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Easy attack surface:
● Mallory has access to one of the many hops traffic takes 

on the internet
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Communication media (WiFi)
● WiFi

○ Can be easily intercepted by anyone with a

● WiFi-capable (mobile) device
■ Don’t need additional hardware, which would cause suspicion

● Maybe from kilometers away using a directed antenna 
● WiFi also raises other security problems

○ Physical barriers (walls) help against random devices being connected to a wired network, but 
are (nearly) useless in case of wireless network

4



CS489 Spring 2024 

Communication media
● Copper cable

○ Inductance allows a physically close attacker to eavesdrop without making physical contact
○ Cutting cable and splicing in secondary cable is another option

● Optical fiber
○ No inductance, and signal loss by splicing is likely detectable

● Microwave/satellite communication
○ Signal path at receiver tends to be wide, so attacker close to receiver can eavesdrop

● All these attacks are feasible in practice, but require 
physical expenses/effort
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Traffic Analysis
● TCP/IP has each packet include unique addresses for the packet’s 

sender and receiver end nodes, which makes traffic analysis easy
● The attacker simply needs to sniff packets to determine what is 

going where and when.
○ Can be sensitive info such as two CEOs talking or a whistle blower.

● tcpdump is a text-based traffic analysis tool
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Tcpdump (1 of 3)

● 14:47:26.566195 the timestamp of the received packet
● IP is the network layer protocol (IPv4)
● 192.168.2.2.22 is the source IP address and port
● 192.168.1.1 is the destination IP address and port

14:47:26.566195 IP 192.168.2.2.22 > 192.168.1.1.41916: Flags [P.], seq 196:568, ack 1, win 309, 
options [nop,nop,TS val 117964079 ecr 816509256], length 372
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Tcpdump (2 of 3)

● TCP Flag (Flags [P.]) fields include:

14:47:26.566195 IP 192.168.2.2.22 > 192.168.1.1.41916: Flags [P.], seq 196:568, ack 1, win 309, 
options [nop,nop,TS val 117964079 ecr 816509256], length 372

Value Flag Type Description
S SYN Start Connection
F FIN End (Finish) 

Connection
P PUSH Push data
R RST Reset connection
. ACK Acknowledgement
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Tcpdump (3of 3)

● seq 196:568 is the sequence number of the data contained in the packet (196 bytes to 568 
bytes)

● ack 1 is the ack number, which is 1 (sender) or the next expected byte (receiver)
● win 309 is the number of bytes available in the receiving buffer
● options [nop,nop,TS val 117964079 ecr 816509256], are the TCP options
● length 372 is the length, in bytes, of the payload data (the difference between the first and last 

byte in the sequence number)

14:47:26.566195 IP 192.168.2.2.22 > 192.168.1.1.41916: Flags [P.], seq 196:568, ack 1, win 309, 
options [nop,nop,TS val 117964079 ecr 816509256], length 372
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Encrypted Traffic Analysis
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Encryption reduces visibility over network traffic
● TLS and other PETs significantly improved security and 

privacy for Internet users
○ Plaintext is no longer visible
○ Traffic monitoring capabilities are significantly reduced

● But one should not assume that traffic encryption 
provides absolute protection
○ e.g., against behavioural analysis

● There are strong incentives to “see” beyond encryption
○ Both for network adversaries and network administrators
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Encrypted traffic analysis (ETA)
● Let’s look at an encrypted tunnel between Alice and Bob:
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Network flows and metadata
● What is a network flow?

○ A flow is typically represented by a five-tuple
○ <Src. IP, Dest. IP, Src. port, Dest. port, Proto>

● One can extract additional metadata tied to a flow:
○ Flow duration
○ Amount of packets exchanged Packet sizes
○ Packet inter-arrival times
○ Payload byte entropy And more...

● What is this good for?
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Encrypted traffic analysis (ETA) as a side channel
● Think of ETA as a sort of network side channel!

