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Issues with syntactic notions of privacy
● As seen in the last lecture, syntactic notions of privacy have 

some issues:
○ Defining which attributes are quasi-identifiers and which are sensitive attributes is hard
○ Mostly apply to relational databases; what about general data releases like machine learning?
○ What if the adversary has arbitrary auxiliary information?

● We need a formal notion of privacy, that provides formal 
guarantees against (all) attacks.
○ But how do we achieve this?

2



CS489 Spring 2024

Can we protect against auxiliary information?
● Each user contributes to one entry (row) of a database 𝐷.

● The release mechanism 𝑀 publishes some data 𝑅 = 𝑀(𝐷).
○ Note: we can characterize the mechanism by Pr(𝑀 𝐷 = 𝑅), which is the same as Pr 𝑅 𝐷 on inference attacks

● Can we provide privacy when the adversary has auxiliary information?

𝑀(𝐷) Attack

Analysis
results Inference

(some of the privacy-sensitive data)

Auxiliary data

Side-channelData collector

Data Analyst
𝐷
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Example: strong auxiliary information

𝑀(𝐷) Attack

Data collector

𝐷

Q: Can we design a mechanism 𝑀 that prevents this? Does it make sense to 
design a mechanism 𝑀 that prevents this?
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Example: strong auxiliary information

𝑀(𝐷) Attack

Privacy-preserving study about 
study habits & grades

Inference
“Alice has higher risk of failing”

“Alice did not study”Data collector

Adversary
(Tutoring company)𝐷

Study habits & 
grades data

Q: Can we design a mechanism 𝑀 that prevents this? Does it make sense to 
design a mechanism 𝑀 that prevents this?

A: The adversary would’ve reached the same conclusion even if Alice hadn’t 
participated in the study! We cannot prevent this unless we destroy utility (e.g., not 
doing the study)
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Example: strong auxiliary information

● Note that the adversary reaches the same conclusion in this case, 
even though Alice has not participated!

𝑀(𝐷) Attack

𝐷

Q: Any ideas of how we could define privacy taking this into account?
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Possible Idea:
● If the analyst learns similar things in these two 

cases about Alice, then 𝑀 provides enough privacy

● If the adversary learns “a lot” about Alice in both 
cases, then we cannot prevent this anyway

● Given 𝑅 = 𝑀(𝐷), the adversary should be unable to 
distinguish whether or not Alice was in the dataset!

● Note that this means that 𝑀(𝐷) has to be 
randomized (or always report the same value, but 
this makes 𝑅 constant – independent of 𝐷 – which 
is not useful.)

𝑀(𝐷)

Data collector

𝐷 Data analyst

𝑀(𝐷)

𝐷’
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An example from the attacker’s perspective

● Background knowledge 1: You know that Alice is a top-performer and 
always gets ≥ 90 in course scores.

● Background knowledge 2: CS489 is super-challenging and historical 
records show that most students score in the range of [45, 55].
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An example from the attacker’s perspective

● Background knowledge 1: You know that Alice is a top-performer and 
always gets ≥ 90 in course scores.

● Background knowledge 2: CS489 is super-challenging and historical 
records show that most students score in the range of [45, 55].

● Algorithm: You are given an algorithm that
○ allows you to make 5 queries
○ each query returns the average score of 3 randomly selected students (out of 30 

scores in total).
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An example from the attacker’s perspective

● Background knowledge 1: You know that Alice is a top-performer and 
always gets ≥ 90 in course scores.

● Background knowledge 2: CS489 is super-challenging and historical 
records show that most students score in the range of [45, 55].

● Algorithm: You are given an algorithm that
○ allows you to make 5 queries
○ each query returns the average score of 3 randomly selected students (out of 30 

scores in total).
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Q: How can you infer whether Alice is enrolled in CS489 or not?
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The attack

● D with Alice enrolled:
○ Alice: 90
○ Everyone else (29 of them): 50

11

Just send 5 queries and observe what is returned by the database.

● D’ with Alice not enrolled:
○ Everyone (30 of them): 50
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The attack

● D with Alice enrolled:
○ Alice: 90
○ Everyone else (29 of them): 50

12

Just send 5 queries and observe what is returned by the database.

● D’ with Alice not enrolled:
○ Everyone (30 of them): 50

Q: What will happen if Alice IS NOT enrolled (i.e., D’)?



CS489 Spring 2024

The attack

● D with Alice enrolled:
○ Alice: 90
○ Everyone else (29 of them): 50

13

Just send 5 queries and observe what is returned by the database.

Q: What will happen if Alice IS NOT enrolled (i.e., D’)? A: Expect [50, 50, 50, 50, 50] in response.

● D’ with Alice not enrolled:
○ Everyone (30 of them): 50
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The attack

● D with Alice enrolled:
○ Alice: 90
○ Everyone else (29 of them): 50

14

Just send 5 queries and observe what is returned by the database.

Q: What will happen if Alice IS NOT enrolled (i.e., D’)? A: Expect [50, 50, 50, 50, 50] in response.

Q: What will happen if Alice IS enrolled (i.e., D)?

● D’ with Alice not enrolled:
○ Everyone (30 of them): 50
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The attack

● D with Alice enrolled:
○ Alice: 90
○ Everyone else (29 of them): 50

15

Just send 5 queries and observe what is returned by the database.

