CS489/698
Privacy, Cryptography,
Network and Data Security

Secure Messaging

Spring 2024, Monday/Wednesday 11:30am-12:50pm

Today

e Secure Messaging Goals
e PGP

- PGP Keys

- Problems with PGP
e OTR
e Signal

Secure Messaging Goals

Secure Messaging Goals

e Confidentiality: Only Alice and Bob can read the message

e Integrity: Bob knows Mallory has not tampered with the message (and
that it has not been corrupted)

e Authentication: Bob knows Alice wrote the message

- Non-repudiation?

@

CS489 Spring 2024

Secure Messaging Goals

e Confidentiality: Only Alice and Bob can read the message

e Integrity: Bob knows Mallory has not tampered with the message (and
that it has not been corrupted)

e Authentication: Bob knows Alice wrote the message

- Non-repudiation?

GW ’wﬁ

CS489 Spring 2024

Secure Messaging Goals

e Confidentiality: Only Alice and Bob can read the message

e Integrity: Bob knows Mallory has not tampered with the message (and
that it has not been corrupted)

e Authentication: Bob knows Alice wrote the message

Hi What’s Well
1, your that
’ Bob! password? doesn’t

- Non-repudiation?

seem

= ———————— right...

CS489 Spring 2024

Secure Messaging Goals

e Confidentiality: Only Alice and Bob can read the message

e Integrity: Bob knows Mallory has not tampered with the message (and
that it has not been corrupted)

e Authentication: Bob knows Alice wrote the message

- Non-repudiation?
Look what OMG sh.e
Alice said reilly?s’?lld
about you! LI
Carol is Carol is

annoying. annoying.
—9Q—
3

CS489 Spring 2024

Pretty Good Privacy

PGP

e Public-key (actually hybrid) encryption tool
e Used for encrypted email (and other uses)
e Originally made by Phil Zimmermann in 1991

- He got in a lot of trouble for it, since cryptography was highly
controlled at the time

-https://www.philzimmermann.com/EN/essays/WhylWrotePGP.html

CS489 Spring 2024

https://www.philzimmermann.com/EN/essays/WhyIWrotePGP.html

PGP
e PGP: Pretty Good Privacy (original program)
e OpenPGP: Open standard (RFC 4880)
e GPG/GnuPG: GNU Privacy Guard (a popular OpenPGP program)
e Many people just say “PGP” for all of the above
e Today, there are many programs which implement OpenPGP

— GNU Privacy Guard (gpg), Thunderbird, Evolution, Mailvelope,
OpenKeychain, PGPro, Delta Chat, Proton Mail, ...

CS489 Spring 2024

10

PGP

PGP

hash(
sign(

Message

Message

CS489 Spring 2024

PGP

PGP

. = secret key (random)

PGP
@ - =

. = secret key (random)

enc(= [T @)

(symmetric encryption)

PGP

enc(-

(symmetric encryption)

PGP

@ .
enc([l @) = (&

(public key encryption)

PGP

@ .
enc([l @) = (&

PGP

PGP

]

dec(-, O)= .

(public key crypto)

e e 8
dec(.,‘!ﬂ)=

(public key crypto)

PGP

PGP
T
ool ETI. @)

(symmetric encryption)

PGP
T
doct (A)

(symmetric encryption)

PGP

PGP

Encrypted Messaging Goals and PGP

e Confidentiality
e Integrity
e Authentication

-Non-repudiation?

Encrypted Messaging Goals and PGP

e Confidentiality

2
e|ntegrity

e Authentication

-Non-repudiability?

Encrypted Messaging Goals and PGP

e Confidentiality

e|ntegrity
sig

e Authentication

-Non-repudiability?

Encrypted Messaging Goals and PGP

e Confidentiality

e|ntegrity
sig

e Authentication
sig

-Non-repudiation?

Encrypted Messaging Goals and PGP

e Confidentiality
e
e|ntegrity
sig

e Authentication
sig

-Non-repudiation?
sig

PGP Keys

PGP Keys
Each person has at least 2 keypairs:

e One for signatures e One for encryption

-Public key used to verif .
! ! _Public key used to encrypt

—Private key used to sign

-Private key used to decrypt

rsad4096 2023-01-27 [SC] [expires: 2023-02-26]
EF22E516EA9C43B7A67E4FB41CD25603C14C0ODAS

[ultimate] Alice <alice@example.com>
rsad096 2023-01-27 [E] [expires: 2023-02-26]

CS489 Spring 2024 36

Obtaining Keys

e How does Alice get Bob's public key?

-Download from Bob’s website
-Download from a keyserver
-Bob sends it via email

~Other channel

e How does Alice know it's Bob’s authentic key?

