔.
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DP-SGD: keeping track of 𝜖, 𝛿
● Note that a single sample will participate in 

multiple training steps à there will be some 
sequential composition involved.

● We need to keep track of 𝝐, 𝜹. 
● For a fixed amount of noise 𝜎, if we do not keep 

track of 𝜖, 𝛿, we can end up with a very large 𝜖, 
which is bad.
○ The actual true 𝜖 will be smaller than the 𝜖 we can 

compute theoretically. – e.g., due to batching, one 
sample may not appear in a given training step.

○ We can only guarantee an 𝜖 we can prove w/ theory.

DP-SGD
For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿	samples from 𝐷.
2. For each (𝑥' , 𝑦') ∈ 𝐵	, compute the 

gradient:
g+ = ∇ℓ 𝜃),!, 𝑥' , 𝑦'

3. Clip the gradients: 𝑔' = 𝑔'/max 1,
-! "
.

4. Sum the gradients 𝑔 = ∑' 𝑔'.
5. Add noise:𝑔 = 𝑔 +𝒩(0, 𝜎"𝐶")
6. Descend 𝜃) = 𝜃),! − 𝜂 ⋅

!
/
𝑔.
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DP-SGD: keeping track of 𝜖, 𝛿
● First, we choose a 𝛿. Recall that this 

should be smaller than 𝛿 < %
e.

○ The reason is the following: a training 
algorithm that simply publishes a 
random training set record would 
provide (𝜖 = 0, 𝛿 = 1/𝑁)-DP. However, 
we know this is not private enough.

DP-SGD
For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿	samples from 𝐷.
2. For each (𝑥' , 𝑦') ∈ 𝐵	, compute the 

gradient:
g+ = ∇ℓ 𝜃),!, 𝑥' , 𝑦'

3. Clip the gradients: 𝑔' = 𝑔'/max 1,
-! "
.

4. Sum the gradients 𝑔 = ∑' 𝑔'.
5. Add noise:𝑔 = 𝑔 +𝒩(0, 𝜎"𝐶")
6. Descend 𝜃) = 𝜃),! − 𝜂 ⋅

!
/
𝑔.
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DP-SGD: keeping track of 𝜖, 𝛿

𝑓 𝐷 + 𝑌 is (𝜖, 𝛿)-DP if
𝑌 ∼ 𝑁(0, 𝜎')

𝜎' = 2 ln
1.25
𝛿

Δ''/𝜖'

DP-SGD
For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿	samples from 𝐷.
2. For each (𝑥' , 𝑦') ∈ 𝐵	, compute the 

gradient:
g+ = ∇ℓ 𝜃),!, 𝑥' , 𝑦'

3. Clip the gradients: 𝑔' = 𝑔'/max 1,
-! "
.

4. Sum the gradients 𝑔 = ∑' 𝑔'.
5. Add noise:𝑔 = 𝑔 +𝒩(0, 𝜎"𝐶")
6. Descend 𝜃) = 𝜃),! − 𝜂 ⋅

!
/
𝑔.

Q: Given 𝛿, 𝜎, 𝐶, 𝑇, and assuming each 
sample in 𝐷 is used once per training 
step, what is the total 𝜖 we get?

• Use naive composition
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DP-SGD: keeping track of 𝜖, 𝛿

𝑓 𝐷 + 𝑌 is (𝜖, 𝛿)-DP if
𝑌 ∼ 𝑁(0, 𝜎')

𝜎' = 2 ln
1.25
𝛿

Δ''/𝜖'

DP-SGD
For each training step 𝑡 ∈ [𝑇]:
1. Take a batch 𝐵 of 𝐿	samples from 𝐷.
2. For each (𝑥' , 𝑦') ∈ 𝐵	, compute the 

gradient:
g+ = ∇ℓ 𝜃),!, 𝑥' , 𝑦'

3. Clip the gradients: 𝑔' = 𝑔'/max 1,
-! "
.

4. Sum the gradients 𝑔 = ∑' 𝑔'.
5. Add noise:𝑔 = 𝑔 +𝒩(0, 𝜎"𝐶")
6. Descend 𝜃) = 𝜃),! − 𝜂 ⋅

!
/
𝑔.

Q: Given 𝛿, 𝜎, 𝐶, 𝑇, and assuming each 
sample in 𝐷 is used once per training 
step, what is the total 𝜖 we get?

