CS489/698

Privacy, Cryptography, Network and Data Security

Multi-Party Computation, PSI, PIR

What is Multi-Party Computation?

What is Multi-Party Computation?

What is Multi-Party Computation?

2) Both Alice and Bob know a function f

What is Multi-Party Computation?

1) At least two parties
2) Both Alice and Bob know a function f

Goal: learn $f(x, y)$ but not reveal anything else about x or y

What is Multi-Party Computation?

I have input y

1) At least two parties

I have input x

2) Both Alice and Bob know a function f

Goal: learn $f(x, y)$ but not reveal anything else about x or y
Critical: Secret inputs, public outputs (to at least one party)

Toy Example, "The Millionaire's Problem"

Toy Example, "The Millionaire's Problem"

Toy Example, "The Millionaire's Problem"

Q: how can Bob and Alice determine who is richer?

Toy Example, "The Millionaire's Problem"

I don't want to tell you how much wealth I have...

Q: how can Bob and Alice determine who is richer?

A: A multi-party computation to compute f: $x<y$

Fun Facts:

- Andrew C. Yao, Protocols for Secure Computations Proceedings of the 21st Annual IEEE Symposium on the Foundations of Computer Science, 1982
- "Yao's millionaires' problem" (Andrew C. Yao, Turing Award 2000)

Solution

1. Bob picks a random N-bit integer \boldsymbol{x}, and computes $\boldsymbol{k}=\mathrm{E}_{\mathrm{a}}(\boldsymbol{x})$
2. Bob sends Alice the number $\boldsymbol{k} \boldsymbol{-} \boldsymbol{j} \boldsymbol{1}$
3. Alice computes $\mathbf{y}_{\mathbf{u}}=\mathrm{D}_{\mathrm{a}}(\boldsymbol{k}-\boldsymbol{j}+\boldsymbol{u})$ for $\boldsymbol{u}=[1,2, \ldots, 10]$.
4. Alice generates random prime p of $N / 2$-bits, and computes $z_{u}=y_{u}(\bmod p)$

- if all $\mathbf{z}_{\mathbf{u}}$ differ by at least $2 \bmod p$, stop;
- otherwise, generate another \boldsymbol{p} and repeat until all $\mathbf{z}_{\mathbf{u}}$ differ by at least $2 \bmod p$

5. Alice sends the prime \boldsymbol{p} and the following 10 numbers to Bob:
$-z_{1}, z_{2}, \ldots, z_{i}$ followed by $z_{i+1}+1, z_{i+2}+1, \ldots, z_{10}+1$
6. Bob looks at $\mathbf{z}_{\mathbf{j}}$, and decides that $\boldsymbol{i} \geq \boldsymbol{j}$ if $\mathbf{z}_{\mathbf{j}}=\boldsymbol{x} \bmod p$, and $\boldsymbol{i}<\boldsymbol{j}$ otherwise. Tells Alice.

Solution Rundown

\$ j millions

Let's use RSA as our crypto scheme!

Alice holds:
PubA $=(\mathrm{e}, \mathrm{N})=(79,3337)$
PrivA $=(\mathrm{d})=1019$

RSA operations:
Encryption: $y=x^{e} \bmod N$
Decryption: $x=y^{d} \bmod n$

Solution Rundown

For this example, assume Alice has 5 millions $(i=5)$ and Bob has 6 millions $(j=6)$

Step 1:

- Bob picks a random N -bit integer $\boldsymbol{x}=1234$
- Bob computes $\boldsymbol{k}=\mathrm{E}_{\mathrm{a}}(\boldsymbol{x})=1234^{79} \bmod 3337=901$

Step 2:

- Bob sends Alice $\underline{\boldsymbol{k}-\boldsymbol{j}+1=901-6+1=896}$

Solution Rundown

j millions
Assume: $1<i, j<10$

Step 3:

- Alice generates $Y_{1} \ldots Y_{10}$, obtained by decrypting $\underline{\boldsymbol{k}-\boldsymbol{j}+1}$ to $\underline{\boldsymbol{k}-\boldsymbol{j}+10}$

This is because of our bound that tells us Alice and Bob have a number of millions between 1 and 10
i.e., $\boldsymbol{u}=\left[\begin{array}{ll}1 & . . \\ 10\end{array}\right]$

- Alice can do this even without knowing \boldsymbol{k} or \boldsymbol{j}
- So, what does she get?