● ETA can be used to infer information about encrypted traffic

● We’ll look at three particular ETA applications for: 
○ network analytics

○ network security 

○ privacy breaches 

● We’ll also discuss potential countermeasures
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Network Analytics

● Traffic Engineering
○ Prioritize application traffic (e.g., WhatsApp, Skype)

■ e.g., for non-neutral Internet ISPs
○ Throttle selected protocols (e.g. BitTorrent)

■ e.g., for “traffic management” purposes

● Quality-of-Service
○ Derive quality metrics from encrypted flows

■ e.g. videoconferencing and video streaming QoE
■ e.g. websites’ page load time, speed index
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Use case: Identification of mobile applications
● Mobile applications’ traffic leaves a fingerprint

○ Network observers can understand which apps you are using

● Build a classifier based on summary statistics from each flow
○ Look at the packet size/timing distributions

○ Minimum, maximum, mean, standard deviation, variance, skew, kurtosis, percentiles, etc.

● May need to separate traffic bursts
○ Network packets occurring together within a threshold of time 

○ Traffic bursts may encompass multiple flows
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Let’s classify some apps!
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Use case: Identification of mobile applications

● Taylor et al., IEEE TIFS ’17
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Use case: Measuring video QoE
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● Majority of video traffic is delivered over adaptive bitrate
○ A video is encoded in multiple resolutions and split into chunks of variable length
○ Clients continuously fill a buffer of chunks, where ensuing chunks are based on network conditions

● DPI solutions can no longer be used to extract meaningful 
QoE metrics

○ e.g., initial delays, playback stalls frequency, resolution switch
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Use case: Measuring video QoE (cont)

● Features extracted from encrypted traffic guide the models 
to detect quality impairments
○ Able to detect stalls, average quality, and video quality adjustments
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• Dimopoulos et al., IMC ’16
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Malware Detection
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● Traditional network-based malware detection relies on 
unencrypted data
○ Heavy use of deep packet inspection
○ e.g., for signature-based detection over packet payloads

● No longer useful to detect viruses or data exfiltration

● Encrypted traffic analysis helps us to identify:
○ Malware communications towards C&C servers 
○ Unusual network traffic patterns in the network
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Malware Detection
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● Malware classification:
○ Build a model out of legitimate / malicious network activity 
○ Leverage “fingerprints” of legitimate / malicious behaviour
○ What if a new malware stream emerges?

● Anomaly detection:
○ Build a model for legitimate traffic and flag strange behavior 
○ Via one-class learning or clustering
○ What if legitimate behavior changes over time?
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Use case: P2P botnet detection

25

● Can we pinpoint interactions between bots and C&Cs?
○ Tend to be low-volume and long-standing vs. benign P2P apps

Narang et al., IEEE SPW ’14
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Use case: P2P botnet detection
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● Flows
○ P2P applications (including botnets) randomize port numbers
○ The usual flow definition leads to the generation of multiple flows out of what can be a continued 

interaction between two peers

● Super-flows
○ Aggregate multiple flows between two IPs into a super-flow

■ What if two IPs have benign and malicious flows between them?

Narang et al., IEEE SPW ’14
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Use case: P2P botnet detection
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● Conversations
○ Start by clustering flows:

■ Protocol, packets per second, avg. payload size
○ Create conversations from flows placed within the same clusters 
○ Finally, classify conversations as malicious or benign based on:

■ Duration of the conversation 
■ Number of packets exchanged 
■ Volume of data exchanged
■ Median of packet inter-arrival times

● This approach was also shown effective for detecting 
previously unseen botnets!
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Stepping stones
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● An attacker can hide its identity by using other machines as 
intermediaries (i.e., stepping-stones)
○ e.g., by hopping through compromised machines or by using Tor
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Traffic Correlation
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● Detection of stepping-stones
○ Attempt to match (roughly) the same sequence of packets at different network vantage points
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Difficulties in Performing Traffic Correlation
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● In practice, flow observations will not be an exact match 
○ Due to network imperfections

■ Packet delays, jitter, loss

● Due to countermeasures
○ Chaff and delay injection at intermediate nodes, padding

● Traffic correlation algorithms must account for small 
differences between each flow observation

