
Referring Expressions in Articial Intelligence and
Knowledge Representation Systems

David Toman‡

(joint work with Alexander Borgida† and Grant Weddell‡)

†Department of Computer Science
Rutgers University, New Brunswick, USA
borgida@cs.rutgers.edu

‡Cheriton School of Computer Science
University of Waterloo, Canada
{david,gweddell}@uwaterloo.ca

David Toman et al. Referring Expressions in AI&KR 1 / 64

IDENTIFYING AND COMMUNICATING

REFERENCES
(TO OBJECTS/ENTITIES)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Introduction 2 / 64

(Real world) Entities vs. (Computer) Representation(s)

Problem

Information systems store information about entities
Computers store (arrays of) ints and strings

How do we bridge the GAP?

Typical solutions:

1 OIDs (proxying entity identity by a number uniformly in the whole system)
⇒ typically managed by The System (OO languages), or

2 Keys (proxying entity identity by a unique combination of values (local))
⇒ typically declared/managed by user (Relational DBMS).

Borgida, Toman, and Weddell Referring Expressions in AI&KR Introduction 3 / 64

(Real world) Entities vs. (Computer) Representation(s)

Problem

Information systems store information about entities
Computers store (arrays of) ints and strings

How do we bridge the GAP?

Typical solutions:

1 OIDs (proxying entity identity by a number uniformly in the whole system)
⇒ typically managed by The System (OO languages), or

2 Keys (proxying entity identity by a unique combination of values (local))
⇒ typically declared/managed by user (Relational DBMS).

Borgida, Toman, and Weddell Referring Expressions in AI&KR Introduction 3 / 64

Object IDs: the Horror Stories
a.k.a. proxying identities by values in a data type (say int)

Performance: The PROTEL2 Case

Information Integration: The CORBA Case

Unintuitive Answers: RDF/Freebase/. . . Cases

Missing (implied) Answers: The OBDA Case

Alternative Preferred Answers

Borgida, Toman, and Weddell Referring Expressions in AI&KR Introduction 4 / 64

Object IDs: the Horror Stories
a.k.a. proxying identities by values in a data type (say int)

Performance: The PROTEL2 Case

every object WILL have an OID (say 64 bits)
⇒ storage/performance overhead (need to be generated/managed)

can we proxy by (storage) address?
what about memory/storage reuse and/or garbage collection??
what about data replication??

Information Integration: The CORBA Case

Unintuitive Answers: RDF/Freebase/. . . Cases

Missing (implied) Answers: The OBDA Case

Alternative Preferred Answers

Borgida, Toman, and Weddell Referring Expressions in AI&KR Introduction 4 / 64

Object IDs: the Horror Stories
a.k.a. proxying identities by values in a data type (say int)

Performance: The PROTEL2 Case

Information Integration: The CORBA Case

What happens to an object stored in different ORBs??
⇒ what does CORBA::Object::is_equivalent(in Object) do??

. . . and before someone
mentions URL/URI/IRIs:

Unintuitive Answers: RDF/Freebase/. . . Cases

Missing (implied) Answers: The OBDA Case

Alternative Preferred Answers

Borgida, Toman, and Weddell Referring Expressions in AI&KR Introduction 4 / 64

Object IDs: the Horror Stories
a.k.a. proxying identities by values in a data type (say int)

Performance: The PROTEL2 Case

Information Integration: The CORBA Case

What happens to an object stored in different ORBs??
⇒ what does CORBA::Object::is_equivalent(in Object) do??

. . . and before someone
mentions URL/URI/IRIs:

Unintuitive Answers: RDF/Freebase/. . . Cases

Missing (implied) Answers: The OBDA Case

Alternative Preferred Answers

Borgida, Toman, and Weddell Referring Expressions in AI&KR Introduction 4 / 64

Object IDs: the Horror Stories
a.k.a. proxying identities by values in a data type (say int)

Performance: The PROTEL2 Case

Information Integration: The CORBA Case

Unintuitive Answers: RDF/Freebase/. . . Cases

Freebase The (object id of the) “Synchronicity” album by “The Police” is
/guid/9202a8c04000641f8000000002f9e349

(as of April, 2015.)
W3C URI/IRI/. . . do not improve the situation

⇒ and RDF introduces additional internal identifiers!

Missing (implied) Answers: The OBDA Case

Alternative Preferred Answers

Borgida, Toman, and Weddell Referring Expressions in AI&KR Introduction 4 / 64

Object IDs: the Horror Stories
a.k.a. proxying identities by values in a data type (say int)

Performance: The PROTEL2 Case

Information Integration: The CORBA Case

Unintuitive Answers: RDF/Freebase/. . . Cases

Missing (implied) Answers: The OBDA Case

In the presence of background knowledge we may know that certain objects
exist, but we cannot identify/report them due to lack of an explicit identifier

(example later)

Alternative Preferred Answers

Borgida, Toman, and Weddell Referring Expressions in AI&KR Introduction 4 / 64

Object IDs: the Horror Stories
a.k.a. proxying identities by values in a data type (say int)

Performance: The PROTEL2 Case

Information Integration: The CORBA Case

Unintuitive Answers: RDF/Freebase/. . . Cases

Missing (implied) Answers: The OBDA Case

Alternative Preferred Answers

Internal (computer) addresses vs. physical locations of equipment
⇒ programs need electronic address (to route the electric signals)
⇒ technicians need physical location (to find the equipmant)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Introduction 4 / 64

Relational Keys

Borgida, Toman, and Weddell Referring Expressions in AI&KR Introduction 5 / 64

Goal of the Tutorial

Goal
Introduce referring expressions as an uniform approach to
identification of entities in information systems.

Outline

Referring Expressions in Philosophy/Linguistics
Logical Foundations: Single Interpretations vs. Models of Theories
Use of Referring Expressions in Information Systems

1 Referring Expressions in Answers to Queries over Knowledge Bases
2 Referring Expressions for recording Ground Knowledge
3 Referring Expressions in Conceptual Design

Summary and Open Problems

Borgida, Toman, and Weddell Referring Expressions in AI&KR Introduction 6 / 64

Goal of the Tutorial

Goal
Introduce referring expressions as an uniform approach to
identification of entities in information systems.

Outline

Referring Expressions in Philosophy/Linguistics
Logical Foundations: Single Interpretations vs. Models of Theories
Use of Referring Expressions in Information Systems

1 Referring Expressions in Answers to Queries over Knowledge Bases
2 Referring Expressions for recording Ground Knowledge
3 Referring Expressions in Conceptual Design

Summary and Open Problems

Borgida, Toman, and Weddell Referring Expressions in AI&KR Introduction 6 / 64

REFERRING EXPRESSIONS
(BACKGROUND)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions (Background) 7 / 64

What is an Referring Expression?

Referring Expression

A referring expression in linguistics is any noun phrase identifying an object in
a way that will be useful to interlocutors.

Russell: "On Denoting," Mind, New Series, Vol.14, No.56, pp. 479–493, 1905.

A definite description “the F is a G” is understood to have the form

∃x .F (x) ∧ ∀y(F (y) → x = y) ∧ G(x)

A definite description is a denoting phrase in the form of “the F ” where F is a
noun-phrase or a singular common noun. The definite description is proper if
F applies to a unique individual or object.

The discussion of definite and indefinite descriptions (in English, phrases of
the form ‘the F ’ and ‘an F ’) has been at the centre of analytic philosophy for
over a century (so we won’t go there today!).

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions (Background) 8 / 64

What is an Referring Expression?

Referring Expression

A referring expression in linguistics is any noun phrase identifying an object in
a way that will be useful to interlocutors.

Russell: "On Denoting," Mind, New Series, Vol.14, No.56, pp. 479–493, 1905.

A definite description “the F is a G” is understood to have the form

∃x .F (x) ∧ ∀y(F (y) → x = y) ∧ G(x)

A definite description is a denoting phrase in the form of “the F ” where F is a
noun-phrase or a singular common noun. The definite description is proper if
F applies to a unique individual or object.

The discussion of definite and indefinite descriptions (in English, phrases of
the form ‘the F ’ and ‘an F ’) has been at the centre of analytic philosophy for
over a century (so we won’t go there today!).

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions (Background) 8 / 64

What is an Referring Expression?