Solution Rundown

© i millions
\$ j millions Assume:
$E_{a}=$ Enc w/PubA $D_{a}=$ Dec w/ PrivA
u $\quad k-j+u$

1896
2897
3898
4899
5900
6901
7902
8903
9904
10905

RSA decryption
$896^{\wedge} 1019 \bmod 3337$
$897 \wedge 1019 \bmod 3337$
898^1019 mod 3337
. 2918
. 385
1234 (as it should be) $\longrightarrow \begin{aligned} & \text { Bob's } \\ & \text { random number }\end{aligned}$ 296

1596
2804
905^1019 mod 3337
y_{u}
$1059 \longrightarrow$ The original value Bob sent

2502

1311

Solution Rundown

Step 4:

- Next, Alice generates prime number \boldsymbol{p} of $\mathrm{N} / 2$ bits
- In this example, let's pick $\boldsymbol{p}=107$
- Then, Alice generates $Z_{1} \ldots Z_{10}$, obtained by computing $Y_{1} \ldots Y_{10} \bmod p$
- Keep in mind that \boldsymbol{p} must be such that all $\mathbf{Z}_{\mathbf{u}}$ differ by at least 2 units
- This will later allow Bob to reliably determine whether i < j

Solution Rundown

Step 4:

- Next, Alice generates prime number \boldsymbol{p} of $\mathrm{N} / 2$ bits
- In this example, let's pick $\boldsymbol{p}=107$
- Then, Alice generates $Z_{1} \ldots Z_{10}$, obtained by computing $Y_{1} \ldots Y_{10} \bmod p$
- Keep in mind that \boldsymbol{p} must be such that all $\mathbf{Z}_{\mathbf{u}}$ differ by at least 2 units
- This will later allow Bob to reliably determine whether i < j
- So, what does she get?

Solution Rundown

© i millions
Assume:

\mathbf{u}	$\boldsymbol{k}-\boldsymbol{j}+\mathbf{u}$	$R S A$ decryption	$\boldsymbol{y}_{\boldsymbol{u}}$	$Z_{u}=\left(Y_{u} \bmod 107\right)$
1	896	$896^{\wedge} 1019 \bmod 3337$	1059	96
2	897	$897^{\wedge} 1019 \bmod 3337$	1156	86
3	898	$898^{\wedge} 1019 \bmod 3337$	2502	41
4	899	\cdot	2918	29
5	900	\cdot	385	64
6	901	\cdot	1234	57
7	902	\cdot	296	82
8	903	\cdot	1596	98
9	904	\cdot	2804	22
10	905	$905^{\wedge} 1019 \bmod 3337$	1311	27

\$jmillions Assume: $1<i, j<10$

u	$\boldsymbol{k}-\boldsymbol{j}+\boldsymbol{u}$	RSA decryption	y_{u}	$Z_{u}=\left(Y_{u} \bmod 107\right)$
1	896	896^1019 mod 3337	1059	96
2	897	$897 \wedge 1019 \bmod 3337$	1156	86
3	898	898^1019 $\bmod 3337$	2502	41
4	899	.	2918	29
5	900	.	385	64
6	901	.	1234	57
7	902	.	296	82
8	903	.	1596	98
9	904	.	2804	22
10	905	$905 \wedge 1019$ mod 3337	1311	27

Step 5:

- Now, Alice sends \boldsymbol{p} and 10 numbers to Bob
- The first few numbers are $Z_{1}, Z_{2}, Z_{3} \ldots$ up to the value of \boldsymbol{Z}_{i}, where \boldsymbol{i} is Alice's wealth in millions

p	Z 1	Z 2	$\mathrm{Z3}$	$\mathrm{Z4}$	Z 5	$\mathrm{Z} 6+1$	$\mathrm{Z} 7+1$	$\mathrm{Z}+1$	$\mathrm{Z}+1$	$\mathrm{Z} 10+1$
107	96	86	41	29	64	58	83	99	23	28

Solution Rundown

Step 6:

- Bob now looks at the $\boldsymbol{j}^{\text {th }}$ number, where \boldsymbol{j} is his wealth in millions

- He then computes $\boldsymbol{x} \bmod p=1234 \bmod 107=57$
- Lastly, if the $j^{\text {th }}$ number is equal to 57 , then Alice is equally wealthy (or more) than Bob ($\boldsymbol{i}>=\boldsymbol{j}$). Else, Bob is wealthier than Alice ($\boldsymbol{i}<\boldsymbol{j}$).

