CS489/698 Privacy, Cryptography, Network and Data Security

Multi-Party Computation, PSI, PIR

1) At least two parties

1) At least two parties

I have input y

I have input x

1) At least two parties

I have input x

2) Both Alice and Bob know a function f

I have input y

I have input x

1) At least two parties

2) Both Alice and Bob know a function f

Goal: learn f(x, y) but <u>not</u> reveal anything else about x or y

I have input x

1) At least two parties

2) Both Alice and Bob know a function f

Goal: learn f(x, y) but <u>not</u> reveal anything else about x or y

Critical: Secret inputs, public outputs (to at least one party)

But...who is richer?

I don't want to tell you how much wealth I have...

Q: how can Bob and Alice determine who is richer?

Q: how can Bob and Alice determine who is richer?

A: A multi-party computation to compute f: x < y

Fun Facts:

- Andrew C. Yao, Protocols for Secure Computations Proceedings of the 21st Annual IEEE Symposium on the Foundations of Computer Science, 1982
- "Yao's millionaires' problem" (Andrew C. Yao, Turing Award 2000)

Solution

- 1. Bob picks a random N-bit integer \mathbf{x} , and computes $\mathbf{k} = E_a(\mathbf{x})$
- 2. Bob sends Alice the number k j + 1
- 3. Alice computes $y_u = D_a(k j + u)$ for u = [1, 2, ..., 10].
- 4. Alice generates random prime \mathbf{p} of N/2-bits, and computes $\mathbf{z}_{\mathbf{u}} = \mathbf{y}_{\mathbf{u}}$ (mod \mathbf{p})
 - if all $\mathbf{z}_{\mathbf{u}}$ differ by at least 2 mod p, stop;
 - otherwise, generate another p and repeat until all $\mathbf{z}_{\mathbf{u}}$ differ by at least 2 mod p
- 5. Alice sends the prime **p** and the following 10 numbers to Bob:
 - \mathbf{z}_1 , \mathbf{z}_2 , . . . , \mathbf{z}_i followed by \mathbf{z}_{i+1} + 1, \mathbf{z}_{i+2} + 1, . . . , \mathbf{z}_{10} + 1
- 6. Bob looks at $\mathbf{z_i}$, and decides that $i \ge j$ if $\mathbf{z_i} = x \mod p$, and i < j otherwise. Tells Alice.

Let's use RSA as our crypto scheme!

Alice holds:

PubA = (e, N) = (79, 3337)

PrivA = (d) = 1019

RSA operations:

Encryption: $y = x^e \mod N$

Decryption: $x = y^d \mod n$

For this example, assume Alice has 5 millions (i = 5) and Bob has 6 millions (i = 6)

Step 1:

- Bob picks a random N-bit integer x = 1234
- Bob computes $k = E_a(x) = 1234^{79} \mod 3337 = 901$

Step 2:

• Bob sends Alice k - j + 1 = 901 - 6 + 1 = 896

Step 3:

- Alice generates $Y_1...Y_{10}$, obtained by decrypting k j + 1 to k j + 10
 - This is because of our bound that tells us Alice and Bob have a number of millions between 1 and 10
 - i.e., **u** = [1 ... 10]
- Alice can do this even without knowing k or j
- So, what does she get?

Assume: 1 < **i, j** < 10

Solution Rundown

u	k - j + u	RSA decryption	\mathbf{y}_{u}
1	896	896^1019 mod 3337	1059 — The original value Bob sent
2	897	897^1019 mod 3337	1156
3	898	898^1019 mod 3337	2502
4	899		2918
5	900		385
6	901		1234 (as it should be) Bob's random number
7	902		296
8	903		1596
9	904		2804
10	905	905^1019 mod 3337	1311

Step 4:

- Next, Alice generates prime number **p** of N/2 bits
- In this example, let's pick p = 107
- Then, Alice generates $Z_1...Z_{10}$, obtained by computing $Y_1...Y_{10}$ mod p
- Keep in mind that p must be such that all Z_u differ by at least 2 units
 - This will later allow Bob to reliably determine whether i < j

Step 4:

- Next, Alice generates prime number **p** of N/2 bits
- In this example, let's pick p = 107
- Then, Alice generates $Z_1...Z_{10}$, obtained by computing $Y_1...Y_{10}$ mod p
- Keep in mind that p must be such that all Z_u differ by at least 2 units
 - This will later allow Bob to reliably determine whether i < j
- So, what does she get?