• Use naive composition

A: 𝐶"𝜎" = 2 ln !."1
2

Δ""/𝜖" 	 → 𝜖 = 2 ln !."1
2

/𝜎    for 

each step. Then naïve composition gives 

𝜖 = 𝑇 2 ln
1.25
𝛿 /𝜎

*Note: this question is very over simplified
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DP-SGD: keeping track of 𝜖, 𝛿
● Renyi Differential Privacy (RDP) provides a tighter 

𝜖, 𝛿 bound.
○ Better suited to Gaussian Noise
○ Keeps track of more information

● This means that, for a given 𝜎, 𝐶, and 𝛿, RDP tells 
us our actual 𝜖 is smaller than what Advanced 
Composition (AC) tells us.

● In other words, for a target privacy budget 𝜖, using 
RDP we need to add less noise than using AC.
○ E.g., again, because a sample may be excluded from a 

given training step
● Note that, even with RDP, we need 𝜖 > 100	if we 

do not want any accuracy loss

Jayaraman, Bargav, and David Evans. "Evaluating differentially private machine learning in practice." USENIX Security Symposium. 2019.
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DP-SGD: theoretical vs empirical privacy
● Both attacks we’ve seen perform similarly
● It seems that 𝜖 = 100 or even 𝜖 = 1000 still provides good empirical privacy
● The theoretical bound on the privacy leakage provided by DP is very loose

Jayaraman, Bargav, and David Evans. "Evaluating differentially private machine learning in practice." USENIX Security Symposium. 2019.
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Issues of DP-SGD
● We saw that, for strong theoretical privacy (e.g., 𝜖 < 1), the models usually 

lose all utility.
● For very weak theoretical privacy (e.g., 𝜖 = 100), some models achieve 

reasonable utility.
● However, DP-SGD with 𝜖 = 100 seems to provide enough protection against 

existing attacks.

Q: Is it OK to use 𝜖 = 100?
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Issues of DP-SGD
● We saw that, for strong theoretical privacy (e.g., 𝜖 < 1), the models usually 

lose all utility.
● For very weak theoretical privacy (e.g., 𝜖 = 100), some models achieve 

reasonable utility.
● However, DP-SGD with 𝜖 = 100 seems to provide enough protection against 

existing attacks.

Q: Is it OK to use 𝜖 = 100?

A: It might be OK to use DP-SGD tuned to 𝜖 = 100, but at that point we might as well use 
defenses that do not provide DP, since the DP guarantee is already meaningless at that point.
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Synthetic Data Generation
● For example, by using a GAN to generate real-

looking synthetic samples:

GAN
Discriminator

(guesses 
whether a 

sample is “real” 
or “fake”)

𝒩(0, 𝜎)

𝐷

If we train the GAN 
using privacy-preserving 
training algorithms (e.g., 
DP-SGD on the 
discriminator), we can 
use it to generate a 
privacy-preserving 
synthetic dataset!
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Synthetic Data Generation
● For example, by using a GAN to generate real-

looking synthetic samples:

GAN
Discriminator

(guesses 
whether a 

sample is “real” 
or “fake”)

𝒩(0, 𝜎)

𝐷

If we train the GAN 
using privacy-preserving 
training algorithms (e.g., 
DP-SGD on the 
discriminator), we can 
use it to generate a 
privacy-preserving 
synthetic dataset!

Q: What can we do with 
the resulting dataset?
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Synthetic Data Generation
● For example, by using a GAN to generate real-

looking synthetic samples:

GAN
Discriminator

(guesses 
whether a 

sample is “real” 
or “fake”)

𝒩(0, 𝜎)

𝐷

If we train the GAN 
using privacy-preserving 
training algorithms (e.g., 
DP-SGD on the 
discriminator), we can 
use it to generate a 
privacy-preserving 
synthetic dataset!

Q: What can we do with 
the resulting dataset?

A: Anything!
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Other defenses
● There are defenses that add noise to the confidence scores (MemGuard [Jia 

et al.]), but are not very effective.
● MIAs can work even if the model just leaks the predicted label (and not the 

confidence scores)
● Sometimes, generalization is a good defense by itself:

○ A well-generalized model will perform similarly in members (training set) and non-
members (testing set)

○ Therefore, it will be harder for an adversary to decide whether a sample is a member or 
non-member if the model generalizes well.

○ Generalization is also good for utility (improves test accuracy), so it’s a win-win.

62