Solution Rundown

Step 6:

- Bob now looks at the $\boldsymbol{j}^{\text {th }}$ number, where \boldsymbol{j} is his wealth in millions

p	Z1	Z2	Z3	Z4	Z5	Z6+1	Z7+1	Z8+1	Z9+1	Z10+1
107	96	86	41	29	64	58	83	99	23	28

- He then computes $\boldsymbol{x} \bmod p=1234 \bmod 107=57$
- Lastly, if the $j^{\text {th }}$ number is equal to 57 , then Alice is equally wealthy (or more) than Bob ($\boldsymbol{i}>=\boldsymbol{j}$). Else, Bob is wealthier than Alice ($\boldsymbol{i}<\boldsymbol{j}$).
- Step 7: Bob tells Alice the result

Why does the Solution Work?

The intuition:

- Alice adds 1 to numbers in the series greater than her wealth ($\boldsymbol{i}=5$);
- Bob checks to see if the one in his position in the series $(j=6)$ has had one added to it: if it has, then he knows he must be wealthier than Alice.

Why does the Solution Work?

The intuition:

- Alice adds 1 to numbers in the series greater than her wealth $(i=5)$;
- Bob checks to see if the one in his position in the series $(j=6)$ has had one added to it: if it has, then he knows he must be wealthier than Alice.
- All this has been done without either of them transmitting their wealth

Any issues?

Q: Can anyone identify a reason it would fail?

Any issues?

Q: Can anyone identify a reason it would fail?

Short A: Other than lies...no.

Any issues?

Q: Can anyone identify a reason it would fail?

Short A: Other than lies...no.

Long A: This technique is not cheat-proof (Bob could lie in step 7). Yao shows that such techniques can be constructed so that cheating can be limited, usually by employing extra steps.

How Scalable is this Solution?

In the real-world:

- You would need (lots of) processing power!
- If you wanted to cover the range 1 to $100,000,000$ at a unit resolution, then Alice will be sending Bob a table of 100,000,000 numbers!
- This table would be on the order of a GB. You could handle it, but processing and storage implications are non-trivial.

How Scalable is this Solution?

In the real-world:

- You would need (lots of) processing power!
- Q: Any idea why?

How Scalable is this Solution?

In the real-world:

- You would need (lots of) processing power!
- If you wanted to cover the range 1 to $100,000,000$ at a unit resolution, then Alice will be sending Bob a table of 100,000,000 numbers!
- This table would be on the order of a GB. You could handle it, but processing and storage implications are non-trivial.

New advances on MPC attempt to tackle these issues in clever ways...

A Potential "Real-World" Example

I want to analyse sentence x (NLP)

A Potential "Real-World" Example

A Potential "Real-World" Example

Require: A function fover public parameters, but secret architecture
Goal: A MPC for $f(x, y)$ such that only Alice learns the analysis of her sentence and Alice does not learn the NN

"Types" of MPC: Participant Set

Two-party

Multi-Party

MPC Server Model

- Assume $n \gg 3$ clients with an input
- E.g., collect statistics about emoji usage in texting
- Dedicate 2 (or 3) parties as computation nodes (servers)
- The clients send "encrypted" versions of their inputs
- The servers perform multi-party computation
- Decrypt input
- Compute f

"Types" of MPC: Functionality

Generic

Generic functions:
A multi-party computation protocol that
can be used for "any" function f

"Types" of MPC: Functionality

Generic

Specific

Generic functions:
A multi-party computation protocol that can be used for "any" function f

Specific functions:
A multi-party computation protocol that can only be used for a specific function f

"Types" of MPC: Security

Passive

Passive security (security against semi-honest adversaries) Each party follows the protocol but keeps a record of all messages and after the protocol is over, tries to infer additional information about the other parties' inputs

"Types" of MPC: Security

I'm just curious
Passive security (security against semi-honest adversaries)
Each party follows the protocol but keeps a record of all messages and after the protocol is over, tries to infer additional information about the other parties' inputs

Passive

Active security (security against malicious adversaries) Each party may arbitrarily deviate from the protocol. Either the protocol computes f or the protocol is aborted.