Assume: 1 < **i, j** < 10

Solution Rundown

u	k - j + u	RSA decryption	y u	$Z_u = (Y_u \bmod 107)$
1	896	896^1019 mod 3337	1059	96
2	897	897^1019 mod 3337	1156	86
3	898	898^1019 mod 3337	2502	41
4	899		2918	29
5	900		385	64
6	901		1234	57
7	902		296	82
8	903		1596	98
9	904		2804	22
10	905	905^1019 mod 3337	1311	27

u	k - j + u	RSA decryption	y _u	$Z_u = (Y_u \bmod 107)$
1	896	896^1019 mod 3337	1059	96
2	897	897^1019 mod 3337	1156	86
3	898	898^1019 mod 3337	2502	41
4	899		2918	29
5	900		385	64
6	901		1234	57
7	902		296	82
8	903		1596	98 22 All Z _u differ by at leas
9	904		2804	22 All Zu dir
10	905	905^1019 mod 3337	1311	27

Assume: 1 < **i, j** < 10

Solution Rundown

Step 5:

- Now, Alice sends p and 10 numbers to Bob
 - The first few numbers are Z_1 , Z_2 , Z_3 ... up to the value of Z_i , where i is Alice's wealth in millions

Assume: 1 < **i, j** < 10

Solution Rundown

Step 6:

• Bob now looks at the j^{th} number, where j is his wealth in millions

- He then computes $x \mod p = 1234 \mod 107 = 57$
- Lastly, if the j^{th} number is equal to 57, then Alice is equally wealthy (or more) than Bob (i >= j). Else, Bob is wealthier than Alice (i < j).

Assume: 1 < **i, j** < 10

Solution Rundown

Step 6:

Bob now looks at the jth number, where j is his wealth in millions

- He then computes $x \mod p = 1234 \mod 107 = 57$
- Lastly, if the j^{th} number is equal to 57, then Alice is equally wealthy (or more) than Bob (i >= j). Else, Bob is wealthier than Alice (i < j).
- Step 7: Bob tells Alice the result

\$ I'm wealthier!

The intuition:

- Alice adds 1 to numbers in the series greater than her wealth (i = 5);
- Bob checks to see if the one in his position in the series (j = 6) has had one added to it: if it has, then he knows he must be wealthier than Alice.

I'm wealthier!

Why does the Solution Work?

The intuition:

- Alice adds 1 to numbers in the series greater than her wealth (i = 5);
- Bob checks to see if the one in his position in the series (j = 6) has had one added to it: if it has, then he knows he must be wealthier than Alice.

All this has been done <u>without</u> either of them transmitting their wealth

Any issues?

Q: Can anyone identify a reason it would fail?

Any issues?

Q: Can anyone identify a reason it would fail?

Short A: Other than lies...no.

Any issues?

Q: Can anyone identify a reason it would fail?

Short A: Other than lies...no.

Long A: This technique is not cheat-proof (Bob could lie in step 7). Yao shows that such techniques can be constructed so that cheating can be limited, usually by employing extra steps.

How Scalable is this Solution?

In the real-world:

- You would need (<u>lots of</u>) processing power!
- If you wanted to cover the range 1 to 100,000,000 at a unit resolution, then Alice will be sending Bob a table of 100,000,000 numbers!
- This table would be on the order of a GB. You could handle it, but processing and storage implications are non-trivial.

How Scalable is this Solution?

In the real-world:

- You would need (<u>lots of</u>) processing power!
- **Q**: Any idea why?

How Scalable is this Solution?

In the real-world:

- You would need (<u>lots of</u>) processing power!
- If you wanted to cover the range 1 to 100,000,000 at a unit resolution, then Alice will be sending Bob a table of 100,000,000 numbers!
- This table would be on the order of a GB. You could handle it, but processing and storage implications are non-trivial.

