Referring Expressions in Articial Intelligence and
Knowledge Representation Systems

David Toman*

(joint work with Alexander Borgida® and Grant Weddell*)

fDepartment of Computer Science
Rutgers University, New Brunswick, USA
borgidal@cs.rutgers.edu

University of

Waterloo *Cheriton School of Computer Science
X3 University of Waterloo, Canada
& {david, gweddell}@uwaterloo.ca

David Toman et al. Referring Expressions in AI&KR 1/64

IDENTIFYING AND COMMUNICATING

REFERENCES
(TO OBJECTS/ENTITIES)

Borgida, Toman, and Weddell Introduction 2/64

(Real world) Entities vs. (Computer) Representation(s)

m Information systems store information about entities
m Computers store (arrays of) ints and strings

How do we bridge the GAP?

Borgida, Toman, and Weddell Referring Expressions in AI&KR Introduction 3/64

(Real world) Entities vs. (Computer) Representation(s)

Problem

m Information systems store information about entities
m Computers store (arrays of) ints and strings

How do we bridge the GAP?

Typical solutions:

OIDs (proxying entity identity by a number uniformly in the whole system)
= typically managed by The System (OO languages), or

Keys (proxying entity identity by a unique combination of values (local))
= typically declared/managed by user (Relational DBMS).

Borgida, Toman, and Weddell Referring Expressions in AIRKR Introduction 3/64

Object IDs: the Horror Stories

a.k.a. proxying identities by values in a data type (say int)

nnnnnnnn

®) Waterloo

O

Borgida, Toman, and Weddell

Referring Expressions in AI&KR

Object IDs: the Horror Stories
a.k.a. proxying identities by values in a data type (say int)

Performance: The PROTEL2 Case

every object WILL have an OID (say 64 bits)
= storage/performance overhead (need to be generated/managed)

can we proxy by (storage) address?
what about memory/storage reuse and/or garbage collection??
what about data replication??

Borgida, Toman, and Weddell Referring Expressions in AIRKR Introduction 4/64

Object IDs: the Horror Stories

a.k.a. proxying identities by values in a data type (say int)
Performance: The PROTEL2 Case

Information Integration: The CORBA Case

What happens to an object stored in different ORBs??
= what does CORBA: :Object::is_equivalent (in Object) do??

Borgida, Toman, and Weddell Referring Expressions in AI&RKR Introduction 4/64

Object IDs: the Horror Stories

a.k.a. proxying identities by values in a data type (say int)

Performance: The PROTEL2 Case

Information Integration: The CORBA Case

What happens to an object stored in different ORBs??
is_equivalent (in Object) do??

= what does CORBA: :Object: :
HOW STANDARDS PROLIFERATE
, CHARACTER ENCOOINGS, INSTRNT MESSAGING,)

(SEE: A/C CrARGERS,
147! RIDICULOUS)

WE NEED To DEVELOR
ONE UNNERSAL STANDARD SITUATION:

SITUATION: | | ToiAT coveRs EVERYONES
and before someone THERE ARE USE CASES. yepey THERE. ARE
|5 COMPETING

STANDPRDS.

mentions URL/URV/IRIs: I4 COMPETING « g

Referring Expressions in AI&RKR Introduction

Borgida, Toman, and Weddell

4/64

Object IDs: the Horror Stories

a.k.a. proxying identities by values in a data type (say int)

Performance: The PROTEL2 Case
Information Integration: The CORBA Case

Unintuitive Answers: RDF/Freebase/... Cases

Freebase The (object id of the) “Synchronicity” album by “The Police” is
/guid/9202a8c04000641£8000000002f9e349
(as of April, 2015.)
W3C URI/IRI/... do not improve the situation

= and RDF introduces additional internal identifiers!

Borgida, Toman, and Weddell Referring Expressions in AIRKR Introduction 4/64

Object IDs: the Horror Stories

a.k.a. proxying identities by values in a data type (say int)

Performance: The PROTEL2 Case
Information Integration: The CORBA Case

Unintuitive Answers: RDF/Freebase/... Cases

Missing (implied) Answers: The OBDA Case

In the presence of background knowledge we may know that certain objects
exist, but we cannot identify/report them due to lack of an explicit identifier

(example later)

Borgida, Toman, and Weddell Referring Expressions in AIRKR Introduction 4/64

Object IDs: the Horror Stories

a.k.a. proxying identities by values in a data type (say int)

Performance: The PROTEL2 Case
Information Integration: The CORBA Case

Unintuitive Answers: RDF/Freebase/... Cases

Missing (implied) Answers: The OBDA Case
Alternative Preferred Answers

Internal (computer) addresses vs. physical locations of equipment

= programs need electronic address (to route the electric signals)
= technicians need physical location (to find the equipmant)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Introduction 4/64

Relational Keys

“Now! ... That should clear up a
few things around here!”

Unersityof

Waterloo

Borgida, Tomat Referring Expressions in AI&KR

Introduction

5/64

Goal of the Tutorial

Introduce referring expressions as an uniform approach to TG

identification of entities in information systems. B DA y

Borgida, Toman, and Weddell Referring Expressions in AIRKR Introduction 6/64

Goal of the Tutorial

Introduce referring expressions as an uniform approach to Ta D y
identification of entities in information systems. = s

m Referring Expressions in Philosophy/Linguistics
m Logical Foundations: Single Interpretations vs. Models of Theories

m Use of Referring Expressions in Information Systems

Referring Expressions in Answers to Queries over Knowledge Bases
Referring Expressions for recording Ground Knowledge
Referring Expressions in Conceptual Design

m Summary and Open Problems

Borgida, Toman, and Weddell Referring Expressions in AI&RKR Introduction 6/64

REFERRING EXPRESSIONS
(BACKGROUND)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions (Background) 7/64

What is an Referring Expression?

Referring Expression

A referring expression in linguistics is any noun phrase identifying an object in
a way that will be useful to interlocutors.

Borgida, Toman, and Weddell

Referring Expressions in AI&KR Referring Expressions (Background) 8/64

What is an Referring Expression?

Referring Expression

A referring expression in linguistics is any noun phrase identifying an object in
a way that will be useful to interlocutors.

Russell: "On Denoting," Mind, New Series, Vol.14, No.56, pp. 479—493, 1905.
A definite description “the F is a G” is understood to have the form

Ax.F(x) AVY(F(y) = x =y) A G(x)

A definite description is a denoting phrase in the form of “the F” where F is a
noun-phrase or a singular common noun. The definite description is proper if
F applies to a unique individual or object.

Borgida, Toman, and Weddell Referring Expressions in AI&RKR

Referring Expressions (Background) 8/64

What is an Referring Expression?

Referring Expression

A referring expression in linguistics is any noun phrase identifying an object in
a way that will be useful to interlocutors.

Russell: "On Denoting," Mind, New Series, Vol.14, No.56, pp. 479—493, 1905.

A definite description “the F is a G” is understood to have the form
Ax.F(x) AVY(F(y) = x =y) A G(x)
A definite description is a denoting phrase in the form of “the F” where F is a

noun-phrase or a singular common noun. The definite description is proper if
F applies to a unique individual or object.

The discussion of definite and indefinite descriptions (in English, phrases of
the form ‘the F’ and ‘an F’) has been at the centre of analytic philosophy for
over a century (so we won’t go there today!).

Borgida, Toman, and Weddell Referring Expressions in AIRKR Referring Expressions (Background) 8/64

Issues and Criticisms

Referring to Non-existing Object:
“The King of Kentucky (is...)” [Strawson]
(object does NOT exist in this interpretation? or in principle?)

Referring to Object in Context:
“The table (is covered with books)”
(non-unique reference without assuming additional context)

Multiple Reference:
“The Morning Star” vs. “The Evening Star” [Frege]
(multiple distinct references to the same object)

Rigidity:

Should referring expressions identify the same object in all
possible worlds? [Kripke, S.: Identity and Necessity, In Identity
and Individuation. NYU Press, pp. 135-164 (1971)]

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions (Background) 9/64

REFERRING EXPRESSIONS
AND (LOGICAL) THEORIES

Borgida, Toman, and Weddell Referring Expressions (Background) 10/64

Referring to Objects

Typical solution: tuples of constant symbols that, when substituted for free
variables, make a query logically implied by the Knowledge Base.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions (Background) — 11/64

Referring to Objects

Typical solution: tuples of constant symbols that, when substituted for free
variables, make a query logically implied by the Knowledge Base.

only explicitly named objects are returned as certain answers
often system-generated ids (that aren’t too user-friendly)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions (Background) — 11/64

Referring to Objects

Typical solution: tuples of constant symbols that, when substituted for free
variables, make a query logically implied by the Knowledge Base.

only explicitly named objects are returned as certain answers
often system-generated ids (that aren’t too user-friendly)

Example (Freebase)

The (object id of the) “Synchronicity” aloum by “The Police” is
/guid/9202a8c04000641£8000000002f9e349 (as of April, 2015.)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions (Background) 11/64

Referring to Objects

How do we communicate Results of Queries?

Typical solution: tuples of constant symbols that, when substituted for free
variables, make a query logically implied by the Knowledge Base.

only explicitly named objects are returned as certain answers
often system-generated ids (that aren’t too user-friendly)

Example (Freebase)

The (object id of the) “Synchronicity” aloum by “The Police” is
/guid/9202a8c04000641£8000000002f9e349 (as of April, 2015.)