Active

Relationship between Passive and Active Security

- Passive security is a prerequisite for active security
- A protocol can be secure against passive adversaries but not active ones
- A protocol secure against active adversaries is also secure against passive ones
- Any protocol secure against passive adversaries can be turned into a protocol secure actives adversaries
- E.g., by adding protocol steps proving the correct computation of each message:
- Cryptographic commitments: can we detect a partipant deviates from the proto?
- Validations: Are parameters within expected bounds?

An MPC Application for a specific function: Private Set Intersection (PSI)

Private Set Intersection (PSI)

- Alice has set $X=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\}$
- Bob has set $\mathrm{Y}=\left\{\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \ldots, \mathrm{y}_{\mathrm{m}}\right\}$
- They want to compute $\mathbf{Z}=\mathbf{X} \cap \mathbf{Y}$ (but reveal nothing else)
- Good real-world use case: private contact discovery
- i.e., how many and which contacts do we have in common?

Private Set Intersections

2-Party, One-Way PSI

$$
A \rightarrow B
$$

2-Party, Two-Way PSI

$$
A \leftrightarrow B
$$

n-Party PSI

Private Set Intersections

2-Party, One-Way PSI
$A \rightarrow B$

2-Party, Two-Way PSI

$$
A \leftrightarrow B
$$

n-Party PSI

Varying Guarantees

Strawman Protocol for PSI

- Alice permutes her set \boldsymbol{X}, Bob permutes his set \boldsymbol{Y}. Then:
- For each $\boldsymbol{x} \in X$
- For each $\boldsymbol{y} \in Y$
- Compute $x=$? y
- Protocol for comparison ($x=$? y)
- Alice \rightarrow Bob: $\mathrm{E}_{\mathrm{A}}(\boldsymbol{x})$
- Bob: Choose random r and compute $c=\left(E_{A}(x) \text { * } E_{A}(-y)\right)^{r}$
- Add encrypted value of x with encrypted value of $-y$ (the negative of y) and raise the result to the power of r.
- Bob \rightarrow Alice: c
- Alice: Output $\boldsymbol{x}=\boldsymbol{y}$, if $D_{A}(c)=0$, else $\boldsymbol{x} \neq \boldsymbol{y}$

Strawman Protocol for PSI

- Alice permutes her set \boldsymbol{X}, Bob permutes his set \boldsymbol{Y}. Then:
- For each $\boldsymbol{x} \in X$
- For each $\boldsymbol{y} \in Y$
- Compute $x=$? y
- Protocol for comparison ($x=$? y)
- Alice \rightarrow Bob: $\mathrm{E}_{\mathrm{A}}(\boldsymbol{x})$
- Bob: Choose random r and compute $\boldsymbol{c}=\left(\mathrm{E}_{\mathrm{A}}(\boldsymbol{x}) * \mathrm{E}_{\mathrm{A}}(-\boldsymbol{y})\right)^{r}$
- Add encrypted value of x with encrypted value of $-y$ (the negative of y) and raise the result to the power of r.
- Bob \rightarrow Alice: c
- Alice: Output $\boldsymbol{x}=\boldsymbol{y}$, if $D_{A}(\boldsymbol{c})=0$, else $\boldsymbol{x} \neq \boldsymbol{y}$
E_{A} and D_{A} are part of a homomorphic encryption scheme that supports operations on ciphertexts.
We will see more later!

Strawman Protocol for PSI

- Alice permutes her set \boldsymbol{X}, Bob permutes his set \boldsymbol{Y}. Then:
- For each $\boldsymbol{x} \in X$
- For each $\boldsymbol{y} \in Y$
- Compute $x=$? y
- Protocol for comparison ($x=$? y)
- Alice \rightarrow Bob: $\mathrm{E}_{\mathrm{A}}(\boldsymbol{x})$
- Bob: Choose random r and compute $\boldsymbol{c}=\left(\mathrm{E}_{\mathrm{A}}(\boldsymbol{x}) * \mathrm{E}_{\mathrm{A}}(-\boldsymbol{y})\right)^{r}$
- Add encrypted value of x with encrypted value of $-y$ (the negative of y) and raise the result to the power of r.
- Bob \rightarrow Alice: c
- Alice: Output $\boldsymbol{x}=\boldsymbol{y}$, if $D_{A}(\boldsymbol{c})=0$, else $\boldsymbol{x} \neq \boldsymbol{y}$
E_{A} and D_{A} are part of a homomorphic encryption scheme that supports operations on ciphertexts.
We will see more later!