CS489 Spring 2024

37

Verifying Public Keys

e Alice and Bob would rather not have to trust CAs

e They can compare keys (in-person, through a secure
channel, etc.

e But keys are big and unwieldy!

CS489 Spring 2024

----- BEGIN PGP PUBLIC KEY BLOCK-----

mQINBGPUBX4BEADa3JsMGX9GKriACgl1vwokxOc8ltbHSI7aYYMZu5UzgCxYy29n
7YDGDiwN23ibyi8Gf36HNJ6mQuzgUBI7T54ed8pEf1rtMWL+700MNRNaFX6vosTS
3pFn+CiRY5avIGPkut8YdYrkaLixshjakYehmwwW\VcVMBBGfrP3pRI3dKWHET2EN
RMDSVBO6AzPnjedZmGpJUqp8UPXEP8JoTCnOxAvAugjMEVEGxxb/Cj151/5PsIhx
76LPqSsPUWRzKQIstP8YjTX+0191+GNqLhtdmy5yXPDIF/NO+fhQvwvUZ0o)544a
KeFDQ/GIGKJfJzTIhvQn9BdkZpff5Kjzun0+4HNkOmsB5S8BItdPpuc3gs+rkL6W
aANXUS9j7mB3Gf58fjJu+1gMP5dXG16nduB/W3SuH2/XSympjSmEPkuNCcSMIOXEN
FCUH/aoRjZQV/Xi5laQHg+cbEtLRACdkaAHNNjxGDXkzjbuYzjtv3hPMvNiBF897
PvihCO2w4pXBQ7rpxzn60vUliawfrmdZQA2tRZOSN2Cpti3KI0OzKzfGTOVFRaVq
NfEy26ZtEPAZjhgBIDo8SLxJkshrMLhNnlobR/BLng1v/xSrjPTAVE/sK032GfqZ
uynR6z0+rVewAKz3g/aK5kknPG/Or4KdEhsmOKuPgATSduGo96t299dRqQARAQAB
tBIBbGIjZSA8YWxpY2VAZXhhbXBsZS5jb20+iQJXBBMBCABBFEE7yLIFugcQ7em
fk+OHNJWASFMDQUFAMPUBX4CGWMFCQANjQAFCwkIBwICIgIGFQoJCAsCBBYCAWEC
HgcCFAAACgkQHNIWASFMDQV3LQ/8CnyOARM+seUp4ShUo5xqllEMPGEF+VbBE4SG
XGiEr/PeMbdTJtkrO0Qzsx0/tVYKIGILESD9W/1TagzAkmnsyvhFOwp3XZQGeq|t
U9mPpBQkzAfzwW21++3CK48WcCtb5SmRh+09Z7jwF0aEYDOKxO20g6a9132kUp66n
CctBy+h6ucBVMMTZSOjFr5YHFZIKa/lyQ60Dgkv+lwfPZm2N93jHejldrkSvtzi
Yb5tiXqGDwoljSIxhIVAGpX03CtENKqrpDPSOtM70AdmVSmjQgn7AR3UtBIn4IMb
iC+/yKD2JIGLS1R5RKvov) 1BBQHU7FATcrkKFLASORQS05iaEteMsFLLbBMomrs23
©oNuS/wmeWkUOG76uvjQnuAr/Bc7DF4IhY/WpZGDAlayASvITWMUMzxDjMwmfeK+
Olc)wjOBO6GbMBBNIr76ae+z\WpleqZrjv7S7H+h0bOi8nOPBKr TxbGLM7wg/rSii
EM4pHT5P0I6WBr3PYu/PoyEnPIKonxSvOkOJXGyjDcdV6vjBA6C37mFFSOFfk8A
5/x3V85+0YK34RbDVDgmS5+V42L05DP49KdBV1dp+007nWRIDsOroFarbMcPCCWiJ
i0p4+r9nU9Hx8k6mjustyjZBgplmDhBnCo5hAaAytuOLTU3WKwmhg8ONCIhKYRXo
+88+0P65Ag0EYIQHHEEQAOFFAxX8GKiSCjk5jUXL87s0nkm90Gxtpx8L4Adrn9rFtu
u6cP7Xc0JOngxFAHUfcL6VNFPMF5knU6ezXUgMvOseFVT30VC6UF390rq0j26va/
LcCYzKalWFLKyuBvtLDUPUdANhplQhH7s4FQIVTPUO+saCAq)DJtOsq/F/n+Gttz
DxNdPbsTC50ESkgfhyednT9gZpCsxc9Gd3mDyDDkMGyWaEf4bWjdjX2NEj6TuezY
ijyqtYBHKf9eNSmPY9SEbVIHIMLgZa/RAmrtZ+AMya2lTuyBXi6oo+0EIS71cefD
BFajeOKHOMHtPKQvkagyetl615Ta+6Ekqoy50c90s85UdUIZZkCaz5zA8vrkhLNh
KvJ90Uf5IVuoe+CibwpvZZQhplumX+eRMSX1U4hBahB5z+fLe3YUCNSrDWEFMSG2
EAMRDF5QG7L5dDMS6Z3PRD4a4ZPzF/1TyjiTpNUbF3N3uOUIT/1rChghJLfm79DI
09MSYRAOFPVIIumqWIiv862zX0r8dqwnlKBOUDWMHGNEkFtlseCOWrsbRaeMHDFc
7A/bNCocDrA8x18GielkVTMhuFMc77WiN43rjYSLr17W2VOKqINONHYCSsGOhC4z
0alcDDILvdkt4AriXpmhSmMOWZsvblrT9i5voY8GIEbItQ5xppOUGZ+3vfqOUWER
ABEBAAGJAJWEGAEIACYWIQTVIUUW6pxXDt6Z+T7Qc0lYDWUWNBQUCY9QHHgIbDAUJ
ACeNAAAKCRACOIYDWUWNBROJEACAJIBLSN8YInrKa/9)aly6akoL TrOr5Yvz7Fm/F
KRP7vDicOiKGH3NwsrBE3+r7UBSMWW]OrdtWLd7a5AaswEtTSXKHrpzSC/s8knlm
POtR/vSallfb6gjXAQrk0ZhWhoD4YsRBY57Xe9EhOupSy6eUeFbGMS80HVLrApju
1UVKINdpD+21U00hu16JKAulhyKFfpXVtjH3IxnagBI9UOILGOh4y9aMadRwAMYO
Z4h95tZcQhMOoKeL0dovHoS5BvyDIa91TpennGhM+AeEl 1VPdRfpaalO4srGMUQX
kjtnHNAMVHEZzMSy5vwygl EIXMBpkFGZF/CCOhqugM+RQghOsTATa6ixVRNymI241
PgMbZn7)YMZOfIbMPtD2qd9ITerkfXUzLtRQswhXpcVi+8Mgsb53JyKQlpigldu0
2+V0q70bHuwwPCiloh)8Q3SfaKlynfhACVOIDr8I89rZ3mVbTiLMvKKyKYEijpB/
idbN3QtUuPYInALIcN4883DwzMO5ZQ8CPc3/6y0QOUytTUpN0143XcQ//OwC3Tmm
YsMnvZVhlY6MoiQ7cXDIvwRUOTU4IGEgkwmbeEO7zatGHXv/agSxpRulzlhzZHem
fl11i44fYI12ZXWWVr2vQ6TIoELTyCj TeGxaot0thOxxQ3pdXavxuYdG84zZyMd
i96dvg==