New advances on MPC attempt to tackle these issues in clever ways...

A Potential "Real-World" Example

I want to analyse sentence x (NLP)

A Potential "Real-World" Example

I want to analyse sentence x (NLP)

I have model parameters y...

But I want to keep my NN secret...

A Potential "Real-World" Example

I want to analyse sentence x (NLP)

I have model parameters y...

Require: A function f over public parameters, but secret architecture

Goal: A MPC for f(x, y) such that only Alice learns the analysis of her sentence and Alice does not learn the NN

"Types" of MPC: Participant Set

Multi-Party

MPC Server Model

- Assume n >> 3 clients with an input
 - E.g., collect statistics about emoji usage in texting
- Dedicate 2 (or 3) parties as computation nodes (servers)
- The clients send "encrypted" versions of their inputs
- The servers perform multi-party computation
 - Decrypt input
 - Compute f

"Types" of MPC: Functionality

Generic

Generic functions:

A multi-party computation protocol that can be used for "any" function f

"Types" of MPC: Functionality

Generic

Specific

Generic functions:

A multi-party computation protocol that can be used for "any" function f

Specific functions:

A multi-party computation protocol that can only be used for a specific function f

"Types" of MPC: Security

Passive security (security against **semi-honest adversaries**)

Each party follows the protocol but keeps a record of all messages and after the protocol is over, tries to infer additional information about the other parties' inputs

"Types" of MPC: Security

Passive security (security against semi-honest adversaries)

Each party follows the protocol but keeps a record of all messages and after the protocol is over, tries to infer additional information about the other parties' inputs

Active security (security against **malicious adversaries**)

Each party **may arbitrarily deviate from the protocol**. Either the protocol computes *f* or the protocol is aborted.

Active

Relationship between Passive and Active Security

- Passive security is a prerequisite for active security
 - A protocol can be secure against passive adversaries but not active ones
 - A protocol secure against active adversaries is also secure against passive ones
- Any protocol secure against passive adversaries can be turned into a protocol secure actives adversaries
 - E.g., by adding protocol steps proving the correct computation of each message:
 - Cryptographic commitments: can we detect a partipant deviates from the proto?
 - Validations: Are parameters within expected bounds?

Known as Goldreich's compiler (Oded Goldreich, Knuth Prize 2017)

An MPC Application for a <u>specific function</u>: Private Set Intersection (PSI)

Private Set Intersection (PSI)

- Alice has set $X = \{x_1, x_2, x_3, ..., x_n\}$
- Bob has set $Y = \{y_1, y_2, y_3, ..., y_m\}$
- They want to compute $Z = X \cap Y$ (but reveal nothing else)

- Good real-world use case: private contact discovery
 - i.e., how many and which contacts do we have in common?

Private Set Intersections

2-Party, One-Way PSI

$$A \rightarrow B$$

2-Party, Two-Way PSI

$$A \leftrightarrow B$$

n-Party PSI

Private Set Intersections

2-Party, One-Way PSI

 $A \rightarrow B$

2-Party, Two-Way PSI

 $A \leftrightarrow B$

n-Party PSI

Directionality

Reducing Information Exchange

Multi-party

Varying Guarantees

Strawman Protocol for PSI

- Alice permutes her set X, Bob permutes his set Y. Then:
 - For each $x \in X$
 - For each $y \in Y$
 - Compute x = ? y
- Protocol for comparison (x =? y)
 - Alice \rightarrow Bob: $E_A(x)$
 - Bob: Choose random r and compute $c = (E_A(x) * E_A(-y))^r$
 - Add encrypted value of x with encrypted value of -y (the negative of y) and raise the result to the power of r.
 - Bob → Alice: **c**
 - Alice: Output x = y, if $D_A(c) = 0$, else $x \neq y$

Strawman Protocol for PSI

- Alice permutes her set X, Bob permutes his set Y. Then:
 - For each $x \in X$
 - For each $y \in Y$
 - Compute x = ? y
- Protocol for comparison (x =? y)
 - Alice \rightarrow Bob: $E_A(x)$
 - Bob: Choose random \mathbf{r} and compute $\mathbf{c} = (E_A(\mathbf{x}) * E_A(-\mathbf{y}))^r$
 - Add encrypted value of x with encrypted value of -y (the negative of y) and raise the result to the power of r.
 - Bob → Alice: **c**
 - Alice: Output x = y, if $D_A(c) = 0$, else $x \neq y$

E_A and D_A are part of a homomorphic encryption scheme that supports operations on ciphertexts.