Referring Expressions

More answers (e.g., objects without explicit name), and/or
more informative/preferred answers, e.g.:

ALBUM(x) A (title(x) = “Synchronicity”) A (band(x) = “The Police”)

Borgida, Toman, and Weddell Referring Expressions in AIRKR Referring Expressions (Background) 11/64

Referring to Objects

How do we communicate Results of Queries?

Typical solution: tuples of constant symbols that, when substituted for free
variables, make a query logically implied by the Knowledge Base.

only explicitly named objects are returned as certain answers
often system-generated ids (that aren’t too user-friendly)

Example (Freebase)

The (object id of the) “Synchronicity” aloum by “The Police” is
/guid/9202a8c04000641£8000000002f9e349 (as of April, 2015.)

Referring Expressions

More answers (e.g., objects without explicit name), and/or
more informative/preferred answers, e.g.:

ALBUM 11 (title = “Synchronicity”) M (band = “The Police”)

Borgida, Toman, and Weddell Referring Expressions in AIRKR Referring Expressions (Background) 11/64

Bottom Line

Referring Expressions

Formulee ¢{x} (in the language of the Knowledge Base)
with exactly one free variable (x) that are
singular with respect to a Knowledge Base £, i.e.,

{o]Z,[x = o] = o} =1
for all models Z of K.

= this intuition may be refined w.r.t. queries (e.g., singular among answers)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions (Background) 12/64

Bottom Line

Referring Expressions

Formulze ¢{x} (in the language of the Knowledge Base)
with exactly one free variable (x) that are
singular with respect to a Knowledge Base £, i.e.,

{o]Z,[x = o] = o} =1
for all models Z of K.

= this intuition may be refined w.r.t. queries (e.g., singular among answers)

Why not terms?

Terms (with the standard FO semantics) suffer from totality
= must denote something in every interpretation

Borgida, Toman, and Weddell Referring Expressions in AIRKR Referring Expressions (Background) 12/64

Denoting/Non-denoting Referring Expressions

Singularity Revisited

{o|Z,[x — o] =¢}| =1 adenoting refering expression
{o|Z,[x — o] E ¢}| =0 a non-denoting refering expression

for all Z = K; these ought to be the only two possibilities!

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions (Background) 13/64

Denoting/Non-denoting Referring Expressions

Singularity Revisited

{o|Z,[x — o] =¢}| =1 adenoting refering expression
{o|Z,[x — o] E ¢}| =0 a non-denoting refering expression

for all Z = K; these ought to be the only two possibilities!

Terms vs. Formulas Revisited [Artale et al., 2021]

Free (description) logics allow terms to be partial functions

= 1¢ coerces a unary formula ¢ to a (partial) term
that is defined iff ¢ is denoting (and singular)

Borgida, Toman, and Weddell Referring Expressions in AIRKR Referring Expressions (Background) 13/64

Denoting/Non-denoting Referring Expressions

Singularity Revisited

{o|Z,[x — o] =¢}| =1 adenoting refering expression
{o|Z,[x — o] E ¢}| =0 a non-denoting refering expression

for all Z = K; these ought to be the only two possibilities!

Terms vs. Formulas Revisited [Artale et al., 2021]

Free (description) logics allow terms to be partial functions
= 1¢ coerces a unary formula ¢ to a (partial) term

that is defined iff ¢ is denoting (and singular)

(fresh) nominals [Artale et al., 2021]
functionality [Borgida et al., 2016]

How do we Guarantee Singularity?

Borgida, Toman, and Weddell Referring Expressions in AIRKR Referring Expressions (Background) 13/64

Single Interpretations/Models

Generating Referring Expressions (GRE)

Task: given an interpretation, find formulae (referring expressions) that denote
(selected) single objects.

Carlos Areces, Santiago Figueira, Daniel Gorin: Using Logic in the Generation
of Referring Expressions. Logical Aspects of Computational Linguistics 2011.

Carlos Areces, Alexander Koller, Kristina Striegnitz: Referring Expressions as
Formulas of Description Logic. International Natural Language Generation
Conference 2008.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions (Background) 14/64

Logical Theories and Knowledge Bases

Russell’s Definite Descriptions . ..denote exactly object

What happens if we consider logical theories rather than a particular model?

m constant symbols (similar for function/predicate symbols)
...can be interpreted by different individuals in different models

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions (Background) 15/64

Logical Theories and Knowledge Bases

Russell’s Definite Descriptions . ..denote exactly object

What happens if we consider logical theories rather than a particular model?

m constant symbols (similar for function/predicate symbols)
...can be interpreted by different individuals in different models

= (standard) constants don'’t quite satisfy Russell's/Kripke’s requirements
= rigid designators (symbols interpreted identically in all models)?

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions (Background) 15/64

Rigidity and Genericity: DB Theory Way

Database (theory) Approach

m Database Instances (aka models) expect constants to be rigid
= but constraints/queries do not know

m Database Queries are required to be generic
= invariant under permutations of the underlying domain

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions (Background) 16/64

Rigidity and Genericity: DB Theory Way

Database (theory) Approach

m Database Instances (aka models) expect constants to be rigid
= but constraints/queries do not know

m Database Queries are required to be generic
= invariant under permutations of the underlying domain

Certain Answers (to p{x} in K)

Logical Definition: {a | K = ¢la/x]}
DB Definition: (,_x{a | Z, [x — a] = ¢}
(conflates constants with domain elements)

Borgida, Toman, and Weddell Referring Expressions in AIRKR Referring Expressions (Background) 16/64

Rigidity and Genericity: DB Theory Way

Database (theory) Approach

m Database Instances (aka models) expect constants to be rigid
= but constraints/queries do not know

m Database Queries are required to be generic
= invariant under permutations of the underlying domain

Certain Answers (to p{x} in K)

Logical Definition: {a | K = ¢la/x]}
DB Definition: (,_x{a | Z, [x — a] = ¢}
(conflates constants with domain elements)

... for generic (and domain-independent) queries the result is the same!

Borgida, Toman, and Weddell Referring Expressions in AIRKR Referring Expressions (Background) 16/64

Referring to Objects (fine print)

The rest of the presentation is based on

KR16 Alexander Borgida, David Toman, and Grant E. Weddell: On Referring Expressions in Query
Answering over First Order Knowledge Bases. Proc. International Conference on Principles of
Knowledge Representation and Reasoning KR 2016, 319-328, 2016.

ER16 Alexander Borgida, David Toman, and Grant Weddell: On Referring Expressions in Information
Systems Derived from Conceptual Modelling. Proc, International Conference on Conceptual Modeling
ER 2016, 183-197, 2016.

Al16 David Toman, and Grant Weddell: Ontology Based Data Access with Referring Expressions for
Logics with the Tree Model Property. Proc. Australasian Joint Conference on Artificial Intelligence, 2016.

EKAW18 Weicong Ma, C. Maria Keet, Wayne Oldford, David Toman, and Grant Weddell: The Utility of the
Abstract Relational Model and Attribute Paths in SQL. Proc. International Conference on Knowledge
Engineering and Knowledge Management, 195-211, EKAW 2018.

DL18 David Toman and Grant E. Weddell: Identity Resolution in Conjunctive Querying over DL-based
Knowledge Bases. Proc. Description Logics DL 2018, 2018 (to appear in PRICAI 2019).

DL19 David Toman, Grant E. Weddell: Exhaustive Query Answering via Referring Expressions. Proc.
Description Logics DL 2019, 2019.

DL22 Alexander Borgida, Enrico Franconi, David Toman, and Grant E. Weddell: Accessing Document
Data Sources using Referring Expression Types. Proc. Description Logics DL 2022, 2022 (next week).

and Weddell Referring Expressions in AIRKR Referring Expressions (Background) 17/64

ONTOLOGY BASED DATA ACCESS

(BETTER QUERY ANSWERS WHEN QUERYING KNOWLEDGE BASES)

Borgida, Toman, and Weddell Referring Expressions in AIRKR Query Answering and Ontologies 18/64

Queries and Ontologies

Ontology-based Data Access

Enriches (query answers over) explicitly represented data using
background knowledge (captured using an ontology.)

Borgida, Toman, and Weddell Referring Expressions in AIRKR Query Answering and Ontologies 19/64

Queries and Ontologies

Ontology-based Data Access

Enriches (query answers over) explicitly represented data using
background knowledge (captured using an ontology.)

m Bob is a BOSS (explicit data)
m Every BOSS is an EMPloyee (ontology)
List all EMPloyees = {Bob} (query)

Goal: compute all

= answers common in all models of KB (aka. answers logically implied by KB)

Borgida, Toman, and Weddell Referring Expressions in AIRKR Query Answering and Ontologies 19/64

Approaches to Ontology-based Data Access

INPUT: Ontology (7), Data (.A), and a Query (Q)
Knowledge Base(K)

OUTPUT: {a|K k= Q[a]}

Kl Reduction to standard reasoning (e.g., satisfiability)
Reduction to querying a relational database
= very good at {a| A = Q[a]} for range restricted Q
= what to do with 7?7

incorporate into Q (perfect rewriting for DL-Lite et al. (AC° logics)); or
incorporate into .4 (combined approach for ££ (PTIME-complete logics));
or sometimes both (CFDZ or Horn-ALCx logics).

Borgida, Toman, and Weddell Referring Expressions in AIRKR Query Answering and Ontologies 20/64

Issues with the Standard Definition of Answers

“David is a UWaterloo Employee” and

“every Employee has a Phone”

Question: Does David have a Phone?