=tJAW

38

Fingerprints

e Hash the key to get the key fingerprint
e Instead compare the fingerprints
e Much shorter:

-EF22 E516 EA9C 43B7 A67E 4FB4 1CD2 5603 C14C 0D05

e Remember: With a good hash function, no two key fingerprints
should collide

e (What if you only use part of the fingerprint?)

CS489 Spring 2024

39

Verifying Public Keys

e Alice and Bob have verified each other. Great!
e But verifying is hard

-Inconvenient if possible at all

-Bob and Carol may not know each other well

e What if Bob and Carol can't verify each other?
e (Would it help if Carol has verified Alice?)

CS489 Spring 2024

40

Signing Keys

e Once Alice has verified Bob's key, she uses her certification key
to sign Bob's key

-(By default, certification key == signature key)
e This is effectively the same as Alice signing a message saying ‘I
have verified that the key with [Bob’s fingerprint] belongs to Bob”
e Bob can attach Alice’s signature to the key he has published
somewhere
e (Are there any issues with doing this?)

CS489 Spring 2024

41

Web of Trust

e Now Alice can act as an introducer for Bob
e If Carol can't verify Bob herself, but she has already verified
Alice (and she trusts Alice to introduce other people):

-She downloads Bob's key
-She sees Alice’s signature on it

-She is able to use Bob's key without verifying it herself

e This is called the Web of Trust

CS489 Spring 2024

42

Awesome!

e If Alice and Bob want to have a private conversation:

-They create their keys
-They exchange their keys (possibly relying on the WoT)

-They send signed and encrypted messages back and forth

e Pretty Good, right?