Referring Expression

A referring expression in linguistics is any noun phrase identifying an object in
a way that will be useful to interlocutors.

Russell: "On Denoting," Mind, New Series, Vol.14, No.56, pp. 479–493, 1905.

A definite description “the F is a G” is understood to have the form

∃x .F (x) ∧ ∀y(F (y) → x = y) ∧ G(x)

A definite description is a denoting phrase in the form of “the F ” where F is a
noun-phrase or a singular common noun. The definite description is proper if
F applies to a unique individual or object.

The discussion of definite and indefinite descriptions (in English, phrases of
the form ‘the F ’ and ‘an F ’) has been at the centre of analytic philosophy for
over a century (so we won’t go there today!).

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions (Background) 8 / 64

Issues and Criticisms
Referring to Non-existing Object:

“The King of Kentucky (is. . .)” [Strawson]
(object does NOT exist in this interpretation? or in principle?)

Referring to Object in Context:
“The table (is covered with books)”

(non-unique reference without assuming additional context)

Multiple Reference:
“The Morning Star” vs. “The Evening Star” [Frege]

(multiple distinct references to the same object)

Rigidity:
Should referring expressions identify the same object in all
possible worlds? [Kripke, S.: Identity and Necessity, In Identity
and Individuation. NYU Press, pp. 135-164 (1971)]

. . .

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions (Background) 9 / 64

REFERRING EXPRESSIONS

AND (LOGICAL) THEORIES

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions (Background) 10 / 64

Referring to Objects

How do we communicate Results of Queries?

Typical solution: tuples of constant symbols that, when substituted for free
variables, make a query logically implied by the Knowledge Base.

1 only explicitly named objects are returned as certain answers
2 often system-generated ids (that aren’t too user-friendly)

Example (Freebase)

The (object id of the) “Synchronicity” album by “The Police” is
/guid/9202a8c04000641f8000000002f9e349 (as of April, 2015.)

Referring Expressions

More answers (e.g., objects without explicit name), and/or
more informative/preferred answers, e.g.:

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions (Background) 11 / 64

Referring to Objects

How do we communicate Results of Queries?

Typical solution: tuples of constant symbols that, when substituted for free
variables, make a query logically implied by the Knowledge Base.

1 only explicitly named objects are returned as certain answers
2 often system-generated ids (that aren’t too user-friendly)

Example (Freebase)

The (object id of the) “Synchronicity” album by “The Police” is
/guid/9202a8c04000641f8000000002f9e349 (as of April, 2015.)

Referring Expressions

More answers (e.g., objects without explicit name), and/or
more informative/preferred answers, e.g.:

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions (Background) 11 / 64

Referring to Objects

How do we communicate Results of Queries?

Typical solution: tuples of constant symbols that, when substituted for free
variables, make a query logically implied by the Knowledge Base.

1 only explicitly named objects are returned as certain answers
2 often system-generated ids (that aren’t too user-friendly)

Example (Freebase)

The (object id of the) “Synchronicity” album by “The Police” is
/guid/9202a8c04000641f8000000002f9e349 (as of April, 2015.)

Referring Expressions

More answers (e.g., objects without explicit name), and/or
more informative/preferred answers, e.g.:

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions (Background) 11 / 64

Referring to Objects

How do we communicate Results of Queries?

Typical solution: tuples of constant symbols that, when substituted for free
variables, make a query logically implied by the Knowledge Base.

1 only explicitly named objects are returned as certain answers
2 often system-generated ids (that aren’t too user-friendly)

Example (Freebase)

The (object id of the) “Synchronicity” album by “The Police” is
/guid/9202a8c04000641f8000000002f9e349 (as of April, 2015.)

Referring Expressions

More answers (e.g., objects without explicit name), and/or
more informative/preferred answers, e.g.:

ALBUM(x) ∧ (title(x) = “Synchronicity”) ∧ (band(x) = “The Police”)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions (Background) 11 / 64

Referring to Objects

How do we communicate Results of Queries?

Typical solution: tuples of constant symbols that, when substituted for free
variables, make a query logically implied by the Knowledge Base.

1 only explicitly named objects are returned as certain answers
2 often system-generated ids (that aren’t too user-friendly)

Example (Freebase)

The (object id of the) “Synchronicity” album by “The Police” is
/guid/9202a8c04000641f8000000002f9e349 (as of April, 2015.)

Referring Expressions

More answers (e.g., objects without explicit name), and/or
more informative/preferred answers, e.g.:

ALBUM ⊓ (title = “Synchronicity”) ⊓ (band = “The Police”)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions (Background) 11 / 64

Bottom Line

Referring Expressions

Formulæ ϕ{x} (in the language of the Knowledge Base)
1 with exactly one free variable (x) that are
2 singular with respect to a Knowledge Base K, i.e.,

|{o | I, [x 7→ o] |= ϕ}| = 1

for all models I of K.

⇒ this intuition may be refined w.r.t. queries (e.g., singular among answers)

Why not terms?

Terms (with the standard FO semantics) suffer from totality
⇒ must denote something in every interpretation

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions (Background) 12 / 64

Bottom Line

Referring Expressions

Formulæ ϕ{x} (in the language of the Knowledge Base)
1 with exactly one free variable (x) that are
2 singular with respect to a Knowledge Base K, i.e.,

|{o | I, [x 7→ o] |= ϕ}| = 1

for all models I of K.

⇒ this intuition may be refined w.r.t. queries (e.g., singular among answers)

Why not terms?

Terms (with the standard FO semantics) suffer from totality
⇒ must denote something in every interpretation

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions (Background) 12 / 64

Denoting/Non-denoting Referring Expressions

Singularity Revisited

|{o | I, [x 7→ o] |= ϕ}| = 1 a denoting refering expression
|{o | I, [x 7→ o] |= ϕ}| = 0 a non-denoting refering expression

for all I |= K; these ought to be the only two possibilities!

Terms vs. Formulas Revisited [Artale et al., 2021]

Free (description) logics allow terms to be partial functions
⇒ ιϕ coerces a unary formula ϕ to a (partial) term

that is defined iff ϕ is denoting (and singular)

How do we Guarantee Singularity?

1 (fresh) nominals [Artale et al., 2021]
2 functionality [Borgida et al., 2016]

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions (Background) 13 / 64

Denoting/Non-denoting Referring Expressions

Singularity Revisited

|{o | I, [x 7→ o] |= ϕ}| = 1 a denoting refering expression
|{o | I, [x 7→ o] |= ϕ}| = 0 a non-denoting refering expression

for all I |= K; these ought to be the only two possibilities!

Terms vs. Formulas Revisited [Artale et al., 2021]

Free (description) logics allow terms to be partial functions
⇒ ιϕ coerces a unary formula ϕ to a (partial) term

that is defined iff ϕ is denoting (and singular)

How do we Guarantee Singularity?

1 (fresh) nominals [Artale et al., 2021]
2 functionality [Borgida et al., 2016]

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions (Background) 13 / 64

Denoting/Non-denoting Referring Expressions

Singularity Revisited

|{o | I, [x 7→ o] |= ϕ}| = 1 a denoting refering expression
|{o | I, [x 7→ o] |= ϕ}| = 0 a non-denoting refering expression

for all I |= K; these ought to be the only two possibilities!

Terms vs. Formulas Revisited [Artale et al., 2021]

Free (description) logics allow terms to be partial functions
⇒ ιϕ coerces a unary formula ϕ to a (partial) term

that is defined iff ϕ is denoting (and singular)

How do we Guarantee Singularity?

1 (fresh) nominals [Artale et al., 2021]
2 functionality [Borgida et al., 2016]

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions (Background) 13 / 64

Single Interpretations/Models

Generating Referring Expressions (GRE)

Task: given an interpretation, find formulæ (referring expressions) that denote
(selected) single objects.

Carlos Areces, Santiago Figueira, Daniel Gorín: Using Logic in the Generation
of Referring Expressions. Logical Aspects of Computational Linguistics 2011.