Staniford-Chen and Heberlein, IEEE S&P ’95



Privacy Breaches
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● One would assume that encryption is all that is needed to 
securely communicate over the Internet

● Unfortunately, encryption does not hide traffic patterns

● Traffic analysis can be weaponized to breach users’ 
privacy

Nefarious uses of encrypted traffic analysis
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Metadata is not your data. Or is it?
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(Dr. Evil making you think metadata is useless)
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Website fingerprinting over VPNs
● VPNs are advertised as the “holy-grail” of Internet security 

○ Passive adversaries can uncover which website is being visited
○ By building traffic fingerprints and using a classifier

● The attack can be launched in two settings:
○ Closed-world Open-world
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Website fingerprinting over Tor
● The Tor network can be seen as one “big VPN node”

○ Tor exchanges data in fixed-size cells
○ But packet direction and timing still leaks information
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Website fingerprinting over Tor
● Features based on different traffic representations have been 

used to launch website fingerprinting attacks on Tor
○ Directional representation - Rimmer et al., NDSS ’18
○ Directional + timing representation - Saidur Rahman et al., PoPETs ’20
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IoT device fingerprinting
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● Passive network observers can potentially analyze IoT 
network traffic to infer sensitive details about users
○ Does this user have a blood monitor? A security camera? A sex toy?

● DNS queries associated with each encrypted flow often 
contain the device manufacturer name
○ We can even pinpoint the exact device
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Distinguishing devices through traffic volume
● Rather simple volumetric features allow us to identify IoT 

devices (Apthorpe et al., ConPro ’17)
○ Once a device is identified, one can also infer its state
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Motion sensor - Nest indor security camera
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● Easy to discern when the camera picks up movement 
○ Easy to discern when nobody’s home?
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Sleep tracker example - Sense sleep monitor
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● Easy to discern when a user goes to bed and wakes-up 
○ Easy to discern if a burglar should leave the crime scene?
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Practical attacks against IM applications
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● IM applications are extensively used to exchange potentially 
sensitive content securely
○ Remember OTR and Signal
○ Oftentimes used to exchange politically and socially sensitive content
○ Governments and corporations may be interested in identifying participants of IM conversations

■ e.g., target whistleblowers or dissidents
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Adversary aims to uncover group membership
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• How can the adversary set up the attack?

Bahramali et al., NDSS ’20
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Looking for messaging events
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● Messaging events have different fingerprints
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Matching messaging events fingerprints

● Extract meaningful events and compare similarity
● Attack succeeded against Signal, Telegram, and WhatsApp!
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VoIP eavesdropping

● Encrypted packet patterns resemble VBR codec bitrates 
○ Can we infer meaningful semantics from the transmission of encrypted audio frames?

45

Wright et al., USENIX SEC ’07
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Noticeable (coarse-grained) differences
● Maybe we can identify the language being spoken?

○ Languages have different bitrate frequencies
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How to distinguish different languages?
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● Compute distance between probability distributions
○ Samples from same language have similar distribution 
○ Compute packet size n-grams for even better results

■ Given sequence 10, 20, 30, 15 –> {(10, 20), (20, 30), (30, 15)}
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Noticeable (fine-grained) differences
● Can we segment packet size sequences into phonems? 

○ If so, we can recover approximated transcripts
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Video re-identification
● At this point, you’ve probably guessed it, traffic analysis can 

also be used to uncover which videos you are streaming
○ The bitrate of VBR video sequences also leaks some information
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Re-identification of Netflix video streaming
● Burst sizes of a streamed scene of “Reservoir Dogs”

○ Very similar, even when watched over different networks
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Schuster et al., USENIX SEC ’17



CS489 Spring 2024 

Countermeasures to traffic analysis
● Introduce padding 
● Add chaff traffic
● Shape traffic (look like something)
● Aggregate traffic (e.g, multiplex over single connection) 
● Split a single connection across multiple networks

● Main trade-off to consider is overhead
○ Achievable throughput 
○ Spent bandwidth
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Schuster et al., USENIX SEC ’17