Private Information Retrieval (PIR)

Can we privately query a database?

Ideally...

Even I might not know plaintext of the DB

Server provider S's cloud

Motivating Example (1)

- A server stores a list of "broken" passwords that appeared on the Internet
- The client wants to check whether the password they just created for an Internet site is in that database
- If it is, they should not use it
- If it is not but revealed to the database, it should not be used either

Motivating Example (1)

- A server stores a list of "broken" passwords that appeared on the Internet
- The client wants to check whether the password they just created for an Internet site is in that database
- If it is, they should not use it
- If it is not but revealed to the database, it should not be used either
- The client should query without revealing the password!

Motivating Example (2)

- Netflix stores movies in a database
- 1. The Shawshank Redemption
- 2. The Godfather
- 3. The Dark Knight
- 4. 12 Angry Men
- You request movies by index, say 1, 4, 2, ...
- Netflix caches your selection and gradually builds a profile on your movie preferences

Motivating Example (2)

- Netflix stores movies in a database
- 1. The Shawshank Redemption
- 2. The Godfather
- 3. The Dark Knight
- 4. 12 Angry Men
- You request movies by index, say $1,4,2, \ldots$
- Netflix caches your selection and gradually builds a profile on your movie preferences
- The server should be queried without learning the item of interest!

PIR

Carol has index i

PIR

Server has DB d_{1}, \ldots, d_{n}

Carol has index i

PIR

Server has DB d_{1}, \ldots, d_{n}
Carol has index i
Goal 1: Correctness - Client learns $\mathbf{d}_{\mathbf{i}}$

PIR

Server has DB d_{1}, \ldots, d_{n}
Carol has index i

Goal 1: Correctness - Client learns d_{i}

Goal 2: Security - Server does not learn index i

Blatantly non-private protocol

Formal model:

- Server: holds an n-bit string $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$
o User: wishes to retrieve X_{i} AND keep i private

Protocol:

- User: show me i
- Server: here is $\mathbf{X}_{\mathbf{i}}$

Analysis:

- No privacy!
- \# of bits: 1 - very efficient

Trivially-private protocol

Formal model:

o Server: holds an n-bit string $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$
o User: wishes to retrieve X_{i} AND keep i private

Protocol:

- User: show me ALL indexes
\circ Server: here is $\left\{\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}\right\}$

Analysis:

- Complete privacy!
- \# of bits: n - very impractical

More solutions?

User asks for additional random indices

- Drawback: balance information leak vs communication cost

Anonymous communication:

- Note: this is in fact a different concern: it hides the identity of a user, not the fact that X_{i} is retrieved

Formal model:

Information-Theoretic PIR

O Server: holds an n-bit string $\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$
O User: wishes to retrieve X_{i} AND keep i private

An example 2-server IT-PIR protocol:

○ User \rightarrow Server 1: $\mathbf{Q}_{1} \subset R\{1,2, \ldots, n\}$, $\quad / / \in \mathrm{Q}_{1}$
○ Server $1 \rightarrow$ User: $\mathbf{R}_{1}=\oplus_{k \in Q 1} X_{k}$
o User \rightarrow Server 2: $\mathbf{Q}_{2}=\mathrm{Q}_{1} \cup\{i\}$
o Server $2 \rightarrow$ User: $\mathbf{R}_{2}=\oplus_{k \in Q 2} X_{k}$
\circ User derives $\mathbf{X}_{\mathbf{i}}=\mathrm{R}_{1} \oplus \mathrm{R}_{2}$

Analysis:

- Probabilistic-based privacy $\left(1 /\left|\mathrm{Q}_{2}\right|\right)$
- \# of bits: 1 (× 2 servers) + inexpensive computation

Formal model:

Information-Theoretic PIR (Example)

O Server: holds an n-bit string $\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$
O User: wishes to retrieve X_{i} AND keep i private
Assumption: multiple (≥ 2) non-cooperating servers
Database: $\left[\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{X}_{4}\right]=[0,1,0,1]$