Carlos Areces, Alexander Koller, Kristina Striegnitz: Referring Expressions as
Formulas of Description Logic. International Natural Language Generation
Conference 2008.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions (Background) 14 / 64

Logical Theories and Knowledge Bases

Russell’s Definite Descriptions . . . denote exactly one object

What happens if we consider logical theories rather than a particular model?
constant symbols (similar for function/predicate symbols)

. . . can be interpreted by different individuals in different models

⇒ (standard) constants don’t quite satisfy Russell’s/Kripke’s requirements
⇒ rigid designators (symbols interpreted identically in all models)?

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions (Background) 15 / 64

Logical Theories and Knowledge Bases

Russell’s Definite Descriptions . . . denote exactly one object

What happens if we consider logical theories rather than a particular model?
constant symbols (similar for function/predicate symbols)

. . . can be interpreted by different individuals in different models

⇒ (standard) constants don’t quite satisfy Russell’s/Kripke’s requirements
⇒ rigid designators (symbols interpreted identically in all models)?

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions (Background) 15 / 64

Rigidity and Genericity: DB Theory Way

Database (theory) Approach

Database Instances (aka models) expect constants to be rigid
⇒ but constraints/queries do not know

Database Queries are required to be generic
⇒ invariant under permutations of the underlying domain

Certain Answers (to φ{x} in K)

1 Logical Definition: {a | K |= φ[a/x]}
2 DB Definition:

⋂
I|=K{a | I, [x 7→ a] |= φ}

(conflates constants with domain elements)

. . . for generic (and domain-independent) queries the result is the same!

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions (Background) 16 / 64

Rigidity and Genericity: DB Theory Way

Database (theory) Approach

Database Instances (aka models) expect constants to be rigid
⇒ but constraints/queries do not know

Database Queries are required to be generic
⇒ invariant under permutations of the underlying domain

Certain Answers (to φ{x} in K)

1 Logical Definition: {a | K |= φ[a/x]}
2 DB Definition:

⋂
I|=K{a | I, [x 7→ a] |= φ}

(conflates constants with domain elements)

. . . for generic (and domain-independent) queries the result is the same!

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions (Background) 16 / 64

Rigidity and Genericity: DB Theory Way

Database (theory) Approach

Database Instances (aka models) expect constants to be rigid
⇒ but constraints/queries do not know

Database Queries are required to be generic
⇒ invariant under permutations of the underlying domain

Certain Answers (to φ{x} in K)

1 Logical Definition: {a | K |= φ[a/x]}
2 DB Definition:

⋂
I|=K{a | I, [x 7→ a] |= φ}

(conflates constants with domain elements)

. . . for generic (and domain-independent) queries the result is the same!

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions (Background) 16 / 64

Referring to Objects (fine print)

The rest of the presentation is based on

KR16 Alexander Borgida, David Toman, and Grant E. Weddell: On Referring Expressions in Query
Answering over First Order Knowledge Bases. Proc. International Conference on Principles of
Knowledge Representation and Reasoning KR 2016, 319-328, 2016.

ER16 Alexander Borgida, David Toman, and Grant Weddell: On Referring Expressions in Information
Systems Derived from Conceptual Modelling. Proc, International Conference on Conceptual Modeling
ER 2016, 183-197, 2016.

AI16 David Toman, and Grant Weddell: Ontology Based Data Access with Referring Expressions for
Logics with the Tree Model Property. Proc. Australasian Joint Conference on Artificial Intelligence, 2016.

EKAW18 Weicong Ma, C. Maria Keet, Wayne Oldford, David Toman, and Grant Weddell: The Utility of the
Abstract Relational Model and Attribute Paths in SQL. Proc. International Conference on Knowledge
Engineering and Knowledge Management, 195-211, EKAW 2018.

DL18 David Toman and Grant E. Weddell: Identity Resolution in Conjunctive Querying over DL-based
Knowledge Bases. Proc. Description Logics DL 2018, 2018 (to appear in PRICAI 2019).

DL19 David Toman, Grant E. Weddell: Exhaustive Query Answering via Referring Expressions. Proc.
Description Logics DL 2019, 2019.

DL22 Alexander Borgida, Enrico Franconi, David Toman, and Grant E. Weddell: Accessing Document
Data Sources using Referring Expression Types. Proc. Description Logics DL 2022, 2022 (next week).

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions (Background) 17 / 64

ONTOLOGY BASED DATA ACCESS

(BETTER QUERY ANSWERS WHEN QUERYING KNOWLEDGE BASES)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Query Answering and Ontologies 18 / 64

Queries and Ontologies

Ontology-based Data Access

Enriches (query answers over) explicitly represented data using
background knowledge (captured using an ontology.)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Query Answering and Ontologies 19 / 64

Queries and Ontologies

Ontology-based Data Access

Enriches (query answers over) explicitly represented data using
background knowledge (captured using an ontology.)

Example

Bob is a BOSS (explicit data)
Every BOSS is an EMPloyee (ontology)

List all EMPloyees ⇒ {Bob} (query)

Goal: compute all certain answers

⇒ answers common in all models of KB (aka. answers logically implied by KB)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Query Answering and Ontologies 19 / 64

Approaches to Ontology-based Data Access

Main Task
INPUT: Ontology (T), Data (A)︸ ︷︷ ︸

Knowledge Base(K)

, and a Query (Q)

OUTPUT: {a | K |= Q[a]}

1 Reduction to standard reasoning (e.g., satisfiability)
2 Reduction to querying a relational database

⇒ very good at {a | A |= Q[a]} for range restricted Q
⇒ what to do with T ??

1 incorporate into Q (perfect rewriting for DL-Lite et al. (AC0 logics)); or
2 incorporate into A (combined approach for EL (PTIME-complete logics));

or sometimes both (CFDI or Horn-ALC∗ logics).

Borgida, Toman, and Weddell Referring Expressions in AI&KR Query Answering and Ontologies 20 / 64

Issues with the Standard Definition of Answers
“David is a UWaterloo Employee” and

“every Employee has a Phone”

Question: Does David have a Phone?

Answer: YES

Question: OK, tell me about David’s Phone!

Answer: { }

Better Answers (possibly)

1 it is a phone with phone # +1(519) 888-4567x34447;
2 it is a UWaterloo phone with an extension x34447;
3 it is a phone in the Davis Centre, Office 3344;
4 it is a Waterloo phone attached to port 0x0123abcd;
5 it is a Waterloo CS phone with inventory # 100034447;
6 it is David’s phone (??)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Query Answering and Ontologies 21 / 64

Issues with the Standard Definition of Answers
“David is a UWaterloo Employee” and

“every Employee has a Phone”

Question: Does David have a Phone?

Answer: YES

Question: OK, tell me about David’s Phone!

Answer: { }

Better Answers (possibly)

1 it is a phone with phone # +1(519) 888-4567x34447;
2 it is a UWaterloo phone with an extension x34447;
3 it is a phone in the Davis Centre, Office 3344;
4 it is a Waterloo phone attached to port 0x0123abcd;
5 it is a Waterloo CS phone with inventory # 100034447;
6 it is David’s phone (??)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Query Answering and Ontologies 21 / 64

Issues with the Standard Definition of Answers
“David is a UWaterloo Employee” and

“every Employee has a Phone”

Question: Does David have a Phone?

Answer: YES

Question: OK, tell me about David’s Phone!

Answer: { }

Better Answers (possibly)

1 it is a phone with phone # +1(519) 888-4567x34447;
2 it is a UWaterloo phone with an extension x34447;
3 it is a phone in the Davis Centre, Office 3344;
4 it is a Waterloo phone attached to port 0x0123abcd;
5 it is a Waterloo CS phone with inventory # 100034447;
6 it is David’s phone (??)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Query Answering and Ontologies 21 / 64

Issues with the Standard Definition of Answers
“David is a UWaterloo Employee” and

“every Employee has a Phone”

Question: Does David have a Phone?

Answer: YES

Question: OK, tell me about David’s Phone!

Answer: { }

Better Answers (possibly)

1 it is a phone with phone # +1(519) 888-4567x34447;
2 it is a UWaterloo phone with an extension x34447;
3 it is a phone in the Davis Centre, Office 3344;
4 it is a Waterloo phone attached to port 0x0123abcd;
5 it is a Waterloo CS phone with inventory # 100034447;
6 it is David’s phone (??)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Query Answering and Ontologies 21 / 64

Referring Expressions (revisited)

Definition (Singular Referring Expression)

. . . is a noun phrase that, when used as a query answer, identifies
a particular object in this query answer.