Answer: YES

Borgida, Toman, and Weddell Referring Expressions in AI&KR Query Answering and Ontologies 21/64

Issues with the Standard Definition of Answers

“David is a UWaterloo Employee” and

“every Employee has a Phone”

Question: Does David have a Phone?
Answer: YES

Question: OK, tell me about David’s Phone!

Answer: {}

Borgida, Toman, and Weddell Referring Expressions in AI&KR Query Answering and Ontologies 21/64

Issues with the Standard Definition of Answers

“David is a UWaterloo Employee” and

“every Employee has a Phone”

Question: Does David have a Phone?
Answer: YES

Question: OK, tell me about David’s Phone!

Answer: {}

Borgida, Toman, and Weddell Referring Expressions in AI&KR Query Answering and Ontologies 21/64

Issues with the Standard Definition of Answers

“David is a UWaterloo Employee” and
“every Employee has a Phone”

Question: Does David have a Phone?

Answer: YES
Question: OK, tell me about David’s Phone!

Answer: {}

Better Answers (possibly)

it is a phone with phone # +1(519) 888-4567x34447;

it is a UWaterloo phone with an extension x34447;

it is a phone in the Davis Centre, Office 3344;

it is a Waterloo phone attached to port 0x0123abcd;
it is a Waterloo CS phone with inventory # 100034447,
A it is David’s phone (??)

Borgida, Toman, and Weddell Referring Expressions in AIRKR Query Answering and Ontologies 21/64

Referring Expressions (revisited)

Definition (Singular Referring Expression)

. is a noun phrase that, when used as a query answer, identifies
a particular object in this query answer.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Query Answering and Ontologies 22/64

Referring Expressions (revisited)

Definition (Singular Referring Expression)

. is a noun phrase that, when used as a query answer, identifies
a particular object in this query answer.

“David is a UWaterloo Employee” and “every Employee has a Phone”

it is a phone with phone # "+1(519) 888-4567x34447" ;
it is a UWaterloo phone with extension x34447 ;

it is a phone in the Davis Centre, Office 3344 ;

it is a Waterloo phone attached to port 0x0123abcd ;
it is a Waterloo CS phone with inventory # 100034447 ;
A itis David’s phone ;

it is the red phone ;

Borgida, Toman, and Weddell Referring Expressions in AIRKR Query Answering and Ontologies 22/64

Referring Expressions (revisited)

Definition (Singular Referring Expression)

. is a noun phrase that, when used as a query answer, identifies
a particular object in this query answer.

“David is a UWaterloo Employee” and “every Employee has a Phone”

it is a phone with phone # "+1(519) 888-4567x34447" ; v
it is a UWaterloo phone with extension x34447 ;

it is a phone in the Davis Centre, Office 3344 ;

it is a Waterloo phone attached to port 0x0123abcd ;

it is a Waterloo CS phone with inventory # 100034447 ;

A itis David’s phone ;

it is the red phone ;

Borgida, Toman, and Weddell Referring Expressions in AIRKR Query Answering and Ontologies 22/64

Referring Expressions (revisited)

Definition (Singular Referring Expression)

. is a noun phrase that, when used as a query answer, identifies
a particular object in this query answer.

“David is a UWaterloo Employee” and “every Employee has a Phone”

it is a phone with phone # "+1(519) 888-4567x34447" ;
it is a UWaterloo phone with extension x34447 ;

it is a phone in the Davis Centre, Office 3344 ;

it is a Waterloo phone attached to port 0x0123abcd ;
it is a Waterloo CS phone with inventory # 100034447 ;
A itis David’s phone ;

it is the red phone ;

SSENENENEN

Borgida, Toman, and Weddell Referring Expressions in AIRKR Query Answering and Ontologies 22/64

Referring Expressions (revisited)

Definition (Singular Referring Expression)

. is a noun phrase that, when used as a query answer, identifies
a particular object in this query answer.

“David is a UWaterloo Employee” and “every Employee has a Phone”

it is a phone with phone # "+1(519) 888-4567x34447" ;
it is a UWaterloo phone with extension x34447 ;

it is a phone in the Davis Centre, Office 3344 ;

it is a Waterloo phone attached to port 0x0123abcd ;
it is a Waterloo CS phone with inventory # 100034447 ;
A itis David’s phone ;

it is the red phone ;

SR NENENENEN

Borgida, Toman, and Weddell Referring Expressions in AIRKR Query Answering and Ontologies 22/64

Referring Expressions (revisited)

Definition (Singular Referring Expression)

. is a noun phrase that, when used as a query answer, identifies
a particular object in this query answer.

“David is a UWaterloo Employee” and “every Employee has a Phone”

it is a phone with phone # "+1(519) 888-4567x34447" ;
it is a UWaterloo phone with extension x34447 ;

it is a phone in the Davis Centre, Office 3344 ;

it is a Waterloo phone attached to port 0x0123abcd ;
it is a Waterloo CS phone with inventory # 100034447 ;
A itis David’s phone ;

it is the red phone ;

X X NSNS S S

Borgida, Toman, and Weddell Referring Expressions in AIRKR Query Answering and Ontologies 22/64

Referring Expressions (revisited)

Definition (Singular Referring Expression)

. is a unary formula that, when used as a query answer, identifies
a particular object in this query answer.

“David is a UWaterloo Employee” and “every Employee has a Phone”

it is a phone x s.t. PhoneNo(x, "+1(519) 888-4567x34447") holds;

it is a phone x s.t. UWPhone(x) A PhoneExt(x, "x34447") holds;

it is a phone x s.t. UWRoom(x, "DC3344") holds;

it is a phone x s.t. UWPhone(x) A PhonePort(x, 0x0123abcd) holds;
it is a phone x s.t. UWCSPhone(x) A InvNo(x, "100034447") holds;
A itis a phone x s.t. IsOwner("David", x) holds;

it is the phone x s.t. Colour(x, "red") holds;

X X NSNS S S

Borgida, Toman, and Weddell Referring Expressions in AI&RKR Query Answering and Ontologies 22/64

From Query Answers to Referring Expressions [KR16]

(Certain) Query Answers

Given a query ¢¥{x1,...,Xc} and a KB K;
m Classical answers: substitutions

0={xy— at,...,Xxk— ax}

that map free variables of ¢ to constants that appear in K and K = 6.

Borgida, Toman, and Weddell Referring Expressions in AI&RKR Referring Expressions as Formulee ~ 23/64

From Query Answers to Referring Expressions [KR16]

(Certain) Query Answers

Given a query ¢¥{x1,...,Xc} and a KB K;
m Classical answers: substitutions

0={xy— at,...,Xxk— ax}

that map free variables of ¢ to constants that appear in K and K = 6.

m Referring Expression-based answers: R-substitutions

0={x1 = o1{xi},... X = or{xk}}

where ¢;{x;} are unary formulze in the language of KC such that
VXt Xk (Pt A A i) = (soundness)
X1,y Xk (D1 A A PR) AN (existence)
VX1 Xi, VieP1 A oo o NGk A A (b,'[X//y,‘] A QZJ[X,/y,] — X; =y (singularity)
... are logically implied by K.

Borgida, Toman, and Weddell Referring Expressions in AI&RKR Referring Expressions as Formulee ~ 23/64

Controlling the number of Answers

Example KB

T = { fatherof(x, y) — (Father(x) A Person(y)),
Father(x) — Person(x),
Father(x) — 3y .fatherof(x, y),
Person(x) — Jy.fatherof(y, x)

A = { Father(fred), Person(mary) }

Borgida, Toman, and Weddell Referring Expressions in AIRKR Referring Expressions as Formulee ~ 24/64

Controlling the number of Answers

Example KB

T = { fatherof(x, y) — (Father(x) A Person(y)),
Father(x) — Person(x),
Father(x) — 3y .fatherof(x, y),
Person(x) — Jy.fatherof(y, x)

A = { Father(fred), Person(mary) }

Query: Father(x)?

Answers: x = fred

Borgida, Toman, and Weddell Referring Expressions in AI&RKR Referring Expressions as Formulee ~ 24/64

Controlling the number of Answers

Example KB

T = { fatherof(x, y) — (Father(x) A Person(y)),
Father(x) — Person(x),
Father(x) — 3y .fatherof(x, y),
Person(x) — Jy.fatherof(y, x)

A = { Father(fred), Person(mary) }

Query: Father(x)?

Answers: x = fred, fatherof(x, mary), Jy.fatherof(x, y) A fatherof(y, mary), ...

Borgida, Toman, and Weddell Referring Expressions in AI&RKR Referring Expressions as Formulee ~ 24/64

Controlling the number of Answers

Example KB

T = { fatherof(x, y) — (Father(x) A Person(y)),
Father(x) — Person(x),
Father(x) — 3y .fatherof(x, y),
Person(x) — Jy.fatherof(y, x)
fatherof(x, z) A fatherof(y,z) - x =y }

A = { Father(fred), Person(mary) }

Query: Father(x)?

Answers: x = fred, fatherof(x, mary), Jy.fatherof(x, y) A fatherof(y, mary), ...
fatherof(x, fred), Jy.fatherof(x, y) A fatherof(y, fred), . ..