● D’ with Alice not enrolled:
○ Everyone (30 of them): 50

Q: What will happen if Alice IS NOT enrolled (i.e., D’)? A: Expect [50, 50, 50, 50, 50] in response.

Q: What will happen if Alice IS enrolled (i.e., D)? A: For a single response, we either get:

63 ← !&'(

!&'&
= 10.7 %

50 ← otherwise
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The attack

● D with Alice enrolled:
○ Alice: 90
○ Everyone else (29 of them): 50

16

Just send 5 queries and observe what is returned by the database.

● D’ with Alice not enrolled:
○ Everyone (30 of them): 50

Q: What will happen if Alice IS NOT enrolled (i.e., D’)? A: Expect [50, 50, 50, 50, 50] in response.

Q: What will happen if Alice IS enrolled (i.e., D)? A: For a single response, we either get:

63 ← !&'(

!&'&
= 10.7 %

50 ← otherwise
A (cont.): For all 5 responses, the chance of getting at 

least one 63 is:     1 − (1 − !&'(

!&'&
)5 = 43.26%
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What went wrong?

● Alice’s score has too much impact on the output! As a result, seeing the 
output of the algorithm allows the attacker to differentiate which database 
is the underlying database representing the class score.

● This is exactly what Differential Privacy (DP) tries to capture!
○ Informally, the DP notion requires any single element in a dataset to have only a 

limited impact on the output.
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The strawman defense

● Background knowledge 1: You know that Alice is a top-performer and 
always gets ≥ 90 in course scores.

● Background knowledge 2: CS489 is super-challenging and historical 
records show that most students score in the range of [45, 55].

● Algorithm: You are given an algorithm that
○ allows you to make 5 queries
○ each query returns the average score of 3 randomly selected students (out of 30 

scores in total).

18



CS489 Spring 2024

The strawman defense

● Background knowledge 1: You know that Alice is a top-performer and 
always gets ≥ 90 in course scores.

● Background knowledge 2: CS489 is super-challenging and historical 
records show that most students score in the range of [45, 55].

● Algorithm: You are given an algorithm that
○ allows you to make 5 queries
○ each query returns the average score of 3 randomly selected students (out of 30 

scores in total) plus a random value (i.e., noise)

19
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Intuition: No noise
When Alice IS in the database:

○ For a given query, most times it will return 50

○ Sometimes (≈ 10%) it will return 63

20

Noticeable!
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Intuition: Small noise
When Alice IS in the database:

○ For a given query, most times it will return ~50

○ Sometimes it will return ~63

21

Still noticeable!
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Intuition: Large noise
When Alice IS in the database:
● Query results have a ~ probability whether Alice is 

in the database or not (with reasonable utility)

22

Hardly noticeable!
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Intuition: Very large noise

23

Unnoticeable!When Alice IS in the database:
○ We can’t tell if Alice is in the database

○ But we completely destroy utility
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Takeaway

● One should set an appropriate amount of noise depending on 
each particular use case.
○ We want to preserve data privacy
○ We don’t want to destroy utility
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The data collectors’ argument

... on trying to persuade you to join a differentially private survey:

● You will not be affected, adversely or otherwise, by allowing your data to be used 
in any study or analysis, no matter what other studies, data sets, or information 
sources, are available. (bla bla… differential privacy … bla bla)

25
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The data collectors’ argument

... on trying to persuade you to join a differentially private survey:

● You will not be affected, adversely or otherwise, by allowing your data to be used 
in any study or analysis, no matter what other studies, data sets, or information 
sources, are available. (bla bla… differential privacy … bla bla)

● But this is only true if they tell you what algorithm they use to release your 
data and you have verified that their algorithm is indeed differentially private.

26
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Back on topic: We want similar output distributions!
(assume for now that the databases differ on one single record)

● These datasets are usually 
called neighboring datasets (and 
usually denoted by 𝐷 and 𝐷’)

● We want these distributions to 
be “similar” (for all 𝑅)

● If the mechanism M behaves 
nearly identically for D and D’, 
then an attacker can’t tell 
whether D or D’ was used (and 
hence can’t learn much about 
the individual).

𝑀(𝐷)

Data collector

𝐷

𝑀(𝐷)

𝐷’

Pr(𝑀(𝐷) = 𝑅)

Pr(𝑀(𝐷’) = 𝑅)

R

R

27



CS489 Spring 2024

Back on topic: We want similar output distributions!
(assume for now that the databases differ on one single record)

● These datasets are usually 
called neighboring datasets (and 
usually denoted by 𝐷 and 𝐷’)

● We want these distributions to 
be “similar” (for all 𝑅)

● If the mechanism M behaves 
nearly identically for D and D’, 
then an attacker can’t tell 
whether D or D’ was used (and 
hence can’t learn much about 
the individual).

𝑀(𝐷)

Data collector

𝐷

𝑀(𝐷)

𝐷’

Pr(𝑀(𝐷) = 𝑅)

Pr(𝑀(𝐷’) = 𝑅)

R

R

28

Q: How do we quantify this similarity?
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Tentative privacy definition (with parameter 𝑝)
A mechanism 𝑀 is 𝑝-private if the following holds for all possible outputs R and all 
pairs of neighboring datasets (𝐷,𝐷’):

Pr(𝑀(𝐷’) = 𝑅) − 𝑝 < Pr(𝑀(𝐷) = 𝑅) < Pr(𝑀(𝐷’) = 𝑅) + 𝑝

How do we define “similar” distributions?