“David is a UWaterloo Employee” and “every Employee has a Phone”

1 it is a phone ;

✓

2 it is ;

✓

3 it is ;

✓

4 it is ;

✓

5 it is ;

✓

6 it is ;

×

7 it is the ;

×

Borgida, Toman, and Weddell Referring Expressions in AI&KR Query Answering and Ontologies 22 / 64

Referring Expressions (revisited)

Definition (Singular Referring Expression)

. . . is a noun phrase that, when used as a query answer, identifies
a particular object in this query answer.

“David is a UWaterloo Employee” and “every Employee has a Phone”

1 it is a phone with phone # "+1(519) 888-4567x34447" ;

✓

2 it is a UWaterloo phone with extension x34447 ;

✓

3 it is a phone in the Davis Centre, Office 3344 ;

✓

4 it is a Waterloo phone attached to port 0x0123abcd ;

✓

5 it is a Waterloo CS phone with inventory # 100034447 ;

✓

6 it is David’s phone ;

×

7 it is the red phone ;

×

Borgida, Toman, and Weddell Referring Expressions in AI&KR Query Answering and Ontologies 22 / 64

Referring Expressions (revisited)

Definition (Singular Referring Expression)

. . . is a noun phrase that, when used as a query answer, identifies
a particular object in this query answer.

“David is a UWaterloo Employee” and “every Employee has a Phone”

1 it is a phone with phone # "+1(519) 888-4567x34447" ; ✓
2 it is a UWaterloo phone with extension x34447 ;

✓

3 it is a phone in the Davis Centre, Office 3344 ;

✓

4 it is a Waterloo phone attached to port 0x0123abcd ;

✓

5 it is a Waterloo CS phone with inventory # 100034447 ;

✓

6 it is David’s phone ;

×

7 it is the red phone ;

×

Borgida, Toman, and Weddell Referring Expressions in AI&KR Query Answering and Ontologies 22 / 64

Referring Expressions (revisited)

Definition (Singular Referring Expression)

. . . is a noun phrase that, when used as a query answer, identifies
a particular object in this query answer.

“David is a UWaterloo Employee” and “every Employee has a Phone”

1 it is a phone with phone # "+1(519) 888-4567x34447" ; ✓
2 it is a UWaterloo phone with extension x34447 ; ✓
3 it is a phone in the Davis Centre, Office 3344 ; ✓
4 it is a Waterloo phone attached to port 0x0123abcd ; ✓
5 it is a Waterloo CS phone with inventory # 100034447 ; ✓
6 it is David’s phone ;

×

7 it is the red phone ;

×

Borgida, Toman, and Weddell Referring Expressions in AI&KR Query Answering and Ontologies 22 / 64

Referring Expressions (revisited)

Definition (Singular Referring Expression)

. . . is a noun phrase that, when used as a query answer, identifies
a particular object in this query answer.

“David is a UWaterloo Employee” and “every Employee has a Phone”

1 it is a phone with phone # "+1(519) 888-4567x34447" ; ✓
2 it is a UWaterloo phone with extension x34447 ; ✓
3 it is a phone in the Davis Centre, Office 3344 ; ✓
4 it is a Waterloo phone attached to port 0x0123abcd ; ✓
5 it is a Waterloo CS phone with inventory # 100034447 ; ✓
6 it is David’s phone ; ×
7 it is the red phone ;

×

Borgida, Toman, and Weddell Referring Expressions in AI&KR Query Answering and Ontologies 22 / 64

Referring Expressions (revisited)

Definition (Singular Referring Expression)

. . . is a noun phrase that, when used as a query answer, identifies
a particular object in this query answer.

“David is a UWaterloo Employee” and “every Employee has a Phone”

1 it is a phone with phone # "+1(519) 888-4567x34447" ; ✓
2 it is a UWaterloo phone with extension x34447 ; ✓
3 it is a phone in the Davis Centre, Office 3344 ; ✓
4 it is a Waterloo phone attached to port 0x0123abcd ; ✓
5 it is a Waterloo CS phone with inventory # 100034447 ; ✓
6 it is David’s phone ; ×
7 it is the red phone ; ×

Borgida, Toman, and Weddell Referring Expressions in AI&KR Query Answering and Ontologies 22 / 64

Referring Expressions (revisited)

Definition (Singular Referring Expression)

. . . is a unary formula that, when used as a query answer, identifies
a particular object in this query answer.

“David is a UWaterloo Employee” and “every Employee has a Phone”

1 it is a phone x s.t. PhoneNo(x , "+1(519) 888-4567x34447") holds; ✓
2 it is a phone x s.t. UWPhone(x) ∧ PhoneExt(x , "x34447") holds; ✓
3 it is a phone x s.t. UWRoom(x , "DC3344") holds; ✓
4 it is a phone x s.t. UWPhone(x) ∧ PhonePort(x ,0x0123abcd) holds; ✓
5 it is a phone x s.t. UWCSPhone(x) ∧ InvNo(x , "100034447") holds; ✓
6 it is a phone x s.t. IsOwner("David", x) holds; ×
7 it is the phone x s.t. Colour(x , "red") holds; ×

Borgida, Toman, and Weddell Referring Expressions in AI&KR Query Answering and Ontologies 22 / 64

From Query Answers to Referring Expressions [KR16]

(Certain) Query Answers

Given a query ψ{x1, . . . , xk} and a KB K;
Classical answers: substitutions

θ = {x1 7→ a1, . . . , xk 7→ ak}

that map free variables of ψ to constants that appear in K and K |= ψθ.

Referring Expression-based answers: R-substitutions

θ = {x1 7→ ϕ1{x1}, . . . , xk 7→ ϕk{xk}}

where ϕi{xi} are unary formulæ in the language of K such that
1 ∀x1, . . . , xk .(ϕ1 ∧ . . . ∧ ϕk) → ψ (soundness)
2 ∃x1, . . . , xk .(ϕ1 ∧ . . . ∧ ϕk) ∧ ψ (existence)
3 ∀x1, . . . , xk , yi .ϕ1 ∧ . . . ∧ ϕk ∧ ψ ∧ ϕi [xi/yi] ∧ ψ[xi/yi] → xi = yi (singularity)

. . . are logically implied by K.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions as Formulæ 23 / 64

From Query Answers to Referring Expressions [KR16]

(Certain) Query Answers

Given a query ψ{x1, . . . , xk} and a KB K;
Classical answers: substitutions

θ = {x1 7→ a1, . . . , xk 7→ ak}

that map free variables of ψ to constants that appear in K and K |= ψθ.

Referring Expression-based answers: R-substitutions

θ = {x1 7→ ϕ1{x1}, . . . , xk 7→ ϕk{xk}}

where ϕi{xi} are unary formulæ in the language of K such that
1 ∀x1, . . . , xk .(ϕ1 ∧ . . . ∧ ϕk) → ψ (soundness)
2 ∃x1, . . . , xk .(ϕ1 ∧ . . . ∧ ϕk) ∧ ψ (existence)
3 ∀x1, . . . , xk , yi .ϕ1 ∧ . . . ∧ ϕk ∧ ψ ∧ ϕi [xi/yi] ∧ ψ[xi/yi] → xi = yi (singularity)

. . . are logically implied by K.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions as Formulæ 23 / 64

Controlling the number of Answers
Example KB

T = { fatherof(x , y) → (Father(x) ∧ Person(y)),
Father(x) → Person(x),
Father(x) → ∃y .fatherof(x , y),
Person(x) → ∃y .fatherof(y , x)

fatherof(x , z) ∧ fatherof(y , z) → x = y

}

A = { Father(fred),Person(mary) }

Query: Father(x)?

Answers: x = fred, fatherof(x ,mary), ∃y .fatherof(x , y) ∧ fatherof(y ,mary), . . .
fatherof(x , fred), ∃y .fatherof(x , y) ∧ fatherof(y , fred), . . .

Query: Person(x)?

Answers: x = mary, x = fred, fatherof(fred, x) (NO!)
fatherof(x ,mary), fatherof(x , fred), . . .