We will see more later!

Strawman Protocol for PSI

Complexity of O(xy)

More efficient solutions exist e.g., based on precomputations

- Alice permutes her set X, Bob permutes his set Y. Then:
 - For each $x \in X$
 - For each $y \in Y$
 - Compute x = ? y
- Protocol for comparison (x =? y)
 - Alice \rightarrow Bob: $E_A(x)$
 - Bob: Choose random \mathbf{r} and compute $\mathbf{c} = (E_A(\mathbf{x}) * E_A(-\mathbf{y}))^r$
 - Add encrypted value of x with encrypted value of -y (the negative of y) and raise the result to the power of r.
 - Bob → Alice: **c**
 - Alice: Output x = y, if $D_A(c) = 0$, else $x \neq y$

E_A and D_A are part of a homomorphic encryption scheme that supports operations on ciphertexts.

We will see more later!

Private Information Retrieval (PIR)

Can we privately query a database?

Ideally...

Motivating Example (1)

 A server stores a list of "broken" passwords that appeared on the Internet

- The client wants to check whether the password they just created for an Internet site is in that database
 - If it is, they should not use it
 - If it is not but revealed to the database, it should not be used either

Motivating Example (1)

 A server stores a list of "broken" passwords that appeared on the Internet

- The client wants to check whether the password they just created for an Internet site is in that database
 - If it is, they should not use it
 - If it is not but revealed to the database, it should not be used either
- The client should query without revealing the password!

Motivating Example (2)

- Netflix stores movies in a database
 - 1. The Shawshank Redemption
 - 2. The Godfather
 - 3. The Dark Knight
 - 4. 12 Angry Men
 - •
- You request movies by index, say 1, 4, 2, ...
- Netflix caches your selection and gradually builds a profile on your movie preferences

Motivating Example (2)

- Netflix stores movies in a database
 - 1. The Shawshank Redemption
 - 2. The Godfather
 - 3. The Dark Knight
 - 4. 12 Angry Men
 - ...
- You request movies by index, say 1, 4, 2, ...
- Netflix caches your selection and gradually builds a profile on your movie preferences
- The server should be queried without learning the item of interest!

Carol has index i

Carol has index i

Carol has index i

Goal 1: Correctness - Client learns di

Carol has index i

Goal 1: Correctness - Client learns di

Goal 2: Security - Server does not learn index i

Blatantly non-private protocol

Formal model:

- \circ Server: holds an n-bit string $\{X_1, X_2, ..., X_n\}$
- O User: wishes to retrieve X_i AND keep i private

Protocol:

- User: show me i
- Server: here is X_i

Analysis:

- O No privacy!
- # of bits: 1 very efficient

Trivially-private protocol

Formal model:

- \circ Server: holds an n-bit string $\{X_1, X_2, ..., X_n\}$
- O User: wishes to retrieve X_i AND keep i private

Protocol:

- User: show me ALL indexes
- \circ Server: here is $\{X_1, X_2, ..., X_n\}$

Analysis:

- Complete privacy!
- # of bits: n very impractical

More solutions?