○ User \rightarrow Server 1: $Q_{1} \subset\{1,2, \ldots, N\}$, i $/ \in Q_{1}$

- Server $1 \rightarrow$ User: $\mathbf{R}_{1}=\oplus_{k \in Q 1} X_{k}$
- User \rightarrow Server 2: $\mathbf{Q}_{2}=\mathbf{Q}_{1} \cup\{i\}$
- Server $2 \rightarrow$ User: $\mathbf{R}_{\mathbf{2}}=\oplus_{\mathrm{k} \in \mathrm{Q} 2} \mathrm{X}_{\mathrm{k}}$
\bigcirc User derives $\mathbf{X}_{\mathbf{i}}=\mathrm{R}_{1} \oplus \mathrm{R}_{2}$

O User \rightarrow Server 1: $\mathbf{Q}_{\mathbf{1}}=\mathrm{X}_{1}, \mathrm{X}_{4}$
○ Server $1 \rightarrow$ User: $\mathbf{R}_{1}=1$
O User \rightarrow Server 2: $\mathbf{Q}_{\mathbf{2}}=\mathrm{X}_{1}, \mathrm{X}_{3}, \mathrm{X}_{4}$

- Server $2 \rightarrow$ User: $\mathbf{R}_{\mathbf{2}}=1$
- User derives $\mathbf{X}_{\mathbf{i}}=0$

Formal model:
Information-Theoretic PIR (Example)

O Server: holds an n-bit string $\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$
O User: wishes to retrieve X_{i} AND keep i private
Assumption: multiple (≥ 2) non-cooperating servers

Formal model:

Information-Theoretic PIR (Example)

O Server: holds an n-bit string $\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$
O User: wishes to retrieve X_{i} AND keep i private
Assumption: multiple (≥ 2) non-cooperating servers

Formal model:

Information-Theoretic PIR (Example)

O Server: holds an n-bit string $\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$
O User: wishes to retrieve X_{i} AND keep i private
Assumption: multiple (≥ 2) non-cooperating servers

Formal model:

Information-Theoretic PIR (Example)

O Server: holds an n-bit string $\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$
O User: wishes to retrieve X_{i} AND keep i private
Assumption: multiple (≥ 2) non-cooperating servers

Formal model:

Computational PIR

O Server: holds an n-bit string $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$
O User: wishes to retrieve X_{i} AND keep i private

An example CPIR protocol:

O User chooses a large random number \boldsymbol{m}
○ User generates $\boldsymbol{n} \mathbf{- 1}$ random quadratic residues (QR) mod $\boldsymbol{m}: \mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{i}-1}, \mathrm{a}_{\mathrm{i}+1}, \ldots, \mathrm{a}_{\mathrm{n}}$
O User generates a quadratic non-residue (QNR) mod m : $\mathbf{b}_{\mathbf{i}}$
O User \rightarrow Server: $a_{1}, a_{2}, \ldots, a_{i-1}, b_{i}, a_{i+1}, \ldots, a_{n}$
(The server cannot distinguish between QRs and QNRs mod m, i.e., the request is just a series
of random numbers: $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}$)
O Server \rightarrow User: $\quad \mathbf{R}=u_{1}{ }^{\mathrm{X} 1} * \mathrm{u}_{2} \mathrm{X}_{2} * \ldots * \mathrm{u}_{\mathrm{n}} \mathrm{Xn}_{\mathrm{n}}$ (The product of QRs is still a QR)
O User check: if R is a QR mod $m, X_{i}=0$, else (R is a QNR mod m) $X_{i}=1$

Quadratic Residues: A recap

Definition: A number \boldsymbol{a} is a quadratic residue modulo \boldsymbol{n} if there is an integer \boldsymbol{x} such that $\boldsymbol{x}^{2}=\mathbf{a} \bmod \boldsymbol{n}$

Quadratic Residues: A recap

Definition: A number \boldsymbol{a} is a quadratic residue modulo \boldsymbol{n} if there is an integer \boldsymbol{x} such that $\mathbf{x}^{2}=\mathbf{a} \bmod \mathbf{n}$
e.g., let $\boldsymbol{n}=7$
$0^{2}=0 \bmod 7$
$1^{2}=0 \bmod 7$
$2^{2}=4 \bmod 7$
$3^{2}=2 \bmod 7$
$4^{2}=2 \bmod 7$
$5^{2}=4 \bmod 7$
$6^{2}=1 \bmod 7$