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions as Formulæ 24 / 64

Controlling the number of Answers
Example KB

T = { fatherof(x , y) → (Father(x) ∧ Person(y)),
Father(x) → Person(x),
Father(x) → ∃y .fatherof(x , y),
Person(x) → ∃y .fatherof(y , x)

fatherof(x , z) ∧ fatherof(y , z) → x = y

}

A = { Father(fred),Person(mary) }

Query: Father(x)?

Answers: x = fred

, fatherof(x ,mary), ∃y .fatherof(x , y) ∧ fatherof(y ,mary), . . .
fatherof(x , fred), ∃y .fatherof(x , y) ∧ fatherof(y , fred), . . .

Query: Person(x)?

Answers: x = mary, x = fred, fatherof(fred, x) (NO!)
fatherof(x ,mary), fatherof(x , fred), . . .

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions as Formulæ 24 / 64

Controlling the number of Answers
Example KB

T = { fatherof(x , y) → (Father(x) ∧ Person(y)),
Father(x) → Person(x),
Father(x) → ∃y .fatherof(x , y),
Person(x) → ∃y .fatherof(y , x)

fatherof(x , z) ∧ fatherof(y , z) → x = y

}

A = { Father(fred),Person(mary) }

Query: Father(x)?

Answers: x = fred, fatherof(x ,mary), ∃y .fatherof(x , y) ∧ fatherof(y ,mary), . . .

fatherof(x , fred), ∃y .fatherof(x , y) ∧ fatherof(y , fred), . . .

Query: Person(x)?

Answers: x = mary, x = fred, fatherof(fred, x) (NO!)
fatherof(x ,mary), fatherof(x , fred), . . .

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions as Formulæ 24 / 64

Controlling the number of Answers
Example KB

T = { fatherof(x , y) → (Father(x) ∧ Person(y)),
Father(x) → Person(x),
Father(x) → ∃y .fatherof(x , y),
Person(x) → ∃y .fatherof(y , x)
fatherof(x , z) ∧ fatherof(y , z) → x = y }

A = { Father(fred),Person(mary) }

Query: Father(x)?

Answers: x = fred, fatherof(x ,mary), ∃y .fatherof(x , y) ∧ fatherof(y ,mary), . . .
fatherof(x , fred), ∃y .fatherof(x , y) ∧ fatherof(y , fred), . . .

Query: Person(x)?

Answers: x = mary, x = fred, fatherof(fred, x) (NO!)
fatherof(x ,mary), fatherof(x , fred), . . .

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions as Formulæ 24 / 64

Controlling the number of Answers
Example KB

T = { fatherof(x , y) → (Father(x) ∧ Person(y)),
Father(x) → Person(x),
Father(x) → ∃y .fatherof(x , y),
Person(x) → ∃y .fatherof(y , x)
fatherof(x , z) ∧ fatherof(y , z) → x = y }

A = { Father(fred),Person(mary) }

Query: Father(x)?

Answers: x = fred, fatherof(x ,mary), ∃y .fatherof(x , y) ∧ fatherof(y ,mary), . . .
fatherof(x , fred), ∃y .fatherof(x , y) ∧ fatherof(y , fred), . . .

Query: Person(x)?

Answers: x = mary, x = fred, fatherof(fred, x) (NO!)
fatherof(x ,mary), fatherof(x , fred), . . .

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions as Formulæ 24 / 64

Controlling the number of Answers II

Example KB

T = { spouse(x , y) → spouse(y , x),
spouse(x , z) ∧ spouse(y , z) → x = y
spouse(x , y) → x ̸= y }

A = { spouse(mary, fred) }

Query: spouse(x ,mary)?

Answers: x = fred, spouse(x ,mary), ∃y .spouse(x , y) ∧ spouse(y , fred), . . .

How many distinct answers to ∃y .spouse(x , y)?

fred = spouse(x ,mary) = ∃y .spouse(x , y) ∧ spouse(y , fred) = . . .
mary = spouse(x , fred) = ∃y .spouse(x , y) ∧ spouse(y ,mary) = . . .
mary ̸= fred (last constraint!) ⇒ exactly 2 distinct objects

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions as Formulæ 25 / 64

Controlling the number of Answers II

Example KB

T = { spouse(x , y) → spouse(y , x),
spouse(x , z) ∧ spouse(y , z) → x = y
spouse(x , y) → x ̸= y }

A = { spouse(mary, fred) }

Query: spouse(x ,mary)?

Answers: x = fred

, spouse(x ,mary), ∃y .spouse(x , y) ∧ spouse(y , fred), . . .

How many distinct answers to ∃y .spouse(x , y)?

fred = spouse(x ,mary) = ∃y .spouse(x , y) ∧ spouse(y , fred) = . . .
mary = spouse(x , fred) = ∃y .spouse(x , y) ∧ spouse(y ,mary) = . . .
mary ̸= fred (last constraint!) ⇒ exactly 2 distinct objects

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions as Formulæ 25 / 64

Controlling the number of Answers II

Example KB

T = { spouse(x , y) → spouse(y , x),
spouse(x , z) ∧ spouse(y , z) → x = y
spouse(x , y) → x ̸= y }

A = { spouse(mary, fred) }

Query: spouse(x ,mary)?

Answers: x = fred, spouse(x ,mary), ∃y .spouse(x , y) ∧ spouse(y , fred), . . .

How many distinct answers to ∃y .spouse(x , y)?

fred = spouse(x ,mary) = ∃y .spouse(x , y) ∧ spouse(y , fred) = . . .
mary = spouse(x , fred) = ∃y .spouse(x , y) ∧ spouse(y ,mary) = . . .
mary ̸= fred (last constraint!) ⇒ exactly 2 distinct objects

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions as Formulæ 25 / 64

Controlling the number of Answers II

Example KB

T = { spouse(x , y) → spouse(y , x),
spouse(x , z) ∧ spouse(y , z) → x = y
spouse(x , y) → x ̸= y }

A = { spouse(mary, fred) }

Query: spouse(x ,mary)?

Answers: x = fred, spouse(x ,mary), ∃y .spouse(x , y) ∧ spouse(y , fred), . . .

How many distinct answers to ∃y .spouse(x , y)?

fred = spouse(x ,mary) = ∃y .spouse(x , y) ∧ spouse(y , fred) = . . .
mary = spouse(x , fred) = ∃y .spouse(x , y) ∧ spouse(y ,mary) = . . .
mary ̸= fred (last constraint!) ⇒ exactly 2 distinct objects

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions as Formulæ 25 / 64

Controlling the number of Answers II

Example KB

T = { spouse(x , y) → spouse(y , x),
spouse(x , z) ∧ spouse(y , z) → x = y
spouse(x , y) → x ̸= y }

A = { spouse(mary, fred) }

Query: spouse(x ,mary)?

Answers: x = fred, spouse(x ,mary), ∃y .spouse(x , y) ∧ spouse(y , fred), . . .

How many distinct answers to ∃y .spouse(x , y)?

fred = spouse(x ,mary) = ∃y .spouse(x , y) ∧ spouse(y , fred) = . . .

mary = spouse(x , fred) = ∃y .spouse(x , y) ∧ spouse(y ,mary) = . . .
mary ̸= fred (last constraint!) ⇒ exactly 2 distinct objects

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions as Formulæ 25 / 64

Controlling the number of Answers II

Example KB

T = { spouse(x , y) → spouse(y , x),
spouse(x , z) ∧ spouse(y , z) → x = y
spouse(x , y) → x ̸= y }

A = { spouse(mary, fred) }

Query: spouse(x ,mary)?

Answers: x = fred, spouse(x ,mary), ∃y .spouse(x , y) ∧ spouse(y , fred), . . .

How many distinct answers to ∃y .spouse(x , y)?

fred = spouse(x ,mary) = ∃y .spouse(x , y) ∧ spouse(y , fred) = . . .
mary = spouse(x , fred) = ∃y .spouse(x , y) ∧ spouse(y ,mary) = . . .

mary ̸= fred (last constraint!) ⇒ exactly 2 distinct objects

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions as Formulæ 25 / 64

Controlling the number of Answers II

Example KB

T = { spouse(x , y) → spouse(y , x),
spouse(x , z) ∧ spouse(y , z) → x = y
spouse(x , y) → x ̸= y }

A = { spouse(mary, fred) }

Query: spouse(x ,mary)?