Problems with PGP

Problem #1: Usability

|hPMdNGMUSEMXMSymMM.M1m.w. 169-183'

e Hard to use

Why Johnny Can’t Encrypt: , .
A Usability Evaluation of PGP 5.0 Why Johnny Still Can’t Encrypt:
Evaluating the Usability of Email Encryption Software
1 Alma Whitten Steve Sh Levi Broderick Colleen Alison Koranda
. LOW adoptlon School of Computer Science EmumPolcy Electrical and Computer Engineering chmznmn
Carnegie Mellon University Camegie Mellon University Camegie Melion Unit Carnegie Mellon University
Pittsburgh, PA 15213 shengx@cmu.edu Ipb@ece.cmu.edu ckoranda@andrew.cmu.edu
alma@ cs.cmu.edu
1 Heinz School o'qh.ﬂ Policy and
J.D. Tygar
EECS and SIMS B e g N
University of California od
Berkeley, CA 94720 Jhyland@andrew.cmu.edu
tygar@cs berkeley edu
ABSTRACT cmail message to test user’s response to PGP's automatic
L —_— current usability situatson of decryption.
(et o o vty o fd 2. MAJOR FINDINGS
a pil w0
Why Johnny Still, Still Can’t Encrypt: o e o e s 21 Verify Keys
Evaluating the Usability of a Modern PGP Client Fimature, und save s Backup of 18 o ey e ety sty e
keys. Similar to PGP 5. users had difficalty with signing keys.

— Scott Ruoti, Jeff And: Daniel Z la, Kent S . . .
) Brigham Young University SoK: Why Johnny Can’t Fix PGP Standardization
{ruoti, andersen) @ isrl.byu.edu, (zappala, seamons} @ cs.byu.edy
. Harry Halpin
This paper presents the results of a laboratory study involv- .'fc;,"l'.."".a’.,“ﬁ.,m o n‘?:: harry halpin@inria.fr
ing Mailvelope. a modem PGP chient that integrates tightly one pair was able to successfully lnria
with ing webmail providers. In our study, we brought All other Paris, France

k] 13 Jan 2016

of pain poi i
M-Mdhnwhmﬂlhhm-ﬁuum
in future PGP systems.

Author Keywords

cocrypting en| ABSTRACT

This demonstrates that

meated in Mailvelope, is still unusab)j
Our results also shed light on severa)
tools could be improved, First, intq
be helpful in assisting first time wseny

Pretty Good Privacy (PGP) has long been the primary [ETF stan-
dard for encrypting email, but suffers from widespread usability
and security problems that have limited its adoption. As time has
‘marched on, the underlying cryptographic protocol has fallen out of
date insofar as PGP is unauthenticated on a per message basis and
before encryption. There have been an increasing num-

ﬂin-ldbehl;--ypupuun
 public key d

ssers cosectly manaee their oun

ber of attacks on the increasingly outdated prinstives and complex

clients used by the PGP eco-system. However, attempts to update
the OpenPGP standard have falled at the IETF except for adding

modemn cryptographic primitives, Outside of official standardiza-

developers created a new community effort called “Autocrypt” to
address the underlying usability and key management issues. This
effort also introduces new attacks and does not address some of
hmmmmpmnm ‘problems that have

ke Signal or IETF
Ml‘yﬂﬁ«ully(ml ‘After decades of work, why can't
the OpenPGP standard be fixed?

First, we start with the history of standardization of OpenPGP
in Section 2. mmwmmdmmuh
modern in Section 3,
whether mawwm{mmmﬂ--m

Problem #1: Usability

HOW To USE PGP To VERIFY
e https://moxie.org/2015/02/24/gpg-and-me.html| THAT AN EMAIL 15 AUTHENTIC:
LOOK FOR THIS
—“When | receive a GPG encrypted email from a stranger, though, | o ATTHE TOP_, ——
immediately get the feeling that | don’t want to read it. [...] Eventually | D o & s F T e
realized that when | receive a GPG encrypted email, it simply means that Feiuats 1
the email was written by someone who would voluntarily use GPG.” (=---- BEGIN PGP SIGNED MESSAGE-—->)
HASH: SHA256
HEY,
LOIRCT Aol TLIQMCE ChD T CO0E OC
IF IT5 THERE, THE EMAIL 15 PROBRBLY FINE.

https://xkcd.com/1181/

https://moxie.org/2015/02/24/gpg-and-me.html
https://xkcd.com/1181/

Problem #1: Usability

e Usability is a security parameter

-If it's hard to use, people will not use it

-If it's hard to use properly, people will use it, but in insecure ways

Problem #2: Lack of Forward Secrecy

e Alice sends many encrypted messages to Bob

- Possibly over the course of months, years

e Suppose Eve saves all of them

- Not so unreasonable if Eve runs the email server

e What if Eve steals Bob's private key?

- She can decrypt all messages sent to him. Past, present, and future...

CS489 Spring 2024

48

Problem #3: Non-repudiation
e Why non-repudiation?
e Good for contracts, not private emails

e Casual conversations are “off-the-record” Alice said you're
annoying.