Borgida, Toman, and Weddell Referring Expressions in AI&RKR Referring Expressions as Formulee ~ 24/64

Controlling the number of Answers

Example KB

T = { fatherof(x, y) — (Father(x) A Person(y)),
Father(x) — Person(x),
Father(x) — 3y .fatherof(x, y),
Person(x) — 3Jy.fatherof(y, x)
fatherof(x, z) A fatherof(y,z) > x =y }

A = { Father(fred), Person(mary) }

Query: Father(x)?

Answers: x = fred, fatherof(x, mary), y.fatherof(x, y) A fatherof(y, mary), ...
fatherof(x, fred), Jy.fatherof(x, y) A fatherof(y, fred), . ..

Query: Person(x)?

Answers: x = mary, X = fred, fatherof(fred, x) (NO!)
T fatherof(x, mary), fatherof(x, fred), ...

Borgida, Toman, and Weddell Referring Expressions in AI&RKR Referring Expressions as Formulee ~ 24/64

Controlling the number of Answers |l

Example KB

T = { spouse(x, y) — spouse(y, X),
spouse(X, Z) A spouse(y,Z) = X =y
spouse(X, y) — X # y }

A = { spouse(mary, fred) }

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions as Formulze 25/64

Controlling the number of Answers |l

Example KB

T = { spouse(x, y) — spouse(y, X),
spouse(X, Z) A spouse(y,Z) > X =y
spouse(X,y) = X £y

A = { spouse(mary, fred) }

Query: spouse(x, mary)?

Answers: x = fred

Borgida, Toman, and Weddell Referring Expressions in AIRKR Referring Expressions as Formulee ~ 25/64

Controlling the number of Answers |l

Example KB

T = { spouse(x, y) — spouse(y, X),
spouse(X, Z) A spouse(y,Z) > X =y
spouse(X,y) = X £y

A = { spouse(mary, fred) }

Query: spouse(x, mary)?

Answers: x = fred, spouse(X, mary), 3y.spouse(X, ¥) A spouse(y, fred), ...

Borgida, Toman, and Weddell Referring Expressions in AIRKR Referring Expressions as Formulee ~ 25/64

Controlling the number of Answers |l

Example KB

T = { spouse(x, y) — spouse(y, X),
spouse(X, Z) A spouse(y,Z) > X =y
spouse(X,y) = X £y

A = { spouse(mary, fred) }

Query: spouse(X, mary)?

Answers: x = fred, spouse(X, mary), 3y.spouse(X, ¥) A spouse(y, fred), ...

How many distinct answers to Jy.spouse(Xx, y)?

Borgida, Toman, and Weddell Referring Expressions in AI&RKR Referring Expressions as Formulee ~ 25/64

Controlling the number of Answers |l

Example KB

T = { spouse(x, y) — spouse(y, X),
spouse(X, Z) A spouse(y,Z) > X =y
spouse(X,y) = X £y

A = { spouse(mary, fred) }

Query: spouse(X, mary)?

Answers: x = fred, spouse(X, mary), 3y.spouse(X, ¥) A spouse(y, fred), ...

How many distinct answers to Jy.spouse(Xx, y)?

fred = spouse(x, mary) = Jy.spouse(x, y) A spouse(y, fred) = ...

Borgida, Toman, and Weddell Referring Expressions in AI&RKR Referring Expressions as Formulee ~ 25/64

Controlling the number of Answers |l

Example KB

T = { spouse(x, y) — spouse(y, X),
spouse(X, Z) A spouse(y,Z) > X =y
spouse(X,y) = X £y

A = { spouse(mary, fred) }

Query: spouse(X, mary)?

Answers: x = fred, spouse(X, mary), 3y.spouse(X, ¥) A spouse(y, fred), ...

How many distinct answers to Jy.spouse(Xx, y)?

fred = spouse(x, mary) = Jy.spouse(x, y) A spouse(y, fred) = ...
mary = spouse(X, fred) = Jy.spouse(X, y) A spouse(y, mary) = ...

Borgida, Toman, and Weddell Referring Expressions in AI&RKR Referring Expressions as Formulee ~ 25/64

Controlling the number of Answers |l

Example KB

T = { spouse(x, y) — spouse(y, X),
spouse(X, Z) A spouse(y,Z) > X =y
spouse(X,y) = X £y

A = { spouse(mary, fred) }

Query: spouse(X, mary)?

Answers: x = fred, spouse(X, mary), 3y.spouse(X, ¥) A spouse(y, fred), ...

How many distinct answers to Jy.spouse(Xx, y)?

fred = spouse(x, mary) = Jy.spouse(x, y) A spouse(y, fred) = ...
mary = spouse(X, fred) = Jy.spouse(X, y) A spouse(y, mary) = ...
mary # fred (last constraint!)

Borgida, Toman, and Weddell Referring Expressions in AI&RKR Referring Expressions as Formulee ~ 25/64

Controlling the number of Answers |l

Example KB

T = { spouse(x, y) — spouse(y, X),
spouse(X, Z) A spouse(y,Z) > X =y
spouse(X,y) = X £y

A = { spouse(mary, fred) }

Query: spouse(X, mary)?

Answers: x = fred, spouse(X, mary), 3y.spouse(X, ¥) A spouse(y, fred), ...

How many distinct answers to Jy.spouse(Xx, y)?

fred = spouse(x, mary) = Jy.spouse(x, y) A spouse(y, fred) = ...
mary = spouse(X, fred) = Jy.spouse(X, y) A spouse(y, mary) = ...
mary # fred (last constraint!) = exactly 2 distinct objects

Borgida, Toman, and Weddell Referring Expressions in AIRKR Referring Expressions as Formulee ~ 25/64

Controlling the number of Answers: Finite
Representation

How do we deal with multiple referring expression answers/preferences/. .

?

m potentially too many implied answers (infinitely many!)
m potentially too many ways to refer to the same object

Borgida, Toman, and Weddell Referring Expressions in AI&KR All Answers

26/64

Controlling the number of Answers: Finite
Representation

How do we deal with multiple referring expression answers/preferences/. .. ?

m potentially too many implied answers (infinitely many!)
m potentially too many ways to refer to the same object

Can we (somehow) get ALL answers to Q over K?
Yes (for logics with recursively enumerable logical consequence):
for all (tuples of) unary formulas ¢(x)

do test if o(x) is a singular certain answer to Q in K.

Borgida, Toman, and Weddell Referring Expressions in AIRKR All Answers 26/64

Controlling the number of Answers: Finite
Representation

How do we deal with multiple referring expression answers/preferences/. .. ?

m potentially too many implied answers (infinitely many!)
m potentially too many ways to refer to the same object

Can we (somehow) get ALL answers to Q over K?

Yes (for logics with recursively enumerable logical consequence):
for all (tuples of) unary formulas ¢(x)
do test if o(x) is a singular certain answer to Q in K.

= this does NOT guarantee decidability [Artale et al., 2021]

Borgida, Toman, and Weddell Referring Expressions in AIRKR All Answers 26/64

Controlling the number of Answers: Finite
Representation

How do we deal with multiple referring expression answers/preferences/. .. ?

m potentially too many implied answers (infinitely many!)
m potentially too many ways to refer to the same object

Can we (somehow) get ALL answers to Q over K?

Yes (for logics with recursively enumerable logical consequence):
for all (tuples of) unary formulas ¢(x)
do test if o(x) is a singular certain answer to Q in K.

= this does NOT guarantee decidability [Artale et al., 2021]
= is there a finite representation of all answers (and what is “all”)?

Borgida, Toman, and Weddell Referring Expressions in AIRKR All Answers 26/64

Example: Horn Logics with Tree Models [DL19]

What to do ££+ (and Horn-ALC)?

m singularity requires role functionality (not expressible in ££*/Horn-ALC)

Borgida, Toman, and Weddell Referring Expressions in AIRKR All Answers 27/64

Example: Horn Logics with Tree Models [DL19]

What to do ££+ (and Horn-ALC)?

m singularity requires role functionality (not expressible in ££*/Horn-ALC)
m (Tree) Models of a: 3R.C 1 3R.D:

[) [] L)
AR Y N\ A
Ce Ceo oD Ce oD CDe
spurious R-successor C just right spurious equality

(canonical) between R-successors

= singular certain answers: singular in a canonical model

Borgida, Toman, and Weddell Referring Expressions in AIRKR All Answers 27/64

Example: Horn Logics with Tree Models [DL19]

What to do ££+ (and Horn-ALC)?

m singularity requires role functionality (not expressible in ££*/Horn-ALC)
m (Tree) Models of a: 3R.C 1 3R.D:

[) [] []
AR Y N\ A
Ce Ceo oD Ce oD CDe
spurious R-successor C just right spurious equality

(canonical) between R-successors

= singular certain answers: singular in a canonical model

= coincide with singular answers in DLs with functional roles (FunDL).

Borgida, Toman, and Weddell Referring Expressions in AI&RKR All Answers 27/64

How Does it Work?

Base Case: Instance Retrieval B(x) over T and A= {a: A}

Looping automaton-like construction

= only non-redundant successors in matching tuples
= preserves complexity bounds for both logics

Borgida, Toman, and Weddell Referring Expressions in AIRKR All Answers 28/64

How Does it Work?