Quadratic Residues: A recap

Definition: A number \boldsymbol{a} is a quadratic residue modulo \boldsymbol{n} if there is an integer \boldsymbol{x} such that $\mathbf{x}^{2}=\mathbf{a} \bmod \mathbf{n}$
e.g., let $\boldsymbol{n}=7$
$0^{2}=0 \bmod 7$
$1^{2}=0 \bmod 7$
$2^{2}=4 \bmod 7$
$3^{2}=2 \bmod 7$
$4^{2}=2 \bmod 7$
$5^{2}=4 \bmod 7$
$6^{2}=1 \bmod 7$
(and so on)

0, 1, 2, 4 are Quadratic Residues mod 7

Quadratic Residues: A recap

Definition: A number \boldsymbol{a} is a quadratic residue modulo \boldsymbol{n} if there is an integer \boldsymbol{x} such that $\mathbf{x}^{2}=\mathbf{a} \bmod \mathbf{n}$
e.g., let $\boldsymbol{n}=7$
$0^{2}=0 \bmod 7$
$1^{2}=0 \bmod 7$
$2^{2}=4 \bmod 7$
$3^{2}=2 \bmod 7$
$4^{2}=2 \bmod 7$
$5^{2}=4 \bmod 7$
$6^{2}=1 \bmod 7$
(and so on)

0, 1, 2, 4 are Quadratic Residues mod 7

3, 5, 6 are Quadratic Non-Residues mod 7

Formal model:

Computational PIR

O Server: holds an n-bit string $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$
O User: wishes to retrieve X_{i} AND keep i private

An example CPIR protocol:

O User chooses a large random number \boldsymbol{m}
○ User generates $\boldsymbol{n} \mathbf{- 1}$ random quadratic residues (QR) mod $\boldsymbol{m}: \mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{i}-1}, \mathrm{a}_{\mathrm{i}+1}, \ldots, \mathrm{a}_{\mathrm{n}}$
O User generates a quadratic non-residue (QNR) mod m : $\mathbf{b}_{\mathbf{i}}$
O User \rightarrow Server: $a_{1}, a_{2}, \ldots, a_{i-1}, b_{i}, a_{i+1}, \ldots, a_{n}$
(The server cannot distinguish between QRs and QNRs mod m, i.e., the request is just a series
of random numbers: $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}$)
O Server \rightarrow User: $\quad \mathbf{R}=u_{1}{ }^{\mathrm{X} 1} * \mathrm{u}_{2} \mathrm{X}_{2} * \ldots * \mathrm{u}_{\mathrm{n}} \mathrm{Xn}_{\mathrm{n}}$ (The product of QRs is still a QR)
O User check: if R is a QR mod $m, X_{i}=0$, else (R is a QNR mod m) $X_{i}=1$

Formal model:

Computational PIR (Example)

O Server: holds an n-bit string $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$
O User: wishes to retrieve X_{i} AND keep i private

Database: $\left[X_{1}, X_{2}, X_{3}, X_{4}\right]=[0,1,0,1]$
○ User chooses random number 7
O User generates $\boldsymbol{n} \mathbf{- 1}$ random quadratic residues (QR) mod 7: $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{4}=0,2,4$
O User generates a quadratic non-residue (QNR) mod m : $b_{3}=3$
O User \rightarrow Server: $a_{1}, a_{2}, b_{3}, a_{4} \quad \mathbf{0 , 2 , 3 , 4}$
(The server cannot distinguish between QRs and QNRs mod m)
\bigcirc Server \rightarrow User: $\quad R=\underline{0 \times 1 * 2 \times 2 * 3 \times 3 * 4 \times 4}=\underline{00 * 21 * 30 * 41}=\underline{1 * 2 * 1 * 4}=8$ (The product of $Q R$ Rs is still a Q R)
 Hence, $X_{3}=0$

Comparison of CPIR and IT-PIR

CPIR

- Possible with a single server
- Server needs to perform intensive computations
- To break it, the server needs to solve a hard problem

IT-PIR

- Only possible with >1 server
- Server may need lightweight computations only
- To break it, the server needs to collude with other servers