- Alice and Bob talk in private
- No one else can hear

Oh yeah?
- No one else knows what they say Prove it!
- No one can prove what was said

. Not even Alice or Bob

CS489 Spring 2024 49

Off-The-Record (OTR) Messaging

OTR

e Messaging (XMPP) extension for encryption with:

- Forward secrecy

- Post-compromise security

- Deniability

Goals of Off-The-Record Messaging

e (Perfect) Forward secrecy: a key compromise does not reveal past
communication

e Post-compromise security Backward-secreey Future-secreecy Self-healing: a key

compromise does not reveal future communication
e Repudiation (deniable authentication): authenticated communication, but a
participant cannot prove to a third party that another participant said something

Forward secrecy a W
—-0—-9—0

CS489 Spring 2024 52

Goals of Off-The-Record Messaging

o (Perfect) Forward secrecy: a key compromise does not reveal past
communication

ePost-compromise security Backward-secreey Future-secreey Self-healing: a

key compromise does not reveal future communication
eRepudiation (deniable authentication): authenticated communication, but a
participant cannot prove to a third party that another participant said something

W a Post-compromise security

a—0—a—0

CS489 Spring 2024 53

Goals of Off-The-Record Messaging

o (Perfect) Forward secrecy: a key compromise does not reveal past
communication

ePost-compromise security Backward-seecreey Future-secreey Self-healing: a key
compromise does not reveal future communication

eRepudiation (deniable authentication): authenticated communication, but a
participant cannot prove to a third party that another participant said something

2—@

Alice said this!
Repudiation @

No proof!

CS489 Spring 2024 54

Goals of Off-The-Record Messaging

o (Perfect) Forward secrecy: a key compromise does not reveal past
communication

ePost-compromise security Backward-secreey Future-secreey Self-healing: a key

compromise does not reveal future communication
eRepudiation (deniable authentication): authenticated communication, but a
participant cannot prove to a third party that another participant said something

Forward secrecy a W a Post-compromise security

a—0-2—0-0—0—0—0

Alice said this!
Repudiation @

No proof!
CS489 Spring 2024 55

Forward Secrecy

e Key compromise doesn't reveal past messages
Q: How can we accomplish that?
Change the key!
Old keys must be securely deleted

CS489 Spring 2024

O=
O
O

56

Forward Secrecy (one approach)

eRecall Diffie-Hellman...
f\ /
«F@’!
\, \/

CS489 Spring 2024 57

Forward Secrecy (one approach)

e Alice and Bob have ephemeral (temporary) “sessions”
e Alice produces ephemeral DH keys (a, g?)

-She signs the public key with her long-term key A

e Bob produces ephemeral DH keys (b, gb)

-He signs the public key with his long-term key B

e Alice and Bob use shared secret g2°

e They make new keys later

CS489 Spring 2024

58

Forward Secrecy (one approach)

eAlice and Bob talk on Monday... eAlice and Bob talk on Tuesday...
QaTT,

& v =g B v g
TOC® g 00w TOEC - 00w
‘F@ @ﬁ? ‘F@.'Il‘

|E—) (—'E ‘DH —) (— ‘DM

z Monday . Tuesday

CS489 Spring 2024 59

Forward Secrecy (one approach)

e Eve can compromise a session but not everything
e Problems?

~Alice can't start a session unless Bob is online
-Eve can still compromise a whole session

-We'll see other ideas later

CS489 Spring 2024

60

Forward Secrecy in OTR

e What if we make the sessions as short as possible?

e What if new sessions don't have to be negotiated interactively?

Forward Secrecy in OTR

?

CS489 Spring 2024

62

Forward Secrecy in OTR

2 g

CS489 Spring 2024

Forward Secrecy in OTR

CS489 Spring 2024

64

Forward Secrecy in OTR

e Alice and Bob automatically create new @ @
sessions as they reply to each other

e Also provides post-compromise security

e Awesome! :)

e This is a “ratchet”: You can't go
backwards

CS489 Spring 2024 65

Forward Secrecy in OTR

e Alice and Bob automatically create new @ @
sessions as they reply to each other

e Also provides post-compromise security

e Awesome! :)

e This is a “ratchet”: You can't go
backwards

CS489 Spring 2024 66

Forward Secrecy in OTR

e One problem... 2 ®
1 0 . % I 1 —
- Session keys only roll forward when sender changes < Enc(@, Hi Alice!) &@® @)=

hash:

B or B
- (We'll see Signal improve upon this later 1 ~1 L
(g p p) @h Enc(@=, Hi Bob!) .

- What if Alice sends Bob many messages in a row?