Answers: x = fred, spouse(x ,mary), ∃y .spouse(x , y) ∧ spouse(y , fred), . . .

How many distinct answers to ∃y .spouse(x , y)?

fred = spouse(x ,mary) = ∃y .spouse(x , y) ∧ spouse(y , fred) = . . .
mary = spouse(x , fred) = ∃y .spouse(x , y) ∧ spouse(y ,mary) = . . .
mary ̸= fred (last constraint!)

⇒ exactly 2 distinct objects

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions as Formulæ 25 / 64

Controlling the number of Answers II

Example KB

T = { spouse(x , y) → spouse(y , x),
spouse(x , z) ∧ spouse(y , z) → x = y
spouse(x , y) → x ̸= y }

A = { spouse(mary, fred) }

Query: spouse(x ,mary)?

Answers: x = fred, spouse(x ,mary), ∃y .spouse(x , y) ∧ spouse(y , fred), . . .

How many distinct answers to ∃y .spouse(x , y)?

fred = spouse(x ,mary) = ∃y .spouse(x , y) ∧ spouse(y , fred) = . . .
mary = spouse(x , fred) = ∃y .spouse(x , y) ∧ spouse(y ,mary) = . . .
mary ̸= fred (last constraint!) ⇒ exactly 2 distinct objects

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions as Formulæ 25 / 64

Controlling the number of Answers: Finite
Representation

How do we deal with multiple referring expression answers/preferences/. . . ?

potentially too many implied answers (infinitely many!)
potentially too many ways to refer to the same object

Can we (somehow) get ALL answers to Q over K?

Yes (for logics with recursively enumerable logical consequence):
for all (tuples of) unary formulas φ(x)
do test if φ(x) is a singular certain answer to Q in K.

⇒ this does NOT guarantee decidability [Artale et al., 2021]
⇒ is there a finite representation of all answers (and what is “all”)?

Borgida, Toman, and Weddell Referring Expressions in AI&KR All Answers 26 / 64

Controlling the number of Answers: Finite
Representation

How do we deal with multiple referring expression answers/preferences/. . . ?

potentially too many implied answers (infinitely many!)
potentially too many ways to refer to the same object

Can we (somehow) get ALL answers to Q over K?

Yes (for logics with recursively enumerable logical consequence):
for all (tuples of) unary formulas φ(x)
do test if φ(x) is a singular certain answer to Q in K.

⇒ this does NOT guarantee decidability [Artale et al., 2021]
⇒ is there a finite representation of all answers (and what is “all”)?

Borgida, Toman, and Weddell Referring Expressions in AI&KR All Answers 26 / 64

Controlling the number of Answers: Finite
Representation

How do we deal with multiple referring expression answers/preferences/. . . ?

potentially too many implied answers (infinitely many!)
potentially too many ways to refer to the same object

Can we (somehow) get ALL answers to Q over K?

Yes (for logics with recursively enumerable logical consequence):
for all (tuples of) unary formulas φ(x)
do test if φ(x) is a singular certain answer to Q in K.

⇒ this does NOT guarantee decidability [Artale et al., 2021]

⇒ is there a finite representation of all answers (and what is “all”)?

Borgida, Toman, and Weddell Referring Expressions in AI&KR All Answers 26 / 64

Controlling the number of Answers: Finite
Representation

How do we deal with multiple referring expression answers/preferences/. . . ?

potentially too many implied answers (infinitely many!)
potentially too many ways to refer to the same object

Can we (somehow) get ALL answers to Q over K?

Yes (for logics with recursively enumerable logical consequence):
for all (tuples of) unary formulas φ(x)
do test if φ(x) is a singular certain answer to Q in K.

⇒ this does NOT guarantee decidability [Artale et al., 2021]
⇒ is there a finite representation of all answers (and what is “all”)?

Borgida, Toman, and Weddell Referring Expressions in AI&KR All Answers 26 / 64

Example: Horn Logics with Tree Models [DL19]

What to do EL⊥ (and Horn-ALC)?

singularity requires role functionality (not expressible in EL⊥/Horn-ALC)

(Tree) Models of a : ∃R.C ⊓ ∃R.D:

•
R
�� R��

R
��

C • C • • D

•
R
��

R
��

C • • D

•
R ��

C,D •

spurious R-successor C just right spurious equality
(canonical) between R-successors

⇒ singular certain answers: singular in a canonical model

⇒ coincide with singular answers in DLs with functional roles (FunDL).

Borgida, Toman, and Weddell Referring Expressions in AI&KR All Answers 27 / 64

Example: Horn Logics with Tree Models [DL19]

What to do EL⊥ (and Horn-ALC)?

singularity requires role functionality (not expressible in EL⊥/Horn-ALC)
(Tree) Models of a : ∃R.C ⊓ ∃R.D:

•
R
�� R��

R
��

C • C • • D

•
R
��

R
��

C • • D

•
R ��

C,D •
spurious R-successor C just right spurious equality

(canonical) between R-successors

⇒ singular certain answers: singular in a canonical model

⇒ coincide with singular answers in DLs with functional roles (FunDL).

Borgida, Toman, and Weddell Referring Expressions in AI&KR All Answers 27 / 64

Example: Horn Logics with Tree Models [DL19]

What to do EL⊥ (and Horn-ALC)?

singularity requires role functionality (not expressible in EL⊥/Horn-ALC)
(Tree) Models of a : ∃R.C ⊓ ∃R.D:

•
R
�� R��

R
��

C • C • • D

•
R
��

R
��

C • • D

•
R ��

C,D •
spurious R-successor C just right spurious equality

(canonical) between R-successors

⇒ singular certain answers: singular in a canonical model

⇒ coincide with singular answers in DLs with functional roles (FunDL).

Borgida, Toman, and Weddell Referring Expressions in AI&KR All Answers 27 / 64

How Does it Work?

Base Case: Instance Retrieval B(x) over T and A = {a : A}

Looping automaton-like construction
⇒ only non-redundant successors in matching tuples
⇒ preserves complexity bounds for both logics

Generalizations&Limitations

1 General ABoxes and Conjunctive Queries
⇒ lots of case analysis followed by existing approaches

2 Finite representation of answers (succinctness??)
3 More Expressive Logics

⇒ this will NOT work with at-least restrictions (functionality is fine)
4 Non-Horn Logics

⇒ non-unique canonical models
⇒ disjunctions in referring expressions (questionable)

Borgida, Toman, and Weddell Referring Expressions in AI&KR All Answers 28 / 64

How Does it Work?

Base Case: Instance Retrieval B(x) over T and A = {a : A}

Looping automaton-like construction
⇒ only non-redundant successors in matching tuples
⇒ preserves complexity bounds for both logics

Generalizations&Limitations

1 General ABoxes and Conjunctive Queries
⇒ lots of case analysis followed by existing approaches

2 Finite representation of answers (succinctness??)
3 More Expressive Logics

⇒ this will NOT work with at-least restrictions (functionality is fine)
4 Non-Horn Logics

⇒ non-unique canonical models
⇒ disjunctions in referring expressions (questionable)

Borgida, Toman, and Weddell Referring Expressions in AI&KR All Answers 28 / 64

Controlling the number of Answers: Typing
Restrictions

How do we deal with multiple referring expression answers/preferences/. . . ?

potentially too many implied answers (infinitely many!)
potentially too many ways to refer to the same object

Referring Expression Types and Typed Queries

Types: Rt ::= Pd = {?} | Rt1 ∧Rt2 | T → Rt | Rt1;Rt2

⇒ each type induces a set of unary formulæ;

Queries: select x1 : Rt1, . . . , xk : Rtk where ψ
⇒ x1 : Rt1, . . . , xk : Rtk is called the head, ψ is the body.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expression Types 29 / 64

Referring Expression Types

Desiderata: only Referring Expressions that are Singular

Given 1 a KB K (the “background knowledge”),
2 a query ψ{x1, . . . , xk}, and
3 types Rt1, . . . ,Rtk for sets of unary formulæ S1, . . . ,Sk

We ask whether, for every K′ (the “data”) consistent with K and an answer

θ = {x1 7→ ϕ1{x1}, . . . , xk 7→ ϕk{xk}}

to ψ with respect to K ∪ K′ such that ϕi ∈ Si , it is the case that θ is singular.