User asks for additional random indices

Drawback: balance information leak vs communication cost

Anonymous communication:

 Note: this is in fact a different concern: it hides the identity of a user, not the fact that X_i is retrieved

Information-Theoretic PIR

Formal model:

- O Server: holds an n-bit string $\{X_1, X_2, ..., X_n\}$
- O User: wishes to retrieve X_i AND keep i private

Assumption: multiple (≥ 2) non-cooperating servers

An example 2-server IT-PIR protocol:

- User \rightarrow Server 1: $\mathbf{Q}_1 \subset \mathbb{R} \{1, 2, ..., n\}$, $i \neq Q_1$
- Server 1 → User: $\mathbf{R_1} = \bigoplus_{k \in Q1} X_k$
- User \rightarrow Server 2: $\mathbf{Q_2} = \mathbf{Q_1} \cup \{i\}$
- Server 2 → User: $\mathbf{R_2} = \bigoplus_{k \in O2} X_k$
- User derives $X_i = R_1 \oplus R_2$

Analysis:

- \circ Probabilistic-based privacy (1/|Q₂|)
- # of bits: 1 (× 2 servers) + inexpensive computation

Formal model:

- O Server: holds an n-bit string $\{X_1, X_2, ..., X_n\}$
- User: wishes to retrieve X_i AND keep i private

Assumption: multiple (≥ 2) non-cooperating servers

Database: $[X_1, X_2, X_3, X_4] = [0, 1, 0, 1]$

- User \rightarrow Server 1: $\mathbf{Q}_1 \subset \{1, 2, ..., N\}$, i \neq Q₁
- Server 1 → User: $\mathbf{R}_1 = \bigoplus_{k \in O1} X_k$
- User \rightarrow Server 2: $\mathbf{Q_2} = \mathbf{Q_1} \cup \{i\}$
- Server 2 → User: $\mathbf{R_2} = \bigoplus_{k \in O2} X_k$
- \circ User derives $X_i = R_1 \oplus R_2$

- User \rightarrow Server 1: $\mathbf{Q_1} = X_1, X_4$
- Server 1 \rightarrow User: $\mathbf{R_1} = 1$
- User \rightarrow Server 2: $\mathbf{Q_2} = X_1, X_3, X_4$
- Server 2 \rightarrow User: $\mathbf{R_2} = 1$
- \circ User derives $X_i = 0$

Formal model:

- O Server: holds an n-bit string $\{X_1, X_2, ..., X_n\}$
- O User: wishes to retrieve X_i AND keep i private

Assumption: multiple (≥ 2) non-cooperating servers

X ₁	X_2	X_3	X_4
0	1	0	1

Formal model:

- O Server: holds an n-bit string $\{X_1, X_2, ..., X_n\}$
- O User: wishes to retrieve X_i AND keep i private

Assumption: multiple (≥ 2) non-cooperating servers

Formal model:

- O Server: holds an n-bit string $\{X_1, X_2, ..., X_n\}$
- O User: wishes to retrieve X_i AND keep i private

Assumption: multiple (≥ 2) non-cooperating servers

Formal model:

- O Server: holds an n-bit string $\{X_1, X_2, ..., X_n\}$
- O User: wishes to retrieve X_i AND keep i private

Assumption: multiple (≥ 2) non-cooperating servers

Q2 to S2
$$[X_1, X_3, X_4]$$
 $R_2 = 1$

$$X_3 = R_1 \oplus R_2 = 0$$

Computational PIR

Formal model:

- O Server: holds an n-bit string $\{X_1, X_2, ..., X_n\}$
- O User: wishes to retrieve X_i AND keep i private

Assumption: 1 server with limited computation power

An example CPIR protocol:

- User chooses a large random number m
- O User generates $\mathbf{n} \mathbf{1}$ random quadratic residues (QR) mod \mathbf{m} : \mathbf{a}_1 , \mathbf{a}_2 , ..., \mathbf{a}_{i-1} , \mathbf{a}_{i+1} , ..., \mathbf{a}_n
- O User generates a quadratic non-residue (QNR) mod m: **b**_i
- User \rightarrow Server: $a_1, a_2, ..., a_{i-1}, b_i, a_{i+1}, ..., a_n$

(The server cannot distinguish between QRs and QNRs mod m, i.e., the request is just a series of random numbers: u_1 , u_2 , ..., u_n)

- Server → User: $\mathbf{R} = \mathbf{u_1}^{X1} * \mathbf{u_2}^{X2} * ... * \mathbf{u_n}^{Xn}$ (The product of QRs is still a QR)
- O User check: if **R** is a QR mod m, $X_i = 0$, else (**R** is a QNR mod m) $X_i = 1$