● What does this mean?

Q: What gives more privacy, small or large 𝑝?

29
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Tentative privacy definition (with parameter 𝑝)
A mechanism 𝑀 is 𝑝-private if the following holds for all possible outputs R and all 
pairs of neighboring datasets (𝐷,𝐷’):

Pr(𝑀(𝐷’) = 𝑅) − 𝑝 < Pr(𝑀(𝐷) = 𝑅) < Pr(𝑀(𝐷’) = 𝑅) + 𝑝

How do we define “similar” distributions?

● What does this mean?

Q: What gives more privacy, small or large 𝑝?

30

A: Small 𝑝, the distributions are more alike



CS489 Spring 2024

Does this really work?

Tentative privacy definition (with parameter 𝑝)
A mechanism 𝑀 is 𝑝-private if the following holds for all possible outputs R and all 
pairs of neighboring datasets (𝐷,𝐷’):

Pr(𝑀(𝐷’) = 𝑅) − 𝑝 < Pr(𝑀(𝐷) = 𝑅) < Pr(𝑀(𝐷’) = 𝑅) + 𝑝

Q: Case 1 seems fine. What is the issue with case 2?

31
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Does this really work?

Tentative privacy definition (with parameter 𝑝)
A mechanism 𝑀 is 𝑝-private if the following holds for all possible outputs R and all 
pairs of neighboring datasets (𝐷,𝐷’):

Pr(𝑀(𝐷’) = 𝑅) − 𝑝 < Pr(𝑀(𝐷) = 𝑅) < Pr(𝑀(𝐷’) = 𝑅) + 𝑝

Q: Case 1 seems fine. What is the issue with case 2?

A: There are some outputs 𝑅 that can only happen if the input was 𝐷
(e.g., if Alice was not in the dataset). This allows the adversary to 
distinguish between 𝐷 and 𝐷’ with 100% certainty. 

In other words, the attacker can find a perspective through which the 
two databases behave differently.
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Tentative privacy definition II (with parameter p)
A mechanism M is 𝑝-private if the following holds for all possible outputs R and all 
pairs of neighboring datasets (𝐷,𝐷’):

Pr 𝑀 𝐷’ = 𝑅
𝑝

< Pr 𝑀 𝐷 = 𝑅 < Pr 𝑀 𝐷’ = 𝑅 ⋅ 𝑝

What if we make the distance multiplicative?

33

Q: what does provide more privacy, small (but larger than 1) or large 𝑝?
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Tentative privacy definition II (with parameter p)
A mechanism M is 𝑝-private if the following holds for all possible outputs R and all 
pairs of neighboring datasets (𝐷,𝐷’):

Pr 𝑀 𝐷’ = 𝑅
𝑝

< Pr 𝑀 𝐷 = 𝑅 < Pr 𝑀 𝐷’ = 𝑅 ⋅ 𝑝

What if we make the distance multiplicative?

34

Q: what does provide more privacy, small (but larger than 1) or large 𝑝? A: Small 𝑝
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Tentative privacy definition II (with parameter p)
A mechanism M is 𝑝-private if the following holds for all possible outputs R and all 
pairs of neighboring datasets (𝐷,𝐷’):

Pr 𝑀 𝐷’ = 𝑅
𝑝

< Pr 𝑀 𝐷 = 𝑅 < Pr 𝑀 𝐷’ = 𝑅 ⋅ 𝑝

What if we make the distance multiplicative?

35

Q: Does this make sense?
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Tentative privacy definition II (with parameter p)
A mechanism M is 𝑝-private if the following holds for all possible outputs R and all 
pairs of neighboring datasets (𝐷,𝐷’):

Pr 𝑀 𝐷’ = 𝑅
𝑝

< Pr 𝑀 𝐷 = 𝑅 < Pr 𝑀 𝐷’ = 𝑅 ⋅ 𝑝

What if we make the distance multiplicative?

36

Q: Does this make sense?

A: Yes, because this is the case where we 
get no privacy, and that’s what 𝑝 = ∞ means
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Finally: Differential Privacy
● Same definition, but instead of “𝑝” we use 𝑒)

● Some notes:
○ We use 𝑒! , instead of just 𝜖, because this makes it easier to formulate 

some useful theorems 
○ We do not need the 𝑒"! on the left, since this must hold for all pairs 

(𝐷,𝐷’). This includes (𝐷’, 𝐷).
○ 𝜖 ∈ [0,∞); this ensures that 𝑒! ∈ 1,∞

Differential Privacy
A mechanism 𝑀:𝒟 → ℛ is 𝜖-differentially private (𝜖-DP) if the following holds for all 
possible outputs 𝑅 ∈ ℛ and all pairs of neighboring datasets 𝐷,𝐷- ∈ 𝒟:

Pr 𝑀 𝐷 = 𝑅 ≤ Pr 𝑀 𝐷- = 𝑅 𝑒.