Base Case: Instance Retrieval B(x) over T and A= {a: A}

Looping automaton-like construction

= only non-redundant successors in matching tuples
= preserves complexity bounds for both logics

Generalizations&Limitations

General ABoxes and Conjunctive Queries
= lots of case analysis followed by existing approaches
Finite representation of answers (succinctness??)
More Expressive Logics
= this will NOT work with at-least restrictions (functionality is fine)
Non-Horn Logics
= non-unique canonical models
= disjunctions in referring expressions (questionable)

Borgida, Toman, and Weddell Referring Expressions in AI&RKR All Answers 28/64

Controlling the number of Answers: Typing
Restrictions

How do we deal with multiple referring expression answers/preferences/. .. ?

m potentially too many implied answers (infinitely many!)
m potentially too many ways to refer to the same object

Referring Expression Types and Typed Queries

Types: Rt::= Pd = {?}| Rti ARty | T— Rt | Rty; Rt
= each type induces a set of unary formulee;

Queries: select x; : Rty, ..., xx : Rty where ¢
= X1 : Rty,..., xx : Rty is called the head, v is the body.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expression Types 29/64

Referring Expression Types

Desiderata: only Referring Expressions that are Singular

Given a KB K (the “background knowledge”),
a query ¥{xy,...,Xx}, and
types Rty, ..., Rty for sets of unary formulae Sy, ..., Sk

We ask whether, for every K’ (the “data”) consistent with C and an answer

0 ={x1 = dp1{X1}, ..., Xk = dr{Xk}}

to ¢ with respect to K U K’ such that ¢; € S;, it is the case that 0 is singular.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expression Types 30/64

Referring Expression Types

Desiderata: only Referring Expressions that are Singular

Given a KB K (the “background knowledge”),
a query ¥{xy,...,Xx}, and
types Rty, ..., Rty for sets of unary formulee Sy, ..., Sk

We ask whether, for every K’ (the “data”) consistent with C and an answer

0 ={x1 = dp1{X1}, ..., Xk = dr{Xk}}

to ¢ with respect to K U K’ such that ¢; € S;, it is the case that 0 is singular.

Theorem (Weak Identification; paraphrased)

Given a query) with a head H and a KB K, the question
“are all answers to +) conforming to H over any K U K’ singular?”
reduces to logical implication in the underlying logic of K.

Borgida, Toman, and Weddell Referring Expressions in AIRKR Referring Expression Types 30/64

Examples of Typed Queries

Reference via a Single-Attribute Key

“The ssn# of any person with phone 1234567”

select x : ssn#= {7}
where Person(x) A phone#(x,1234567)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expression Types 31/64

Examples of Typed Queries

Reference via a Single-Attribute Key

Reference by a Multi-Attribute Key

“The title and publisher of any journals”

select x : title = {?} A publishedBy = {7}
where Journal(x)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expression Types 31/64

Examples of Typed Queries

Reference via a Single-Attribute Key

Reference by a Multi-Attribute Key

Choice of Identification in a Heterogeneous Set

“Any legal entity”

select x : Person — ssn#= {7} ;
Company — tickerSymbol = {?}
where LegalEntity(x)

answers: {x — Person(x) A ssn#(x,7654)}
{x — Company(x) N tickerSymbol(x, “IBM”)}.

Borgida, Toman, and Weddell Referring Expressions in AIRKR Referring Expression Types 31/64

Examples of Typed Queries

Reference via a Single-Attribute Key
Reference by a Multi-Attribute Key
Choice of Identification in a Heterogeneous Set

Preferred Identification
“Any publication, identified by its most specific identifier, when available.”

select x : Journal — (title = {?} A publisher = {?});
EditedCollection — isbn# = {?} ; {7}
where Publication(x)

answers: {x — Journal(x) A title(x, “AlJ”) A publisher(x, “Elsevier”)}
{x — EditedCollection(x) A isbn#(x,123456789)}
{Xx+— Xx=/guid/9202a8c04000641£8000000...}.

Borgida, Toman, and Weddell Referring Expressions in AIRKR Referring Expression Types 31/64

REQA (Referring Expression-based QA)

GOAL: reduce REQA to standard OBDA (used as an oracle)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Query Answering 32/64

REQA (outline, unary queries only)

GOAL: reduce REQA to standard OBDA (used as an oracle)

Input: K (background knowledge), K’ (data), »{x} (query), H (query head)

El Normalize Hto H;;...; H,, each of the form
Ti— Pdiy={A...APdiy = {7}
Create queries ;i {X, y1,..., Y} as
YA Ti(X)NPdi1(X, y1) A ... AP (X, Y
Create K; with a witnesses for x when no such witness exists;
Evaluate K U K’ U K; | v (OBDA oracle);
Resolve preferences (based on value of x); and

A Reconstruct a referring expression from the values of yy, ..., yk.

. extends naturally to higher arity queries: (more) messy

Borgida, Toman, and Weddell Referring Expressions in AI&RKR Query Answering 32/64

The Tractable (practical) Cases

Lite Description Logics

DL-Litel,(idc):
m Weak identification — sequence of KB consistency tests
m Query answering — REQA
+ Witnesses for x w.r.t. H + Perfect Reformulation

CFDI}:
m Weak identification — sequence of logical implications
m Query answering — REQA
+ Combined Combined Approach

Logics with Tree Models (outside of an ABox) [Al16]

The witnesses for anonymous objects (step (3))
— last named individual on a path fowards the anonymous object

Borgida, Toman, and Weddell Referring Expressions in AI&RKR Query Answering 33/64

RECORDING/REPRESENTING FACTUAL DATA

orgida, Toman, and Weddell ions i Representing Data 34/64

Referring Expressions for Ground Knowledge

Standard approach: constant symbols ~ objects (and values!)
= needs a constant symbol for every individual (Skolems?)

Borgida, Toman, and Weddell Referring Expressions in AIRKR Representing Data 35/64

Referring Expressions for Ground Knowledge

Standard approach: constant symbols ~ objects (and values!)
= needs a constant symbol for every individual (Skolems?)

How are external objects identified in a KB?

m Two PERSON objects, 01 and o, identified by their ssn value:
PERSON 11 3ssn.{123} and PERSON f1 3ssn.{456}.

m Role (feature) assertions of the form mother(oy) = 0. can then be
captured as:

PERSON 11 3ssn.{123} 1 Imother.(PERSON 1 3ssn.{345}).

Borgida, Toman, and Weddell Referring Expressions in AI&KR Representing Data 35/64

Referring Expressions for Ground Knowledge

Standard approach: constant symbols ~ objects (and values!)
= needs a constant symbol for every individual (Skolems?)

How are external objects identified in a KB?

m Two PERSON objects, 01 and o, identified by their ssn value:
PERSON 11 3ssn.{123} and PERSON f1 3ssn.{456}.

m Role (feature) assertions of the form mother(oy) = 0. can then be
captured as:

PERSON 11 3ssn.{123} 1 Imother.(PERSON 1 3ssn.{345}).

Issues:
m admissibility: what descriptions qualify here? = singularity!
® minimality: is the description succinct? (similar to keys/superkeys issues)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Representing Data 35/64

Heterogeneous Data Integration (example)

Example

m TBox 7 ={ FRIEND C PERSON,
FRIEND C PERSON : fname — id,
MATRIARCH C PERSON,
MATRIARCH C PERSON : Iname — id,
PERSON C PERSON : fname, Iname — id, ... }

m CBox C={ FRIEND 1 3fname.{“Mary”},
PERSON 11 (3fname.{“Mary”}) M (3lname.{*Smith™}),
MATRIARCH 11 3lname.{“Smith”},... }

Borgida, Toman, and Weddell Referring Expressions in AIRKR Representing Data 36/64

Heterogeneous Data Integration (example)

Example

m TBox 7 ={ FRIEND C PERSON,
FRIEND C PERSON : fname — id,
MATRIARCH C PERSON,
MATRIARCH C PERSON : Iname — id,
PERSON C PERSON : fname, Iname — id, ... }

m CBox C={ FRIEND 1 3fname.{“Mary”},
PERSON 11 (3fname.{“Mary”}) M (3lname.{*Smith™}),
MATRIARCH 11 3lname.{“Smith”},... }

Heterogeneous Identification

“FRIEND 11 Jfname.{“Mary”}” identifies the same object as
“PERSON 11 (3fname.{“Mary”}) M (3lname.{*“Smith”})” and in turn as
“MATRIARCH M 3/lname.{*“Smith”}”

Borgida, Toman, and Weddell Referring Expressions in AI&RKR Representing Data 36/64

Heterogeneous Data Integration (example)

Example

m TBox 7 ={ FRIEND C PERSON,
FRIEND C PERSON : fname — id,
MATRIARCH C PERSON,
MATRIARCH C PERSON : Iname — id,
PERSON C PERSON : fname, Iname — id, ... }

m CBox C={ FRIEND 1 3fname.{“Mary”},
PERSON 11 (3fname.{“Mary”}) M (3lname.{*Smith™}),
MATRIARCH 11 3lname.{“Smith”},... }

Heterogeneous Identification

“FRIEND 11 Jfname.{“Mary”}” identifies the same object as
“PERSON 11 (3fname.{“Mary”}) M (3lname.{*“Smith”})” and in turn as
“MATRIARCH M 3/lname.{*“Smith”}”

...and thus is an answer to {x | MATRIARCH(x)}.

Borgida, Toman, and Weddell Referring Expressions in AI&RKR Representing Data 36/64

Minimality

IDEA: minimal referring expressions (ala Candidate Keys)

C is a referring expression singular w.r.t. a TBox T (e.g., a superkey)
m C’s subconcepts A, {a}, 3. T,3f~'.T,and T 1 T are leaves of C.
m C[L — T]is a description C in which a leaf L was replaced by T.
m “first-leaf” and “next-leaf” successively enumerate all leaves of C.