Definition: A number **a** is a quadratic residue modulo **n** if there is an

integer x such that $x^2 = a \mod n$

Definition: A number a is a quadratic residue modulo n if there is an integer x such that $x^2 = a \mod n$

```
e.g., let n = 7
0^2 = 0 \mod 7
```

 $1^2 = 0 \mod 7$

 $2^2 = 4 \mod 7$

 $3^2 = 2 \mod 7$

 $4^2 = 2 \mod 7$

 $5^2 = 4 \mod 7$

 $6^2 = 1 \mod 7$

•••

Definition: A number a is a quadratic residue modulo n if there is an integer x such that $x^2 = a \mod n$

```
e.g., let n = 7

0^2 = 0 \mod 7

1^2 = 0 \mod 7

2^2 = 4 \mod 7

3^2 = 2 \mod 7

4^2 = 2 \mod 7

5^2 = 4 \mod 7

6^2 = 1 \mod 7

... (and so on)
```

Definition: A number a is a quadratic residue modulo n if there is an integer x such that $x^2 = a \mod n$

Computational PIR

Formal model:

- O Server: holds an n-bit string $\{X_1, X_2, ..., X_n\}$
- O User: wishes to retrieve X_i AND keep i private

Assumption: 1 server with limited computation power

An example CPIR protocol:

- O User chooses a large random number **m**
- O User generates $\mathbf{n} \mathbf{1}$ random quadratic residues (QR) mod \mathbf{m} : \mathbf{a}_1 , \mathbf{a}_2 , ..., \mathbf{a}_{i-1} , \mathbf{a}_{i+1} , ..., \mathbf{a}_n
- User generates a quadratic non-residue (QNR) mod m: b_i
- User \rightarrow Server: $a_1, a_2, ..., a_{i-1}, b_i, a_{i+1}, ..., a_n$

(The server cannot distinguish between QRs and QNRs mod m, i.e., the request is just a series of random numbers: u_1 , u_2 , ..., u_n)

- O Server \rightarrow User: $\mathbf{R} = \mathbf{u_1}^{X1} * \mathbf{u_2}^{X2} * ... * \mathbf{u_n}^{Xn}$ (The product of QRs is still a QR)
- O User check: if **R** is a QR mod m, $X_i = 0$, else (**R** is a QNR mod m) $X_i = 1$

Computational PIR (Example)

Formal model:

- O Server: holds an n-bit string $\{X_1, X_2, ..., X_n\}$
- O User: wishes to retrieve X_i AND keep i private

Assumption: 1 server with limited computation power

Database: $[X_1, X_2, X_3, X_4] = [0, 1, 0, 1]$

- User chooses random number 7
- O User generates n 1 random quadratic residues (QR) mod 7: a_1 , a_2 , $a_4 = 0$, 2, 4
- O User generates a quadratic non-residue (QNR) mod m: $b_3 = 3$
- User → Server: a_1 , a_2 , b_3 , a_4 **0, 2, 3, 4**

(The server cannot distinguish between QRs and QNRs mod m)

- O Server \rightarrow User: $\mathbf{R} = \frac{0^{X1} * 2^{X2} * 3^{X3} * 4^{X4}}{2^{X2} * 3^{X3} * 4^{X4}} = \frac{0^{0} * 2^{1} * 3^{0} * 4^{1}}{2^{1} * 3^{0} * 4^{1}} = \frac{1 * 2 * 1 * 4}{2^{1} * 3^{1} * 4^{1}} = 8$ (The product of QRs is still a QR)
- O User check: $\mathbf{8} = \mathbf{1} \mod 7$. Thus, 8 is a quadratic residue modulo 7, since 1 is a QR mod 7 Hence, $\mathbf{X}_3 = \mathbf{0}$

Comparison of CPIR and IT-PIR

CPIR

- Possible with a single server
- Server needs to perform intensive computations
- To break it, the server needs to solve a hard problem

IT-PIR

- Only possible with >1 server
- Server may need lightweight computations only
- To break it, the server needs to collude with other servers