37
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Differential privacy: some questions
Differential Privacy
A mechanism 𝑀:𝒟 → ℛ is 𝜖-differentially private (𝜖-DP) if the following 
holds for all possible sets of outputs 𝑅 ⊂ ℛ and all pairs of neighboring 
datasets 𝐷,𝐷- ∈ 𝒟:

Pr 𝑀 𝐷 ∈ 𝑅 ≤ Pr 𝑀 𝐷- ∈ 𝑅 𝑒.

Q: which provides more privacy? 𝜖 = 1 or 𝜖 = 2?
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Differential privacy: some questions
Differential Privacy
A mechanism 𝑀:𝒟 → ℛ is 𝜖-differentially private (𝜖-DP) if the following 
holds for all possible sets of outputs 𝑅 ⊂ ℛ and all pairs of neighboring 
datasets 𝐷,𝐷- ∈ 𝒟:

Pr 𝑀 𝐷 ∈ 𝑅 ≤ Pr 𝑀 𝐷- ∈ 𝑅 𝑒.

Q: which provides more privacy? 𝜖 = 1 or 𝜖 = 2?

A: Smaller 𝜖 means more privacy; larger 
means less privacy

Q: What does 𝜖 = 0 mean?

39
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Differential privacy: some questions
Differential Privacy
A mechanism 𝑀:𝒟 → ℛ is 𝜖-differentially private (𝜖-DP) if the following 
holds for all possible sets of outputs 𝑅 ⊂ ℛ and all pairs of neighboring 
datasets 𝐷,𝐷- ∈ 𝒟:

Pr 𝑀 𝐷 ∈ 𝑅 ≤ Pr 𝑀 𝐷- ∈ 𝑅 𝑒.

Q: which provides more privacy? 𝜖 = 1 or 𝜖 = 2?

A: Smaller 𝜖 means more privacy; larger 
means less privacy

Q: What does 𝜖 = 0 mean?
A: Perfect privacy! The output is independent of 
the dataset! Utility will be very bad.

40
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Some notes on Differential Privacy
● DP was proposed in 2006 by Cynthia Dwork et al. [DMNS06]

● The authors won the Test-of-Time Award in 2016 and the Godel
Price in 2017.

● Adopted by big tech like Apple, Google, Microsoft, Facebook, 
LinkedIn, and by the US Census Bureau for the 2020 US Census

● There is no consensus on how small 𝜖 should be.

41

https://people.csail.mit.edu/asmith/PS/sensitivity-tcc-final.pdf


DP Mechanisms
or in other words, how to add noise and how much?

42
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Sensitivity 
● Q: How much noise to add? à Measure sensitivity!

43
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Sensitivity 
● Q: How much noise to add? à Measure sensitivity!

44

● Given a function 𝑓:𝒟 → ℝ/, and two neighboring datasets 𝐷 ∈ 𝒟 and 𝐷- ∈ 𝒟, 
the ℓ𝟏-sensitivity of 𝑓 is the maximum change that replacing 𝐷 for 𝐷′ can 
cause in the output:

Δ1 ≐ max
2,2-

| 𝑓 𝐷 − 𝑓 𝐷- | 1
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Sensitivity 
● Q: How much noise to add? à Measure sensitivity!

45

● Given a function 𝑓:𝒟 → ℝ/, and two neighboring datasets 𝐷 ∈ 𝒟 and 𝐷- ∈ 𝒟, 
the ℓ𝟏-sensitivity of 𝑓 is the maximum change that replacing 𝐷 for 𝐷′ can 
cause in the output:

● Note 1: The range of 𝑓 is 𝑘 -dimensional
○ e.g., Avg. and Sum. of different attributes in a public data release

● Note 2: ℓ1-sensitivity is the ℓ1-norm 
○ d

Δ1 ≐ max
2,2-

| 𝑓 𝐷 − 𝑓 𝐷- | 1
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Sensitivity w/ one pair of neighboring databases

● D with Alice enrolled:
○ Alice: 90
○ Everyone else (29 of them): 50

46

● D’ with Alice not enrolled:
○ Everyone (30 of them): 50

Algorithm: You are allowed to make a query that returns the average score of this course.

Q: What is the ℓ1-sensitivity here?
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Sensitivity w/ one pair of neighboring databases

● D with Alice enrolled:
○ Alice: 90
○ Everyone else (29 of them): 50

47

● D’ with Alice not enrolled:
○ Everyone (30 of them): 50

Algorithm: You are allowed to make a query that returns the average score of this course.

Q: What is the ℓ1-sensitivity here?

A: |Avg(D) − Avg(D’)| = 51.33 − 50 = 1.33
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Sensitivity w/ one pair of neighboring databases

● D with Alice enrolled:
○ Alice: 90
○ Everyone else (29 of them): 50

48

● D’ with Alice not enrolled:
○ Everyone (30 of them): 50

Algorithm: You are allowed to make a query that returns the average score of this course.

Q: What is the ℓ1-sensitivity here?

A: |Avg(D) − Avg(D’)| = 51.33 − 50 = 1.33
Q: How can we add noise?
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DP Mechanisms
● Multiple mechanisms provide Differential Privacy and can 

be applied to various systems.

● A few examples:
1. The Laplace Mechanism (DP, continuous outputs)
2. The Randomized Response Mechanism (DP, binary inputs/outputs)
3. General Discrete Mechanisms
4. The Exponential Mechanism (DP, discrete outputs)
5. The Gaussian Mechanism (approximate DP, continuous)

49
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DP Mechanisms
● Multiple mechanisms provide Differential Privacy and can 

be applied to various systems.