Enc(ﬁ, Msg 2)

>
Enc(@w, Mmsg3)

>
Enc(@w, Msgsa)

'
Enc(@w, Msg5)

'

CS489 Spring 2024 67

Deniable Authentication in OTR

e PGP uses signatures for authentication...

e ...but they also provide non-repudiation

Q: How can we get authentication without non-repudiation?

CS489 Spring 2024

68

Deniable Authentication in OTR

e PGP uses signatures for authentication...

e ...but they also provide non-repudiation

Q: How can we get authentication without non-repudiation?
A: With a MAC!

- Alice and Bob similarly negotiate DH authentication key

CS489 Spring 2024

69

Recall...
e Why are MACs deniable?

- Only Alice and Bob know K

e Alice sends Bob a message MACed with K

e Bob knows it was Alice because:

- Only Alice or Bob could have produced this MAC

- Bob did not produce the MAC

eWhy doesn't this argument work for Carol?

CS489 Spring 2024

70

Signal

Signal
e Mobile app with companion desktop (Electron) client

-OTR was less mobile-friendly

e Encryption protocol based on OTR

-Double Ratchet Algorithm builds on OTR DH ratchet

-Deniability ideas from OTR

e Protocol also used in other apps like WhatsApp, OMEMO
extension for XMPP, etc.

CS489 Spring 2024

72

Double Ratchet Algorithm

e Uses two ratchets:
- KDF chain
- Diffie-Hellman sessions (like OTR)
e Originally called Axolotl ratchet for its “self-healing”
property (from the DH ratchet) lustration: Armzncore’

Photo: th1098

“Axolotl” is a Nahuatl word. (pronunciation) .,

CS489 Spring 2024 73

https://pixabay.com/vectors/axolotl-animal-axolote-amphibians-5199181/
https://upload.wikimedia.org/wikipedia/commons/5/58/Axolotl.ogg
https://en.wikipedia.org/wiki/File:AxolotlBE.jpg

Forward Secrecy (another approach)

e What if instead of session keys, we had a new key for each
message?
e We can do this deterministically
e Simplified ratchet:
Kns1 = H(Kn)
e What happens if Eve compromises a key?

CS489 Spring 2024

74

Forward Secrecy (another approach)

eWhat if instead of session keys, we
had a new key for each message?

e We can do this deterministically
e Simplified ratchet:

—Kn+1 = H(Kn)

eWhat happens if Eve compromises
a key?

CS489 Spring 2024

O=

75

Forward Secrecy (another approach)

eWhat if instead of session keys, we
had a new key for each message?

e We can do this deterministically
e Simplified ratchet:

—Kn+1 = H(Kn)

eWhat happens if Eve compromises
a key?

CS489 Spring 2024

76

Forward Secrecy (another approach)

eWhat if instead of session keys, we
had a new key for each message?

e We can do this deterministically
e Simplified ratchet:

—Kn+1 = H(Kn)

eWhat happens if Eve compromises
a key?

CS489 Spring 2024

KDF Ratchet

e KDF = Key Derivation Function

- (think hashing - it only goes one way)

e Outputs message key

- Used to encrypt a single message

e QOutputs chain key

- Used to derive future keys

e Why separate chain & message keys?

- What if messages are out-of-order?

DH Ratchet

e Like OTR
e Outputs Receiving and Sending chain keys

-These are used for KDF ratchet (previous slide)

1< Enc(@%, Hi Alice!) w@ @
hash:

- @ O @ <

@:u? Enc(@w, Hi Bob!) @== .

@

— B
@

v

CS489 Spring 2024 81

Brace Yourselves!!!

e We're about to put the two ratchets together

e It's going to be complicated
e But it will be okay ©
Photo: ZeWrestler

Photo: David J. Stang

i; s -

CS489 Spring 2024 82

https://en.wikipedia.org/wiki/File:Ambystoma_mexicanum_1zz.jpg
https://en.wikipedia.org/wiki/File:Ambystoma_mexicanum_at_Vancouver_Aquarium.jpg

Double Ratchet Algorithm

eAlice -> Bob

eAlice and Bob do DH and
get Alice's sending
chain/Bob’s receiving chain

eAlice derives a key with
her sending chain

eAlice uses this MAO key to

encrypt her message to Bob [l:] e ms] , [- R oia ,,3,5]

Alice's point of view: Root shared secret S
l a S5a6o 7961')]
Sending Chain @ 85
(Symmetric Key Ratchet)

10fe .rucs](-—

[m 96b0 Oscn]

=

Bob's DH pubKe:
@ B0 DF utkey

L 4

-~

fai=c

Alice's DH privKey

(privAQ)

(pubB0)

Alice n
‘ Hi, how are you doing? ?
Alice's DH pubKey (pubAo) sl

n
' | have the secret documanis?