1. L := first-leaf(C);

2. while C[L — T] is singular w.r.t. 7 do
3. C:=C[L~ TJ; L := next-leaf(C);
4. done

5. return C;

Borgida, Toman, and Weddell Referring Expressions in AIRKR Representing Data 37/64

Minimality

IDEA: minimal referring expressions (ala Candidate Keys)

C is a referring expression singular w.r.t. a TBox T (e.g., a superkey)
m C’s subconcepts A, {a}, 3. T,3f~'.T,and T 1 T are leaves of C.
m C[L — T]is a description C in which a leaf L was replaced by T.
m “first-leaf” and “next-leaf” successively enumerate all leaves of C.
1. L := first-leaf(C);
2. while C[L — T] is singular w.r.t. 7 do
3. C:=C[L~ TJ; L := next-leaf(C);
4. done
5. return C;

= computes a syntactically-minimal co-referring expression for C.
= order of enumeration — variant minimal co-referring expressions.

Borgida, Toman, and Weddell Referring Expressions in AI&RKR Representing Data 37/64

Reasoning and QA with CBoxes [DL18]

Theorem (CBox Admissibility)

Let T be aCFDI}, TBox and C a concept description. Then C is a singular
referring expression w.r.t. T if and only if the knowledge base

(TU{AC —-B},Simp(a: C)uSimp(b: C)u{a: A, b: B})

is inconsistent, where a and b are distinct constant symbols, and A and B are
primitive concepts not occurring in T and C.

Theorem (Satisfiability of KBs with CBoxes)

Let C = (T,C) be a knowledge base with an admissible CBox C. Then K is
consistent iff (T, Simp(C)) is consistent.

Theorem (Query Answering)

Let K = (T,C) be a consistent knowledge base and Q = {(x1,...,Xk) : ¢} @
conjunctive query over K. Then (Cy, ..., Cx) is a certain answer to Q in K if
and only if(ac,, ..., ac,) is a certain answer to Q over (T, Simp(C)).

‘‘‘‘‘‘‘‘‘‘‘‘

Referring Expressions in AI&RKR Representing Data 38/64

Documents and Ontologies

Ontologies for Documents: Goals

to capture class mambership of entities captured in a document, and
to establish how entities are identified in a document.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Representing Data 39/64

Documents and Ontologies

Ontologies for Documents: Goals

to capture class mambership of entities captured in a document, and
to establish how entities are identified in a document.

IDEA: Documents as Concepts, Semantics as Ontology

Syntactical document structure captured as a concept in FunDL
= similar to the IBM IMS hierarchical data model

Ontology adds meaning to this concept and its subconcepts
m identifies class membership of entities described by subdocuments,
m discovers subdocuments pertaining to the same entity, and
m drives document normalization.

Borgida, Toman, and Weddell Referring Expressions in AI&RKR Representing Data 39/64

Example: JSON Document

{ "collection": "person",
"data" : [
{ "fname": "John", "lname": "Smith", "age": 25,
"wife": { "fname" : "Mary" },
"phone": [
{"colour": "red", "dnum": "212 555-1234"}
]
}I
{ "fname": "Mary", "lname": "Jones",
"salary": "$150,000 (CAD)",
"spouse": { "fname": "John" 1},
"phone": [
{"loc": "home", "dnum": "212 555-1234"},
{"loc": "work", "dnum": "212 666-4567"}

Borgida, Toman, and Weddell Referring Expressions in AIRKR Representing Data

40/64

Example: JSON as a FunDL Concept

dcollection.{"person"}n
Jdata.ddom™.Iran(
Jfname.{"John"} M3 lname.{"Smith"} M
Jage.{"25"} M Iwife.dfname.{"Mary"} I
Jphone(3Idom™ . ran(
Jcolour.{"red"} MIdnum{"212 555-1234"})))M
Jdom™.Iran(
Jfname.{"Mary"} M3 lname.{"Jones"} M
Jsalary.{"$150000CAD"} MJspouse.d fname.{"John"}
Jphone(3Idom™ . ran(
Jloc.{"home"} M Idnum.{"212 555-1234"}) N
Jdom™ .3 ran(
Jloc{"work"}MIdnum.{"212 666-4567"})))

Borgida, Toman, and Weddell Referring Expressions in AIRKR Representing Data 41/64

Example: Ontology

The TBox:

(Fcollection.T)M(Idata.T)
(3 fname.T) M (I 1name.T)
Jdnum. T

DOCUMENT
PERSON
PHONE
PERSON

IRRINRIN

MrT e im

DOCUMENT
PERSON
PHONE

DOCUMENT : collection — id
PERSON : fname, 1name — id
PHONE : dnum — id
Jwife.PERSON

The Referring Expression Type Assignment:

RTA(DOCUMENT) = DOCUMENT M3 collection.{?}
RTA(PERSON) = PERSON M 31name.{?} M3 fname.{?}
RTA(PHONE) = PHONE Nn3dnum.{?}

Borgida, Toman, and Weddell Referring Expressions in AI&KR Representing Data 42/64

Example: Normalized CBox/Document

DOCUMENT M3 collection.{"person"}MIdata(

PERSON M3 fname.{"John"} M3 lname.{"Smith"} M
Jage{"25"} M Iwife.dfname{"Mary"} N

PERSON M3 fname.{"Mary"} M3 lname.{"Jones"} N
Jsalary.{"$150000CAD"} M3 spouse.d fname{"John"} M

PHONE M 3dnum{"212 555-1234"}M3loc.{"home"}MIcolour.{"red"}
PHONE M3dnum{"212 555-4567"} M3 loc.{"work"}

Borgida, Toman, and Weddell Referring Expressions in AI&KR Representing Data 43/64

Example: Normalized CBox/Document

DOCUMENT M3 collection.{"person"}MIdata(

PERSON M3 fname.{"John"} M3 lname.{"Smith"} M
Jage{"25"} M Iwife.dfname{"Mary"} N

PERSON M3 fname.{"Mary"} M3 lname.{"Jones"} N
Jsalary.{"$150000CAD"} M3 spouse.d fname{"John"} M

PHONE M 3dnum{"212 555-1234"}M3loc.{"home"}MIcolour.{"red"}
PHONE M3dnum{"212 555-4567"} M3 loc.{"work"}

Borgida et al. Accessing Document Data Sources using Referring Expression Types
@ ATerioo Aug 10 at 11:25 in DL 2022, Session 112C (Taub 9)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Representing Data 43/64

CONCEPTUAL MODELLING

(Decoupling modelling from identification issues)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Conceptual Modelling 44/64

Conceptual Modeling and Identification [ER16]

Thesis:

Modeling of Entities and their Relationships should be decoupled from
issues of managing the identity of such entities.

Borgida, Toman, and Weddell

Referring Expressions in AIRKR Conceptual Modelling 45/64

Conceptual Modeling and Identification [ER16]

Modeling of Entities and their Relationships should be decoupled from
issues of managing the identity of such entities.

Weak Entities and dominant entity identification

Example (ROOM within BUILDING)

For the entity set RooM with attributes room—-number and capacity

= natural attributes are insufficient to identify RooMs
= need for a key of dominant set, such as BUTLDING

Borgida, Toman, and Weddell Referring Expressions in AIRKR

Conceptual Modelling 45/64

Conceptual Modeling and Identification [ER16]

Thesis:

Modeling of Entities and their Relationships should be decoupled from
issues of managing the identity of such entities.

Weak Entities and dominant entity identification
Preferred Identification in sub/super-classes

Example (PERSON and FAMOUS—-PERSON)

For the entity set FAMOUS-PERSON a sub-entity of PERSON

= choice of key (ssn) for PERSON forces the same key for FAMOUS-PERSON
= we may preferto use name in this case (e.g., Eric Clapton or The Edge)

Borgida, Toman, and Weddell Referring Expressions in AIRKR Conceptual Modelling 45/64

Conceptual Modeling and Identification [ER16]

Thesis:

Modeling of Entities and their Relationships should be decoupled from
issues of managing the identity of such entities.

Weak Entities and dominant entity identification
Preferred Identification in sub/super-classes
Generalizations and heterogeneity

Example (LEGAL-ENTITY: PERSON Oor COMPANY)

For the entity set LEGAL-ENTITY a generalization of PERSON and COMPANY
= commonly required to create an artificial attribute 1e—num
= despite the fact that all entities are already identified
by the (more) natural ssn and (name, city) identifiers.

Borgida, Toman, and Weddell Referring Expressions in AIRKR Conceptual Modelling 45/64

Conceptual Modeling and Identification [ER16]

Modeling of Entities and their Relationships should be decoupled from
issues of managing the identity of such entities.

Weak Entities and dominant entity identification
Preferred Identification in sub/super-classes

Generalizations and heterogeneity

Contributions

E Methodology that allows decoupling identification from modeling;
Referring Expressions that subsequently resolve identity issues; and

Compilation-based technology that makes further translation to
a pure relational model seamless.

Borgida, Toman, and Weddell Referring Expressions in AIRKR Conceptual Modelling 45/64

Abstract (Relational) Model ARM

A simple conceptual model C

Common features of so-called “attribute-based” semantic models

=> class hierarchies, disjointness, coverage, attributes and typing,
functional dependencies, ...