● A few examples:
1. The Laplace Mechanism (DP, continuous outputs)
2. The Randomized Response Mechanism (DP, binary inputs/outputs)
3. General Discrete Mechanisms
4. The Exponential Mechanism (DP, discrete outputs)
5. The Gaussian Mechanism (approximate DP, continuous)
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Example: the Laplacian mechanism
● Let 𝑌 ∼ 𝐿𝑎𝑝(𝜇, 𝑏)

○ A Laplace distribution!

● With PDF: p3 𝑦 = 1
45
𝑒6

./0
1

● Usually, for DP, we set μ = 0
○ So you may see Lap(b) which is essentially Lap(0, b)

● Lap(μ, b) has variance σ2 = 2b2

● As b increases, the distribution becomes more flat

51
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The Laplace Mechanism
● Given a function 𝑓:𝒟 → ℝ/, and two neighboring datasets 𝐷 ∈ 𝒟 and 𝐷- ∈ 𝒟, 

the ℓ1-sensitivity of 𝑓 is the maximum change that replacing 𝐷 for 𝐷′ can 
cause in the output:

● Given any function 𝑓 and its ℓ1-sensitivity, we can turn it into a DP mechanism 
if we add Laplacian noise to its output:

52

Δ1 ≐ max
2,2-

| 𝑓 𝐷 − 𝑓 𝐷- | 1

Given a function 𝑓:𝒟 → ℝ/ with ℓ1-sensitivity Δ1, the Laplace 
mechanism is defined as 𝑀 𝐷 = 𝑓 𝐷 + (𝑌1, 𝑌4, … , 𝑌/) where each 𝑌7
is independently distributed following 𝑌 ∼ 𝐿𝑎𝑝(𝑏) with 𝑏 = 82

. .
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The Laplace Mechanism
● Given a function 𝑓:𝒟 → ℝ/, and two neighboring datasets 𝐷 ∈ 𝒟 and 𝐷- ∈ 𝒟, 

the ℓ1-sensitivity of 𝑓 is the maximum change that replacing 𝐷 for 𝐷′ can 
cause in the output:

● Given any function 𝑓 and its ℓ1 sensitivity, we can turn it into a DP mechanism 
if we add Laplacian noise to its output:

53

Δ1 ≐ max
2,2-

| 𝑓 𝐷 − 𝑓 𝐷- | 1

Given a function 𝑓:𝒟 → ℝ/ with ℓ1-sensitivity Δ1, the Laplace 
mechanism is defined as 𝑀 𝐷 = 𝑓 𝐷 + (𝑌1, 𝑌4, … , 𝑌/) where each 𝑌7
is independently distributed following 𝑌 ∼ 𝐿𝑎𝑝(𝑏) with 𝑏 = 82

. .The Laplace mechanism 

provides 𝜖-D
P
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The Laplace Mechanism in our running example
● In our CS489 grades example:

○ let’s take ϵ = 0.1, and together with Δ1 = 1.33, we have:

M(D) = 𝑓(D) + Lap(𝑏 = 82
. ) ⇔

⇔ M(D) = 𝑓(D) + Lap(1.::;.1 ) ⇔

⇔ M(D) = 𝑓(D) + Lap(13.3) 

Curves for D and D’ mostly overlap

54



A Few Other Nice Properties
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Compositional privacy
● Given:

○ M1 : D → R1 being 𝜖1-DP, and
○ M2 : D → R2 being 𝜖2-DP

● This has a gossip analogy:
If A tells you something (potentially with noise), and then B tells you some other things 
(again, with noise), you may learn more by combining both pieces of information.

One may want to set a total privacy loss budget 𝜖 = 𝜖1 + 𝜖1... + 𝜖n.

56

We can define a new mechanism: 

M : D → R1 × R2 as M(D) = (M1(D), M2(D)). 
Then, M is (𝜖1 + 𝜖2)-DP.
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Group privacy

57

Theorem
Suppose mechanism𝑀:𝒟 → ℛ is 𝜖-differentially private. Suppose 𝐷,𝐷- are two 
neighboring datasets ∈ 𝒟 which differ in exactly k positions. Then:

Pr 𝑀 𝐷 = 𝑅 ≤ Pr 𝑀 𝐷- = 𝑅 𝑒/.

• TLDR: If you need to hide the “effects” caused by a whole group of records, 
you need to prepare a larger privacy budget.
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Approximate DP
● The following is a relaxation of the DP definition, that allows some tolerance:

● When 𝛿 = 0, this is the same as 𝜖-DP (called pure DP).
● What does this mean?

(Approximate) Differential Privacy
A mechanism 𝑀:𝒟 → ℛ is (𝜖, 𝛿)-differentially private ((𝜖, 𝛿)-DP) if the following holds 
for all sets of possible outputs 𝑆 ⊂ ℛ and all pairs of neighboring datasets 𝐷,𝐷- ∈ 𝒟:

Pr 𝑀 𝐷 ∈ 𝑆 ≤ Pr 𝑀 𝐷- ∈ 𝑆 𝑒. + 𝛿

We have two distributions
𝑓(𝑅|𝐷) vs 𝑓(𝑅|𝐷!)