Theorem (Weak Identification; paraphrased)

Given a query ψ with a head H and a KB K, the question
“are all answers to ψ conforming to H over any K ∪ K′ singular?”

reduces to logical implication in the underlying logic of K.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expression Types 30 / 64

Referring Expression Types

Desiderata: only Referring Expressions that are Singular

Given 1 a KB K (the “background knowledge”),
2 a query ψ{x1, . . . , xk}, and
3 types Rt1, . . . ,Rtk for sets of unary formulæ S1, . . . ,Sk

We ask whether, for every K′ (the “data”) consistent with K and an answer

θ = {x1 7→ ϕ1{x1}, . . . , xk 7→ ϕk{xk}}

to ψ with respect to K ∪ K′ such that ϕi ∈ Si , it is the case that θ is singular.

Theorem (Weak Identification; paraphrased)

Given a query ψ with a head H and a KB K, the question
“are all answers to ψ conforming to H over any K ∪ K′ singular?”

reduces to logical implication in the underlying logic of K.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expression Types 30 / 64

Examples of Typed Queries

Reference via a Single-Attribute Key

“The ssn# of any person with phone 1234567”

select x : ssn# = {?}
where Person(x) ∧ phone#(x ,1234567)

Reference by a Multi-Attribute Key

Choice of Identification in a Heterogeneous Set

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expression Types 31 / 64

Examples of Typed Queries

Reference via a Single-Attribute Key

Reference by a Multi-Attribute Key

“The title and publisher of any journals”

select x : title = {?} ∧ publishedBy = {?}
where Journal(x)

Choice of Identification in a Heterogeneous Set

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expression Types 31 / 64

Examples of Typed Queries

Reference via a Single-Attribute Key

Reference by a Multi-Attribute Key

Choice of Identification in a Heterogeneous Set

“Any legal entity”

select x : Person → ssn# = {?} ;
Company → tickerSymbol = {?}

where LegalEntity(x)

answers: {x 7→ Person(x) ∧ ssn#(x ,7654)}
{x 7→ Company(x) ∧ tickerSymbol(x , “IBM”)}.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expression Types 31 / 64

Examples of Typed Queries

Reference via a Single-Attribute Key

Reference by a Multi-Attribute Key

Choice of Identification in a Heterogeneous Set

Preferred Identification

“Any publication, identified by its most specific identifier, when available.”

select x : Journal → (title = {?} ∧ publisher = {?});
EditedCollection → isbn# = {?} ; {?}

where Publication(x)

answers: {x 7→ Journal(x) ∧ title(x , “AIJ”) ∧ publisher(x , “Elsevier”)}
{x 7→ EditedCollection(x) ∧ isbn#(x ,123456789)}
{x 7→ x = /guid/9202a8c04000641f8000000...}.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expression Types 31 / 64

REQA (Referring Expression-based QA)

GOAL: reduce REQA to standard OBDA (used as an oracle)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Query Answering 32 / 64

REQA (outline, unary queries only)

GOAL: reduce REQA to standard OBDA (used as an oracle)

Input: K (background knowledge), K′ (data), ψ{x} (query), H (query head)

1 Normalize H to H1; . . . ;Hℓ, each of the form

Ti → Pd i,1 = {?} ∧ . . . ∧ Pd i,ki = {?};

2 Create queries ψi{x , y1, . . . , yki} as

ψ ∧ Ti(x) ∧ Pd i,1(x , y1) ∧ . . . ∧ Pd i,ki (x , yki);

3 Create Ki with a witnesses for x when no such witness exists;

4 Evaluate K ∪ K′ ∪ Ki |= ψi (OBDA oracle);

5 Resolve preferences (based on value of x); and

6 Reconstruct a referring expression from the values of y1, . . . , yki .

. . . extends naturally to higher arity queries: (more) messy

Borgida, Toman, and Weddell Referring Expressions in AI&KR Query Answering 32 / 64

The Tractable (practical) Cases

Lite Description Logics

DL-LiteF
core(idc):

Weak identification −→ sequence of KB consistency tests
Query answering −→ REQA

+ Witnesses for x w.r.t. H + Perfect Reformulation

CFDI∀
nc:

Weak identification −→ sequence of logical implications
Query answering −→ REQA

+ Combined Combined Approach

Logics with Tree Models (outside of an ABox) [AI16]

The witnesses for anonymous objects (step (3))
−→ last named individual on a path towards the anonymous object

Borgida, Toman, and Weddell Referring Expressions in AI&KR Query Answering 33 / 64

RECORDING/REPRESENTING FACTUAL DATA

Borgida, Toman, and Weddell Referring Expressions in AI&KR Representing Data 34 / 64

Referring Expressions for Ground Knowledge
Standard approach: constant symbols ∼ objects (and values!)

⇒ needs a constant symbol for every individual (Skolems?)

How are external objects identified in a KB?

Two PERSON objects, o1 and o2, identified by their ssn value:

PERSON ⊓ ∃ssn.{123} and PERSON ⊓ ∃ssn.{456}.

Role (feature) assertions of the form mother(o1) = o2 can then be
captured as:

PERSON ⊓ ∃ssn.{123} ⊓ ∃mother.(PERSON ⊓ ∃ssn.{345}).

Issues:
admissibility: what descriptions qualify here? ⇒ singularity!
minimality: is the description succinct? (similar to keys/superkeys issues)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Representing Data 35 / 64

Referring Expressions for Ground Knowledge
Standard approach: constant symbols ∼ objects (and values!)

⇒ needs a constant symbol for every individual (Skolems?)

How are external objects identified in a KB?

Two PERSON objects, o1 and o2, identified by their ssn value:

PERSON ⊓ ∃ssn.{123} and PERSON ⊓ ∃ssn.{456}.

Role (feature) assertions of the form mother(o1) = o2 can then be
captured as:

PERSON ⊓ ∃ssn.{123} ⊓ ∃mother.(PERSON ⊓ ∃ssn.{345}).

Issues:
admissibility: what descriptions qualify here? ⇒ singularity!
minimality: is the description succinct? (similar to keys/superkeys issues)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Representing Data 35 / 64

Referring Expressions for Ground Knowledge
Standard approach: constant symbols ∼ objects (and values!)

⇒ needs a constant symbol for every individual (Skolems?)

How are external objects identified in a KB?

Two PERSON objects, o1 and o2, identified by their ssn value:

PERSON ⊓ ∃ssn.{123} and PERSON ⊓ ∃ssn.{456}.

Role (feature) assertions of the form mother(o1) = o2 can then be
captured as:

PERSON ⊓ ∃ssn.{123} ⊓ ∃mother.(PERSON ⊓ ∃ssn.{345}).

Issues:
admissibility: what descriptions qualify here? ⇒ singularity!
minimality: is the description succinct? (similar to keys/superkeys issues)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Representing Data 35 / 64

Heterogeneous Data Integration (example)

Example

TBox T = { FRIEND ⊑ PERSON,
FRIEND ⊑ PERSON : fname → id ,
MATRIARCH ⊑ PERSON,
MATRIARCH ⊑ PERSON : lname → id ,
PERSON ⊑ PERSON : fname, lname → id , . . . }

CBox C= { FRIEND ⊓ ∃fname.{“Mary”},
PERSON ⊓ (∃fname.{“Mary”}) ⊓ (∃lname.{“Smith”}),
MATRIARCH ⊓ ∃lname.{“Smith”}, . . . }

Heterogeneous Identification

“FRIEND ⊓ ∃fname.{“Mary”}” identifies the same object as
“PERSON ⊓ (∃fname.{“Mary”}) ⊓ (∃lname.{“Smith”})” and in turn as
“MATRIARCH ⊓ ∃lname.{“Smith”}”

. . . and thus is an answer to {x | MATRIARCH(x)}.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Representing Data 36 / 64

Heterogeneous Data Integration (example)

Example

TBox T = { FRIEND ⊑ PERSON,
FRIEND ⊑ PERSON : fname → id ,
MATRIARCH ⊑ PERSON,
MATRIARCH ⊑ PERSON : lname → id ,
PERSON ⊑ PERSON : fname, lname → id , . . . }

CBox C= { FRIEND ⊓ ∃fname.{“Mary”},
PERSON ⊓ (∃fname.{“Mary”}) ⊓ (∃lname.{“Smith”}),
MATRIARCH ⊓ ∃lname.{“Smith”}, . . . }