Example (DMV)

class PERSON (ssn: INT, name: STRING,
isa LEGAL-ENTITY, disjoint with VEHICLE)
class COMPANY (name: STRING, city: STRING,
isa LEGAL-ENTITY)
class LEGAL-ENTITY (covered by PERSON, COMPANY)
class VEHICLE (vin: INT, make: STRING,
owned-by: LEGAL-ENTITY)
class CAN-DRIVE (driver: PERSON, driven: VEHICLE)

Borgida, Toman, and Weddell Referring Expressions in AI&RKR Abstract Models 46/64

Abstract (Relational) Model ARM

A simple conceptual model ARM
Common features of so-called “attribute-based” semantic models

=> class hierarchies, disjointness, coverage, attributes and typing,
functional dependencies, ...

Example (DMV and Relational Understanding)

table PERSON (self: OID, ssn: INT, name: STRING,
isa LEGAL-ENTITY, disjoint with VEHICLE)
table COMPANY (self: OID, name: STRING, city: STRING,
isa LEGAL-ENTITY)
table LEGAL-ENTITY (covered by PERSON, COMPANY)
table VEHICLE (self: OID, wvin: INT, make: STRING,
owned-by: LEGAL-ENTITY)
table CAN-DRIVE (self: OID, driver: PERSON, driven: VEHICLE)

46/64

Referring Expressions in AI&RKR Abstract Models

Borgida, Toman, and Weddell

Abstract Relational Queries

SQLP

(pretty) standard select-from-where-union-except SQL syntax
... with extensions to ARM: abstract attributes (0ID) and attribute paths

Borgida, Toman, and Weddell Referring Expressions in AI&KR Abstract Models 47/64

Abstract Relational Queries

SQLP

(pretty) standard select-from-where-union-except SQL syntax
... with extensions to ARM: abstract attributes (0ID) and attribute paths

m The name of anyone who can drive a vehicle made by Honda:
select d.driver.name from CAN-DRIVE d
where d.driven.make = ’'Honda’

attribute paths in the select and where clauses

m The owners of Mitsubishi vehicles:
select v.owned-by from VEHICLE v
where v.make = ’'Mitsubishi’

retrieving abstract attributes may yield
heterogeneous results (PERSONS and COMPANieS)

Borgida, Toman, and Weddell Referring Expressions in AIRKR Abstract Models 47/64

Abstract Relational Queries

SQLP

(pretty) standard select-from-where-union-except SQL syntax
... with extensions to ARM: abstract attributes (0ID) and attribute paths

m The name of anyone who can drive a vehicle made by Honda:
select d.driver.name from CAN-DRIVE d
where d.driven.make = ’'Honda’

attribute paths in the select and where clauses

m The owners of Mitsubishi vehicles:
select v.owned-by from VEHICLE v
where v.make = ’'Mitsubishi’

retrieving abstract attributes may yield
heterogeneous results (PERSONS and COMPANieS)

Note that queries do NOT rely on (external) identification of entities/objects.

Borgida, Toman, and Weddell Referring Expressions in AIRKR Abstract Models 47/64

How to Make this Technology Succeed?

ARM/SQLP Helps Users (User Study) [EKAW18]

ARM/SQLP Can be Efficiently Implemented [ER16]

m Mapping to standard relational model with the help of referring expressions
= and WITHOUT introducing explicit, material OIDs

m Reverse-Engineering ARM from Legacy Relational Schemata

Borgida, Toman, and Weddell Referring Expressions in AIRKR Abstract Models 48/64

Experimental Design (HCI experiments)

Hypotheses

H;: no difference between RM/SQL and ARM/SQLP in the mean time taken
H.: no difference between RM/SQL and ARM/SQLP in the mean correctness

Methods

m Undergraduate (9) and Graduate (15) UW students
m Protocol

Instructions (5”) and Examples of SQL/SQLP (10”)
Six Questions (Q1—Q6), no time limit
Subjects recorded start/end times for each Question

m Performance Assessment

3 assessors
agreed upon grading scale

Borgida, Toman, and Weddell Referring Expressions in AI&RKR Experiments 49/64

Course Enrollment as an RM Schema

ENROLLMENT STUDENT
DEPARTMENT COURSE
pi— snum
deptcode deptcode deptcode
deptname cnum cnum
| S ——
cname term
section
CLASS snum
deptcode SCHEDULE deptcode
cnum deptcode cnum
PROFESSOR
term cnum term
section term section
office

deptcode

Unersiyof

Waloo

Borgida, Toman, and Weddell Referring Expressions in AI&KR Experiments 50/64

Course Enrolment as an ARM Schema

COURSE MARK

ENROLLMENT self*

cnum enrollment*
cname
student* grade
department* CLASS
class*
DEPARTMENT selfx
course*
N 4 term
leptcode
P PROFESSOR section SCHEDULE
pnum class* self*
pname snum
office sname
department* year

Unersiyof

-~ y Waterloo

Borgida, Toman, and Weddell Referring Expressions in AI&KR Experiments 51/64

Course Enrolment as an ARM Schema

COURSE MARK
ENROLLMENT sele-
cnum enrollment*
cname
student* grade
department* CLASS
class*
DEPARTMENT selfx
N 4 term
leptcode
P PROFESSOR section SCHEDULE
pnum class* self*
pname snum
office sname
department* year

ARM completely frees domain experts/users from the need to understand
how entities are identified in an information system.

Experiments 51/64

Borgida, Toman, and Weddell Referring Expressions in AI&KR

Example Queries

Query: Names of students who have been taught by Prof. ‘Alan John’

RM/SQL:
select distinct s.sname as name
from STUDENT s, ENROLLMENT e, CLASS c, PROFESSOR p
where e.snum = s.snum
and e.deptcode = c.deptcode and e.cnum = c.cnum
and e.term = c.term and e.section = c.section
and c.pnum = p.pnum and p.pname = "Alan John’

Borgida, Toman, and Weddell Referring Expressions in AI&KR Experiments 52/64

Example Queries

Query: Names of students who have been taught by Prof. ‘Alan John’

RM/SQL:

select distinct s.sname as name
from STUDENT s, ENROLLMENT e, CLASS c, PROFESSOR p

where e.snum = s.snum

and e.deptcode = c.deptcode and e.cnum = c.cnum
and e.term = c.term and e.section = c.section
and c.pnum = p.pnum and p.pname = "Alan John’

Domain expert needs to understand structure of PK/FKs: BAD!!

Borgida, Toman, and Weddell Referring Expressions in AI&KR Experiments 52/64

Example Queries

Query: Names of students who have been taught by Prof. ‘Alan John’

RM/SQL:

select distinct s.sname as name
from STUDENT s, ENROLLMENT e, CLASS c, PROFESSOR p

where e.snum = s.snum

and e.deptcode = c.deptcode and e.cnum = c.cnum
and e.term = c.term and e.section = c.section
and c.pnum = p.pnum and p.pname = "Alan John’

Domain expert needs to understand structure of PK/FKs: BAD!!

ARM/SQLP:

select distinct e.student.sname as name

from ENROLLMENT e
where e.class.professor.pname = ’Alan John’

Borgida, Toman, and Weddell Referring Expressions in AI&KR Experiments 52/64

ARM Schema and Path Navigation

select distinct e.student.sname as name
from ENROLLMENT e
where e.class.professor.pname = 'Alan John’

COURSE MARK

ENROLLMENT self*

cnum enrollment*
cname
student* grade
department* CLASS
class*
DEPARTMENT self*
a a term
leptcode
P PROFESSOR section SCHEDULE
pnum class* self*
pname snum
office sname
department* year

Borgida, Toman, and Weddell Referring Expressions in AI&KR Experiments 53/64

Experiments: Results

Mean performance for all subjects: SQL solid; SQLP dashed.

Mean time taken (seconds) Mean correctness (Scores 0 to 4)
Normal theory 95% confidence intervals for means Normal theory 95% confidence intervals for means
4.0-

800 -
- 35-
8]
5 600 - g
§ Method 2 30- Method
z —saL § —saL
3

400~ | |
E saLp g 25 saLp
@ =
£ 3
[=

200~ 20-

at g2 a3 a4 a5 as at g2 o3 a4 as as
Question Question
Code understanding: Q1, Q2, Q3 Code understanding: Q1, Q2, Q3
Code writing: Q4, Q5, Q6 Code writing: Q4, Q5, Q6

g Expressions in AIRKR Experiments 54/64

Experiments: Results

Mean performance for all subjects: SQL solid; SQLP dashed.

Mean time taken (seconds) Mean correctness (Scores 0 to 4)
Normal theory 95% confidence intervals for means Normal theory 95% confidence intervals for means

e 2]
S 600~ S I SR
§ Method 2 30- Method
z —saL § —saL
@

400- — 3 —
3 saLp 8 254 saLp
5 £
E 3 8
i

200~ H/}{ 20-

at g2 a3 a4 a5 as at g2 o3 a4 as as
Question Question
Code understanding: @1, Q2, Q3 Code understanding: Q1, Q2, Q3
Code writing: Q4, Q5, Q6 Code writing: Q4, Q5, Q6

m SQLP outperforms SQL in time taken
m No significant difference in correctness (Q3, Q5 almost significant)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Experiments 54/64

How to make the Technology Succeed?

ARM/SQLP Helps Users (User Study)

ARM/SQLP Can be Efficiently Implemented [ER16]

m Mapping to standard relational model with the help of referring expressions

m Reverse-Engineering ARM from Legacy Relational Schemata

Borgida, Toman, and Weddell Referring Expressions in AIRKR Referring Expressions 55/64

Referring to Abstract Entities

Example (How to refer to LEGAL-ENTITY)

m invent a new attribute for this purpose (will be inherited by subclasses)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions 56/64

Referring to Abstract Entities

Example (How to refer to LEGAL-ENTITY)

m use (a combination of) the identities of generalized entities, e.g.,
ssn for PERSON and (name, city) for COMPANY.