We multiply one 
(e.g., blue) by 𝑒"

The area of the green one not covered by 
the blue one now will be ≤ 𝛿
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Approximate DP: interpretation

● A mechanism 𝑀:𝒟 → ℛ that provides 𝜖-DP except for certain ”bad” outcomes 
𝐵 ⊂ ℛ, where Pr 𝑀 𝐷 ∈ 𝐵 ≤ 𝛿 (for any 𝐷 ∈ 𝒟) also provides 𝜖, 𝛿 -DP.

● This definition allows us to add less noise, if we are comfortable with the 
probability of bad outcomes

(Approximate) Differential Privacy
A mechanism 𝑀:𝒟 → ℛ is (𝜖, 𝛿)-differentially private ((𝜖, 𝛿)-DP) if the following holds 
for all sets of possible outputs 𝑆 ⊂ ℛ and all pairs of neighboring datasets 𝐷,𝐷- ∈ 𝒟:

Pr 𝑀 𝐷 ∈ 𝑆 ≤ Pr 𝑀 𝐷- ∈ 𝑆 𝑒. + 𝛿
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A Note on 
Differential Privacy Settings
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Central DP vs. Local DP
● Depending on who runs the mechanism, there are two broad 

models for differential privacy.

61

Central Differential Privacy: there is a 
centralized (trusted) aggregator

Local Differential Privacy: each user runs the 
mechanism themselves and reports the result 
to the adversary/analyst

𝑀(𝐷)

Data collector

𝐷 Data analyst
𝑀(𝑥!) Data analyst

𝑀(𝑥")

𝑀(𝑥#)

𝑀(𝑥$)
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Central DP vs. Local DP

62

𝑀(𝐷)

Data collector

𝐷 Data analyst
𝑀(𝑥!) Data analyst

𝑀(𝑥")

𝑀(𝑥#)

𝑀(𝑥$)

(Central) Differential Privacy
A mechanism 𝑀:𝒟 → ℛ is 𝜖-differentially private (𝜖-
DP) if the following holds for all possible sets of 
outputs 𝑅 ⊂ ℛ and all pairs of neighboring datasets 
𝐷,𝐷# ∈ 𝒟:

Pr 𝑀 𝐷 ∈ 𝑅 ≤ Pr 𝑀 𝐷# ∈ 𝑅 𝑒!

(Local) Differential Privacy
A mechanism 𝑀:𝒟 → ℛ is 𝜖-differentially private (𝜖-
DP) if the following holds for all possible sets of 
outputs 𝑅 ⊂ ℛ and all pairs of neighboring inputs 
𝑥, 𝑥# ∈ 𝒟:

Pr 𝑀 𝑥 ∈ 𝑅 ≤ Pr 𝑀 𝑥# ∈ 𝑅 𝑒!

• They are “the same definition”, it’s just that the inputs to the mechanism and what we define as 
“neighbouring” inputs/datasets is usually different.
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Central DP vs. Local DP
● Central DP

○ Best accuracy, aggregation allows to hide in the crowd before we add noise.
○ Need to trust the data collector.
○ Hard to verify if noise was added.

● Local DP
○ Accuracy not as good. Each user adds noise which can compound in the final result.
○ User doesn’t need to trust anybody and knows they added noise.

63
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Bounded DP vs. Unbounded DP
● There are two “main” definitions for how we define neighboring datasets in the central model.

64

Bounded DP: 𝐷 and 𝐷’ have the same number 
of entries but differ in the value of one.

Unbounded DP: 𝐷 and 𝐷’ are such that you get 
one by deleting an entry from the other one.
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Other notions of DP
● Many possible neighbouring definitions. 
● For example, in location privacy:

● These are all DP and have their uses. It is important to understand, 
for each system/application, which notion of DP it provides.

65

Depending on how we define neighboring datasets 𝐷 and 
𝐷′, we get a different DP guarantee:
• User-level DP: we replace a user trajectory for another 

user’s trajectory
• Event-level DP: we replace the location of a user for 

another location
• w-event DP: we replace a window of w consecutive 

locations of a user for another
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Other notions of DP - question

66

Depending on how we define neighboring datasets 𝐷 and 
𝐷′, we get a different DP guarantee:
• User-level DP: we replace a user trajectory for another 

user’s trajectory
• Event-level DP: we replace the location of a user for 

another location
• w-event DP: we replace a window of w consecutive 

locations of a user for another

Q: Which notions of DP imply the others?
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Other notions of DP - question

67

Depending on how we define neighboring datasets 𝐷 and 
𝐷′, we get a different DP guarantee:
• User-level DP: we replace a user trajectory for another 

user’s trajectory
• Event-level DP: we replace the location of a user for 

another location
• w-event DP: we replace a window of w consecutive 

locations of a user for another

Q: Which notions of DP imply the others?

A: User-level DP implies Event- and w-event DP.
W-event DP implies Event-level DP.
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A lot more about differential privacy!
● You may want to check CS860 (F’20) – Algorithms for Private Data 

Analysis, as taught by Prof. Gautam Kamath here at the School.