Alice's DH pubKey (pubA0) el

Double Ratchet Algorithm

eAlice -> Bob Alice's point of view: Root shared secret S @ BOD'S DH pubKey
eAlice and Bob do DH and G
get Alice's sending
chain/Bob’s receiving chain

eAlice derives a key with Sending Chain
her sending chain (Symmetric Key Ratchet)
eAlice uses this MAO key to (£ 102 s4c3

Alice n
l Hi, how are you doing? ?
Alice's DH pubKey (pubAo) sl

encrypt her message to Bob [
] 2%s 43:5]4—-

hAllma's DH privKey

(privAQ) M
‘ | have the secret dowmQMsT

Alice's DH pubKey (pubA0) el

Double Ratchet Algorithm

.A||Ce -> BOb Alice's point of view: Root shared secret S * Bob's DH pubKey
eAlice and Bob do DH and (R
get Alice's sending

chain/Bob’s receiving chain

eAlice derives a key with Sending Chain
her sending chain (Symmetric Key Ratchet)
eAlice uses this MAO key to
encrypt her message to Bob [

Alice n
l Hi, how are you doing? *
Alice's DH pubKey (pubAo) sl

[) 23e5 43£6
MAQ key

P.Alloo's DH privKey

(privAQ) M
1 | have the secret dawmentsT

[D 76bd 89al

MAT key

Alice's DH pubKey (pubA0) el

Double Ratchet Algorithm

eAlice -> Bob

Alice's point of view: Root shared secret S

a Bob's DH pubKey

eAlice and Bob do DH and
get Alice’s sending
chain/Bob’s receiving chain

eAlice derives a key with
her sending chain

eAlice uses this MAO key to
encrypt her message to Bob

Sending Chain
{Symmetric Key Ratchet)

E 3 10fe 54c3

CS489 Spring 2024

Alice's DH priviKey
(privAd)
[] 76bd 89a3 @
MA1 key

(pubB0)

Alice

([Hi, how are you doing?
Alice's DH pubKey (pubAQ)

m
]
| | have the secret documents J

Alice's DH pubKey (pubA0) «salf)

86

Double Ratchet Algorithm

eAlice -> Bob (again) Alice's point of view: Root shared secret S @ Bob's DH pubKey
. (pubB0)
e No new DH until Bob [£ saee 79db]
replies
eAlice derives another key
with her sending chain Sending Chain -
DH
eAlice uses MAT1 key to e e e @ >
encrypt her message to Bob X3 10fe 54c3 f—

Alice (Al

[CJ = ““]‘—, [(- R ‘ﬂ’s] | Hi, how are you doing? "r

Alice's DH pubKey (pubAo) sl

[m 96b0 Oscn] h"ws —_—

] , (privAQ) N
[[7ea o3 @ ' | have the secmdowmnis?
MA1 key Alice's DH pubKey (pubA0) wself)

Double Ratchet Algorithm

eAlice -> Bob (again) Alice's point of view: Root shared secret S @ Bob's DH pubKey
. (pubB0)
e No new DH until Bob [£ saee 79db]
replies
eAlice derives another key
with her sending chain Sending Chain -
DH
eAlice uses MAT1 key to e e e @ >
encrypt her message to Bob X3 10fe 54c3 f—

Alice (Al

[CJ = ““]‘—, [(- R ‘ﬂ’s] | Hi, how are you doing? "r

Alice's DH pubKey (pubAo) sl

[m 96b0 Oscn] h"ws —_—

=) |

MAT key

Alice's DH pubKey (pubA0) el

Double Ratchet Algorithm

eAlice -> Bob (again) Alice's point of view: Root shared secret S @ B0D'S DH pubKey
. (pubB0)
e No new DH until Bob [B sae -,m,]
replies
eAlice derives another key
with her sending chain Sending Chain .
DH
eAlice uses MAT1 key to e @ >
encrypt her message to Bob X3 107e s4c3fe—
Alice (]
Er= 1«—, FExD e
Alice's DH pubKey (pubAo) sl
[m 96b0 osc-] PA"“IS —_—
(privAQ)

n
’ | have the sacretdomments‘r

Alice's DH pubKey (pubAD)

[[] 76bd 89a3 3
MA1 key

Double Ratchet

eBob -> Alice

eAlice and Bob do DH and get
Alice’s receiving chain/Bob's
sending chain

eAlice derives a key with her
receiving chain

eAlice uses MBO key to
decrypt a message from Bob

Sending Chain
(Symmetric Key Ratchet)

4 : 10fe 54c3

£ 3 96b0 0O8ce

MA1 key

E: 96b0 OBce

Recelving Chain
{Symmetric Key Ratchet)

[] aBeb ded3
MBO key

Root shared secret S

o) |

Alice's DH privKey
(privAQ)

o Bob's DH pubKey
(pubB0)