Borgida, Toman, and Weddell Referring Expressions in AIRKR Referring Expressions 56/64

Referring to Abstract Entities

Example (How to refer to LEGAL-ENTITY)

m use (a combination of) the identities of generalized entities, e.g.,
ssn for PERSON and (name, city) for COMPANY.
= but what happens to objects that are both a PERSON and a COMPANY ?7?

Borgida, Toman, and Weddell Referring Expressions in AIRKR Referring Expressions 56/64

Referring to Abstract Entities

Example (How to refer to LEGAL-ENTITY)

m use (a combination of) the identities of generalized entities, e.g.,
ssn for PERSON and (name, city) for COMPANY.
= but what happens to objects that are both a PERSON and a COMPANY ?7?
= we need to resolve the preferred identification:
PERSON — ssn=?; COMPANY — (name=?, city=?).

Borgida, Toman, and Weddell Referring Expressions in AIRKR Referring Expressions 56/64

Referring to Abstract Entities

Example (How to refer to LEGAL-ENTITY)

the identities of generalized entities, e.g.,
ssn for PERSON and (name, city) for COMPANY.
= but what happens to objects that are both a PERSON and a COMPANY ?7?
= we need to resolve the preferred identification:
PERSON — ssn=?; COMPANY — (name=?, city=?).

m use (a combination of)

Goal(s)

Flexible assignment of Referring Expression Types to classes,
Automatic check(s) for sanity of such an assignment, and
Compilation of queries (updates) over ARM to ones over concrete tables.

Borgida, Toman, and Weddell Referring Expressions in AI&RKR Referring Expressions 56/64

Referring Type Assignment (RTA)

Assign a referring expression type RTA(T) to each table T in X.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions 57/64

Referring Type Assignment (RTA)

Assign a referring expression type RTA(T) to each table T in X.

Is every RTA(.) assignment “good”? Consider the SQLP query

select X.self fromPERSON X,COMPANY y where X.self = y.self

assignment: RTA(PERSON) = (ssn = ?),
RTA(COMPANY) = (name = ?,city = 7)

= the ability to compare the 01D values is lost = BAD RTA!;

Borgida, Toman, and Weddell Referring Expressions in AI&RKR Referring Expressions 57/64

Referring Type Assignment (RTA)

Assign a referring expression type RTA(T) to each table T in X.

Is every RTA(.) assignment “good”? Consider the SQLP query

select X.self fromPERSON X,COMPANY y where X.self = y.self

assignment: RTA(PERSON) = (ssn = ?),
RTA(COMPANY) = (name = ?,city = 7)

= the ability to compare the 01D values is lost = BAD RTA!;

(modified) assignment:
RTA(COMPANY) = (PERSON — ssn = ?); (name = ?,city = 7?)
= the ability to compare the 01D values is preserved as COMPANY
objects are identified by ssn values when also residing in PERSON.

Borgida, Toman, and Weddell Referring Expressions in AI&RKR Referring Expressions 57/64

Referring Type Assignment (RTA)

IDEA
Assign a referring expression type RTA(T) to each table T in X.

Definition (Identity-resolving RTA(.))

Let X be a ARM schema and RTA a referring type assignment for . Given a
linear order O = (T;,, ..., T;,) on the set Tables(X), define O(RTA) as the
referring expression type RTA(T;,); ...; RTA(T;,).
We say that RTA is identity resolving if there is some linear order O such that
the following conditions hold for each T € Tables(X):
RTA(T) = Prune(O(RTA), T),
Y | (covered by {Ty,...,Tp}) € T, and
for each component T; — (Pf;1 =7,...,Pf;x, = ?) of RTA(T), the
following also holds:
(i) Pf;,; is well defined for T}, for 1 </ < k;, and
(i) = | (pathfd Pfjy,..., Py — id) € T,.

Borgida, Toman, and Weddell Referring Expressions in AI&RKR Referring Expressions 57/64

Referring Type Assignment (RTA)

IDEA
Assign a referring expression type RTA(T) to each table T in X.

Definition (Identity-resolving RTA(.))

The definition achieves the following:

Referring expression types assigned to classes (tables) that can share
objects must guarantee that a particular object is uniquely identified;

Referring expression types for disjoint classes/tables can be assigned
independently;

Consequences:

m Referring expressions serve as a sound&complete proxy
for entity/object (0ID) equality;
m Referring expression can be coerced to a least common supertype.

Borgida, Toman, and Weddell Referring Expressions in AI&RKR Referring Expressions 57/64

Course Enrollment as an ARM Schema

SCHEDULE
COURSE class.course.department.deptcode = 2,
department .deptcode = ?, Class.course.cnum = 2,
cnum = ? class.term = ?,

class.section = ?
day = ?, time = ?

self*
cname K
class* enrollment.student.snum = ?,
department* enrollment.class.course.department.deptcode = ?

—_—

enrollment.class.course.cnum = ?,
enrollment.class.term = ?,

DEPARTMENT
deptcode = ? enrollment.class.section = ?
\of se1er cLass

course.department .deptcode
deptcode course.cnum = ?, enrollment*

term = 2 STUDENT
deptname section snum =

ENROLLMENT "

PROFESSOR student.snum = 2, self
pnum = ? class.course.department.deptcode =

course*

class.course.cnum = ?
class.term = ?,
class

term

pnum section

pname professor*

office student*
\—\ department* class*

Unersiyof

Y Waloo

Borgida, Toman, and Weddell Referring Expressions in AIRKR Referring Expressions 58/64

Concrete Relational Back-end

Every abstract attribute and its referring expression type
= a concrete relational representation (denoted by Rep(.)):
essentially a discriminated variant record;
Representations can be coerced to a common supertype
= the ability to compare the representations
a sound and complete proxy for comparing object ids;

A SQLP query is compiled to a standard SQL query over the concrete
representation of an abstract instance in such a way that:

Theorem

LetY be a ARM schema and let RTA an identity resolving type assignment for
Y. Forany SQLP query Q over

Rep(Q(/),) = (C*"™(Q))(Rep(/, 1))

for every database instance | of ¥. O

Borgida, Toman, and Weddell Referring Expressions in AI&RKR Relational Representation 59/64

Obtaining an Initial ARM Schema (legacy setting)

RM2ARM Algorithm (highlights; see [EKAW18])
For every table in RM:

add “self OID” (as a new primary key)

replace foreign keys with unary ones and discard original FK attributes

= what if original FK overlaps with primary key attributes?
= how about cycles between (overlapping) PKs and FKs?

add /SA constraints (and remove corresponding FKs)
= from PK to PK foreign keys in RM

add disjointness constraints
= for tables with different PKs

Borgida, Toman, and Weddell Referring Expressions in AI&RKR Relational Representation 60/64

Obtaining an Initial ARM Schema (legacy setting)

RM2ARM Algorithm (highlights; see [EKAW18])
For every table in RM:

add “self OID” (as a new primary key)

replace foreign keys with unary ones and discard original FK attributes

= what if original FK overlaps with primary key attributes?
= how about cycles between (overlapping) PKs and FKs?

add /SA constraints (and remove corresponding FKs)
= from PK to PK foreign keys in RM

add disjointness constraints
= for tables with different PKs

generate referring expressions (so the ARM2RM mapping works)

Borgida, Toman, and Weddell Referring Expressions in AI&RKR Relational Representation 60/64

SUMMARY

Unersityof

Waterloo

DA

eferring Expressions in AIRKR

Summary

Contributions

Referring expressions allow one to get more/better (certain) answers . ..

General approach to OBDA-style query answering
= Ability to refer to implicit individuals/entities

General approach to representing data
= without need for object id invention;

Methodology that allows decoupling identification from modeling

= Referring Expressions resolve identity issues and
= Compilation to pure relational model.

Borgida, Toman, and Weddell Referring Expressions in AIRKR Summary 62/64

Future work&Extensions

Strong Identification (distinct referring expr’s refer to distinct objects);
More complex referring expression types;

Replacing types by other preferred way to chose among referring
expressions (e.g., length/formula complexity/. .. measure);

Alternatives to concrete representations;

More general/axiomatic definition of identity resolving RTA(.)s;

Borgida, Toman, and Weddell Referring Expressions in AI&KR Summary 63/64

Message from our Sponsors

Data Systems Group at the University of Waterloo

m ~15 professors, affiliated faculty, postdocs, ~50 grads, ...
m Wide range of research interests

m Advanced query processing/Knowledge representation
System aspects of database systems and Distributed data management
Data quality/Managing uncertain data/Data mining
Information Retrieval and “big data”
New(-ish) domains (text, streaming, graph data/RDF, OLAP)
m Research sponsored by governments, and local/global companies

NSERC/CFI/OIT and Google, IBM, SAP, OpenText, ...

m Part of a School of CS with 90+ professors, 450+ grad students, etc.

AI&ML, Algorithms&Data Structures, PL, Theory, Systems, ...

... and we are always looking for good graduate students (MMath/PhD)

Borgida, Toman, and Weddell Referring Expressions in AI&RKR Summary 64/64

	Identifying and Communicating References (to objects)
	Referring Expressions (Background)
	Queries and Ontologies