● The course’s contents are available online!
○ https://www.youtube.com/playlist?list=PLmd_zeMNzSvRRNpoEWkVo6QY_6rR3SHjp

68

https://www.youtube.com/playlist?list=PLmd_zeMNzSvRRNpoEWkVo6QY_6rR3SHjp


Checkpoint on the 
Laplace Mechanism
(self-study)

69
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The Laplace Mechanism – checkpoint!

70

The Laplace Mechanism: 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 𝑌 ∼ 𝐿𝑎𝑝(𝑏) with 𝑏 =
8&
. provides 𝜖-DP

The variance is 2𝑏!; higher 
𝑏 means more noise!

Q: what does smaller 𝜖 mean?
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The Laplace Mechanism – checkpoint!

71

The Laplace Mechanism: 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 𝑌 ∼ 𝐿𝑎𝑝(𝑏) with 𝑏 =
8&
. provides 𝜖-DP

The variance is 2𝑏!; higher 
𝑏 means more noise!

Q: what does smaller 𝜖 mean?

A: more privacy
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The Laplace Mechanism – checkpoint!

72

The Laplace Mechanism: 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 𝑌 ∼ 𝐿𝑎𝑝(𝑏) with 𝑏 =
8&
. provides 𝜖-DP

The variance is 2𝑏!; higher 
𝑏 means more noise!

Q: if we want more privacy, would 
we need to add more or less noise?
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The Laplace Mechanism – checkpoint!

73

The Laplace Mechanism: 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 𝑌 ∼ 𝐿𝑎𝑝(𝑏) with 𝑏 =
8&
. provides 𝜖-DP

The variance is 2𝑏!; higher 
𝑏 means more noise!

Q: if we want more privacy, would 
we need to add more or less noise?

A: more noise. That’s 
why 𝑏 ∝ 1

..
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The Laplace Mechanism – checkpoint!

74

The Laplace Mechanism: 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 𝑌 ∼ 𝐿𝑎𝑝(𝑏) with 𝑏 =
8&
. provides 𝜖-DP

The variance is 2𝑏!; higher 
𝑏 means more noise!

Q: if changing 𝐷 for 𝐷′ can cause a huge 
change in 𝑓 ⋅ , is that a large or small 
sensitivity?
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The Laplace Mechanism – checkpoint!

75

The Laplace Mechanism: 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 𝑌 ∼ 𝐿𝑎𝑝(𝑏) with 𝑏 =
8&
. provides 𝜖-DP

The variance is 2𝑏!; higher 
𝑏 means more noise!

Q: if changing 𝐷 for 𝐷′ can cause a huge 
change in 𝑓 ⋅ , is that a large or small 
sensitivity?

A: large sensitivity
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The Laplace Mechanism – checkpoint!

76

The Laplace Mechanism: 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 𝑌 ∼ 𝐿𝑎𝑝(𝑏) with 𝑏 =
8&
. provides 𝜖-DP

The variance is 2𝑏!; higher 
𝑏 means more noise!

Q: if changing 𝐷 for 𝐷′ can have a huge 
impact in 𝑓, do we need a lot or a little 
noise to hide this impact?
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The Laplace Mechanism – checkpoint!

77

The Laplace Mechanism: 𝑀 𝐷 = 𝑓 𝐷 + 𝑌 where 𝑌 ∼ 𝐿𝑎𝑝(𝑏) with 𝑏 =
8&
. provides 𝜖-DP

The variance is 2𝑏!; higher 
𝑏 means more noise!

Q: if changing 𝐷 for 𝐷′ can have a huge 
impact in 𝑓, do we need a lot or a little 
noise to hide this impact?

A: a lot of noise. 
That’s why 𝑏 ∝ Δ1
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Laplace Mechanism: examples

78

𝑓 𝐷 + 𝑌 is 𝜖-DP if
𝑌 ∼ 𝐿𝑎𝑝

Δ1
𝜖

𝑀(𝐷)

Data collector

𝐷 Data analyst

Δ1 ≐ max
2,2'

| 𝑓 𝐷 − 𝑓 𝐷- | 1
Example 1: 𝐷 contains the test results for virus X of a 
set of users. We want to release the total number of 
users that tested positive. How do we make this 𝜖-DP?
• Under unbounded DP
• Under bounded DP



CS489 Spring 2024

Laplace Mechanism: examples

79

𝑓 𝐷 + 𝑌 is 𝜖-DP if
𝑌 ∼ 𝐿𝑎𝑝

Δ1
𝜖

𝑀(𝐷)

Data collector

𝐷 Data analyst

Δ1 ≐ max
2,2'

| 𝑓 𝐷 − 𝑓 𝐷- | 1
Example 1: 𝐷 contains the test results for virus X of a 
set of users. We want to release the total number of 
users that tested positive. How do we make this 𝜖-DP?
• Under unbounded DP
• Under bounded DP

A: sensitivity is 1 in both cases
Add 𝑌 ∼ 𝐿𝑎𝑝 "

#
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Laplace Mechanism: examples

80

𝑓 𝐷 + 𝑌 is 𝜖-DP if
𝑌 ∼ 𝐿𝑎𝑝

Δ1
𝜖

𝑀(𝐷)

Data collector

𝐷 Data analyst

Δ1 ≐ max
2,2'

| 𝑓 𝐷 − 𝑓 𝐷- | 1
Example 2: 𝐷 contains the salaries of a set of users. 
The salaries range from 20k to 200k. We want to 
release the total salary of the users. How do we make 
this 𝜖-DP?
• Under unbounded DP
• Under bounded DP
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Laplace Mechanism: examples