Alice (A
]
[Hi, how are you doing? J
Alice's DH pubKey (pubAQ) *

(|
]
l | have the secret documents ‘J r

Alice's DH pubKey (pubA0) sl

DH Ratchet: Bob
generates new DH keypair

Bob l/ N
[Send them over! J'

— Bob's DH pubKey (pubB1) (e

Alice's point of view: Root shared secret S

Double Ratchet

eBob -> Alice e
eAlice and Bob do DH and get B 10fe s4c3
Alice’s receiving chain/Bob's
sending chain

eAlice derives a key with her
receiving chain

eAlice uses MBO key to
decrypt a message from Bob

Recelving Chain
{Symmetric Key Ratchet)

MBO key

o) |

Alice's DH privKey
(privAQ)

o Bob's DH pubKey
(pubB0)

Alice (A
]
[Hi, how are you doing? J
Alice's DH pubKey (pubAQ) *

(|
]
l | have the secret documents ‘J r

Alice's DH pubKey (pubA0) sl

DH Ratchet: Bob
generates new DH keypair

Bob l/ N
[Send them over! J'

— Bob's DH pubKey (pubB1) (e

Double Ratchet

eBob -> Alice

eAlice and Bob do DH and get
Alice’s receiving chain/Bob's
sending chain

eAlice derives a key with her
receiving chain

eAlice uses MBO key to
decrypt a message from Bob

Alice's point of view:

Sending Chain
(Symmetric Key Ratchet)

34 10fe 54c3

Recelving Chain
{Symmetric Key Ratchet)

Root shared secret S

° Bob's DH pubKey

Alice's DH privKey
(privAQ)

(pubB0)

Alice

N
"
[Hi, how are you doing? J

Alice's DH pubKey (pubAo) sl

(|
]
l | have the secret documents ’J A

Alice's DH pubKey (pubA0) sl

DH Ratchet: Bob
generates new DH keypair

Bob l/ N
[Send them over! J'

— Bob's DH pubKey (pubB1) (e

Double Ratchet

eBob -> Alice

eAlice and Bob do DH and get
Alice’s receiving chain/Bob's
sending chain

eAlice derives a key with her
receiving chain

eAlice uses MBO key to
decrypt a message from Bob

Alice's point of view: Root shared secret S

o Bob's DH pubKey

Sending Chain
(Symmetric Key Ratchet)

4 : 10fe 54c3

£ 3 96b0 0O8ce
Alice's DH privKey
(privAQ)

MA1 key

E: 96b0 OBce

Recelving Chain
{Symmetric Key Ratchet)

MBO key

[r

(pubB0)

Alice

N
"
[Hi, how are you doing? J

Alice's DH pubKey (pubAo) sl

(|
]
l | have the secret documents ‘J r

Alice's DH pubKey (pubA0) sl

Send them over!

hl's DH pubKey (pubB1)

Let’'s take a breath

e Here are some more pictures of axolotls

Photo: LoKiLeCh

Photo LeDameBucollque | Photo: uthlas

CS489 Spring 2024 94

https://en.wikipedia.org/wiki/File:Axolotl-2193331_1280.webp
https://en.wikipedia.org/wiki/File:Axolotl_ganz.jpg
https://pixabay.com/photos/axolotl-cute-weird-2412189/

Deniability in Signal

e Alice and Bob use MACs (like in OTR)
e But what if they can make it even more deniable?

Deniability in OTR
eDH(x,y) can only be created by Alice or Bob

-A: long-term (Alice)
-B: long-term (Bob)

-x: ephemeral (Alice)
Sign
-y: ephemeral (Bob)

Slgn
< Handshake >

Deniability in Signal: 3DH

e DH(A)y) || DH(x,B) || DH(x,y) can be created by anyone
e But if Alice knows x, only Bob could know y

e Why?
https://signal.org/blog/simplifying-otr-deniability/
gAy ng

< :: g :: >
Handshake

https://signal.org/blog/simplifying-otr-deniability/

That's more theoretical

e Signal actually uses a more complicated eXtended Triple

Diffie-Hellman (X3DH) key agreement protocol which

involves some signatures

e X3DH is useful for enabling asynchronous communication
_ More mobile-friendly

eWe won't talk about it, but it's well-documented here:

https://signal.org/docs/specifications/x3dh/

CS489 Spring 2024

98

https://signal.org/docs/specifications/x3dh/

Quick Recap

e PGP
- No forward secrecy

- Non-repudiable (not off-the-record)

e OTR
- Forward secrecy through DH ratchet ©

- Deniable ©
e Signal
- DH ratchet provides forward secrecy and post-compromise security based on replies
- KDF ratchet provides only forward secrecy, but for every message
- Deniable ©

CS489 Spring 2024

99