81

𝑓 𝐷 + 𝑌 is 𝜖-DP if
𝑌 ∼ 𝐿𝑎𝑝

Δ1
𝜖

𝑀(𝐷)

Data collector

𝐷 Data analyst

Δ1 ≐ max
2,2'

| 𝑓 𝐷 − 𝑓 𝐷- | 1
Example 2: 𝐷 contains the salaries of a set of users. 
The salaries range from 20k to 200k. We want to 
release the total salary of the users. How do we make 
this 𝜖-DP?
• Under unbounded DP
• Under bounded DP

A: sensitivity is bounded by 
180k in bounded DP and 200k 
in unbounded DP
Add 𝑌 ∼ 𝐿𝑎𝑝 "$%&

#
or 

𝑌 ∼ 𝐿𝑎𝑝
200𝑘
𝜖
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Laplace Mechanism: examples

82

𝑓 𝐷 + 𝑌 is 𝜖-DP if
𝑌 ∼ 𝐿𝑎𝑝

Δ1
𝜖

𝑀(𝐷)

Data collector

𝐷 Data analyst

Δ1 ≐ max
2,2'

| 𝑓 𝐷 − 𝑓 𝐷- | 1
Example 3: 𝐷 contains the salaries of 𝑛 users (𝑛 is 
public knowledge). The salaries range from 20k to 200k. 
We want to release the average salary of users. How 
do we make this 𝜖-DP?
• Under bounded DP
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Laplace Mechanism: examples

83

𝑓 𝐷 + 𝑌 is 𝜖-DP if
𝑌 ∼ 𝐿𝑎𝑝

Δ1
𝜖

𝑀(𝐷)

Data collector

𝐷 Data analyst

Δ1 ≐ max
2,2'

| 𝑓 𝐷 − 𝑓 𝐷- | 1
Example 3: 𝐷 contains the salaries of 𝑛 users (𝑛 is 
public knowledge). The salaries range from 20k to 200k. 
We want to release the average salary of users. How 
do we make this 𝜖-DP?
• Under bounded DP

A: sensitivity is bounded by 180k/n
Add 𝑌 ∼ 𝐿𝑎𝑝 $%&'

(!
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Laplace Mechanism: examples

84

𝑓 𝐷 + 𝑌 is 𝜖-DP if
𝑌 ∼ 𝐿𝑎𝑝

Δ1
𝜖

𝑀(𝐷)

Data collector

𝐷 Data analyst

Δ1 ≐ max
2,2'

| 𝑓 𝐷 − 𝑓 𝐷- | 1
Example 4: 𝐷 contains the age of a set of users. We 
want to release the histogram of ages [0-10), [10-
20)…[100,110). How do we make this 𝜖-DP?
• Under unbounded DP
• Under bounded DP
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Laplace Mechanism: examples

85

𝑓 𝐷 + 𝑌 is 𝜖-DP if
𝑌 ∼ 𝐿𝑎𝑝

Δ1
𝜖

𝑀(𝐷)

Data collector

𝐷 Data analyst

Δ1 ≐ max
2,2'

| 𝑓 𝐷 − 𝑓 𝐷- | 1
Example 4: 𝐷 contains the age of a set of users. We 
want to release the histogram of ages [0-10), [10-
20)…[100,110). How do we make this 𝜖-DP?
• Under unbounded DP
• Under bounded DP

A: sensitivity is 1 in unbounded 2 in 
bounded
Add 𝑌 ∼ 𝐿𝑎𝑝 $

!
or 𝑌 ∼ 𝐿𝑎𝑝 )

!
to 

each bucket in the histogram (drawn 
fresh for each bucket)
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Laplace Mechanism: examples
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𝑓 𝐷 + 𝑌 is 𝜖-DP if
𝑌 ∼ 𝐿𝑎𝑝

Δ1
𝜖

𝑀(𝑥!) Data analyst

𝑀(𝑥")

𝑀(𝑥#)

𝑀(𝑥$)

Δ1 ≐ max
2,2'

| 𝑓 𝐷 − 𝑓 𝐷- | 1
Example 5: Alice wishes to report her age x* in a 
differentially private way. It is public information that she 
is between 18 and 100 years old. She adds Laplacian 
noise with 𝑏 = 3 to her age, and reports the resulting 
value. What is the level of DP that she gets?
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Laplace Mechanism: examples
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𝑓 𝐷 + 𝑌 is 𝜖-DP if
𝑌 ∼ 𝐿𝑎𝑝

Δ1
𝜖

𝑀(𝑥!) Data analyst

𝑀(𝑥")

𝑀(𝑥#)

𝑀(𝑥$)

Δ1 ≐ max
2,2'

| 𝑓 𝐷 − 𝑓 𝐷- | 1
Example 5: Alice wishes to report her age x* in a 
differentially private way. It is public information that she 
is between 18 and 100 years old. She adds Laplacian 
noise with 𝑏 = 3 to her age, and reports the resulting 
value. What is the level of DP that she gets?

A: sensitivity is bounded by 82

𝑏 =
82
𝜖
= 3

𝜖 = 82/3