Heterogeneous Identification

“FRIEND ⊓ ∃fname.{“Mary”}” identifies the same object as
“PERSON ⊓ (∃fname.{“Mary”}) ⊓ (∃lname.{“Smith”})” and in turn as
“MATRIARCH ⊓ ∃lname.{“Smith”}”

. . . and thus is an answer to {x | MATRIARCH(x)}.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Representing Data 36 / 64

Heterogeneous Data Integration (example)

Example

TBox T = { FRIEND ⊑ PERSON,
FRIEND ⊑ PERSON : fname → id ,
MATRIARCH ⊑ PERSON,
MATRIARCH ⊑ PERSON : lname → id ,
PERSON ⊑ PERSON : fname, lname → id , . . . }

CBox C= { FRIEND ⊓ ∃fname.{“Mary”},
PERSON ⊓ (∃fname.{“Mary”}) ⊓ (∃lname.{“Smith”}),
MATRIARCH ⊓ ∃lname.{“Smith”}, . . . }

Heterogeneous Identification

“FRIEND ⊓ ∃fname.{“Mary”}” identifies the same object as
“PERSON ⊓ (∃fname.{“Mary”}) ⊓ (∃lname.{“Smith”})” and in turn as
“MATRIARCH ⊓ ∃lname.{“Smith”}”

. . . and thus is an answer to {x | MATRIARCH(x)}.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Representing Data 36 / 64

Minimality

IDEA: minimal referring expressions (ala Candidate Keys)

C is a referring expression singular w.r.t. a TBox T (e.g., a superkey)
C’s subconcepts A, {a}, ∃f .⊤, ∃f −1.⊤, and ⊤ ⊓ ⊤ are leaves of C.
C[L 7→ ⊤] is a description C in which a leaf L was replaced by ⊤.
“first-leaf” and “next-leaf” successively enumerate all leaves of C.

1. L := first-leaf(C);
2. while C[L 7→ ⊤] is singular w.r.t. T do
3. C := C[L 7→ ⊤]; L := next-leaf(C);
4. done
5. return C;

⇒ computes a syntactically-minimal co-referring expression for C.
⇒ order of enumeration → variant minimal co-referring expressions.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Representing Data 37 / 64

Minimality

IDEA: minimal referring expressions (ala Candidate Keys)

C is a referring expression singular w.r.t. a TBox T (e.g., a superkey)
C’s subconcepts A, {a}, ∃f .⊤, ∃f −1.⊤, and ⊤ ⊓ ⊤ are leaves of C.
C[L 7→ ⊤] is a description C in which a leaf L was replaced by ⊤.
“first-leaf” and “next-leaf” successively enumerate all leaves of C.

1. L := first-leaf(C);
2. while C[L 7→ ⊤] is singular w.r.t. T do
3. C := C[L 7→ ⊤]; L := next-leaf(C);
4. done
5. return C;

⇒ computes a syntactically-minimal co-referring expression for C.
⇒ order of enumeration → variant minimal co-referring expressions.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Representing Data 37 / 64

Reasoning and QA with CBoxes [DL18]

Theorem (CBox Admissibility)

Let T be a CFDI∀
nc TBox and C a concept description. Then C is a singular

referring expression w.r.t. T if and only if the knowledge base

(T ∪ {A ⊑ ¬B},Simp(a : C) ∪ Simp(b : C) ∪ {a : A,b : B})

is inconsistent, where a and b are distinct constant symbols, and A and B are
primitive concepts not occurring in T and C.

Theorem (Satisfiability of KBs with CBoxes)

Let K = (T , C) be a knowledge base with an admissible CBox C. Then K is
consistent iff (T ,Simp(C)) is consistent.

Theorem (Query Answering)

Let K = (T , C) be a consistent knowledge base and Q = {(x1, . . . , xk) : φ} a
conjunctive query over K. Then (C1, . . . ,Ck) is a certain answer to Q in K if
and only if (aC1 , . . . ,aCk) is a certain answer to Q over (T ,Simp(C)).

Borgida, Toman, and Weddell Referring Expressions in AI&KR Representing Data 38 / 64

Documents and Ontologies

Ontologies for Documents: Goals

1 to capture class mambership of entities captured in a document, and
2 to establish how entities are identified in a document.

IDEA: Documents as Concepts, Semantics as Ontology

1 Syntactical document structure captured as a concept in FunDL
⇒ similar to the IBM IMS hierarchical data model

2 Ontology adds meaning to this concept and its subconcepts
identifies class membership of entities described by subdocuments,
discovers subdocuments pertaining to the same entity, and
drives document normalization.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Representing Data 39 / 64

Documents and Ontologies

Ontologies for Documents: Goals

1 to capture class mambership of entities captured in a document, and
2 to establish how entities are identified in a document.

IDEA: Documents as Concepts, Semantics as Ontology

1 Syntactical document structure captured as a concept in FunDL
⇒ similar to the IBM IMS hierarchical data model

2 Ontology adds meaning to this concept and its subconcepts
identifies class membership of entities described by subdocuments,
discovers subdocuments pertaining to the same entity, and
drives document normalization.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Representing Data 39 / 64

Example: JSON Document

{ "collection": "person",
"data" : [

{ "fname": "John", "lname": "Smith", "age": 25,
"wife": { "fname" : "Mary" },
"phone": [

{"colour": "red", "dnum": "212 555-1234"}
]

},
{ "fname": "Mary", "lname": "Jones",

"salary": "$150,000 (CAD)",
"spouse": { "fname": "John" },
"phone": [

{"loc": "home", "dnum": "212 555-1234"},
{"loc": "work", "dnum": "212 666-4567"}

]
}

]
}

Borgida, Toman, and Weddell Referring Expressions in AI&KR Representing Data 40 / 64

Example: JSON as a FunDL Concept

∃collection.{"person"} ⊓
∃data.∃dom−.∃ran(

∃fname.{"John"} ⊓ ∃lname.{"Smith"} ⊓
∃age.{"25"} ⊓ ∃wife.∃fname.{"Mary"} ⊓
∃phone(∃dom−.∃ran(

∃colour.{"red"} ⊓ ∃dnum.{"212 555-1234"}))) ⊓
∃dom−.∃ran(

∃fname.{"Mary"} ⊓ ∃lname.{"Jones"} ⊓
∃salary.{"$150000CAD"} ⊓ ∃spouse.∃fname.{"John"} ⊓
∃phone(∃dom−.∃ran(

∃loc.{"home"} ⊓ ∃dnum.{"212 555-1234"}) ⊓
∃dom−.∃ran(

∃loc.{"work"} ⊓ ∃dnum.{"212 666-4567"})))

Borgida, Toman, and Weddell Referring Expressions in AI&KR Representing Data 41 / 64

Example: Ontology

1 The TBox:

(∃collection.⊤) ⊓ (∃data.⊤) ⊑ DOCUMENT
(∃fname.⊤) ⊓ (∃lname.⊤) ⊑ PERSON

∃dnum.⊤ ⊑ PHONE

DOCUMENT ⊑ DOCUMENT : collection → id
PERSON ⊑ PERSON : fname,lname → id

PHONE ⊑ PHONE : dnum → id
PERSON ⊑ ∃wife.PERSON

2 The Referring Expression Type Assignment:

RTA(DOCUMENT) = DOCUMENT ⊓ ∃collection.{?}
RTA(PERSON) = PERSON ⊓ ∃lname.{?} ⊓ ∃fname.{?}

RTA(PHONE) = PHONE ⊓ ∃dnum.{?}

Borgida, Toman, and Weddell Referring Expressions in AI&KR Representing Data 42 / 64

Example: Normalized CBox/Document

DOCUMENT ⊓ ∃collection.{"person"} ⊓ ∃data(
∃dom−.∃ran(PERSON ⊓ ∃fname.{"John"} ⊓ ∃lname.{"Smith"}) ⊓
∃dom−.∃ran(PERSON ⊓ ∃fname.{"Mary"} ⊓ ∃lname.{"Jones"}))

PERSON ⊓ ∃fname.{"John"} ⊓ ∃lname.{"Smith"} ⊓
∃age.{"25"} ⊓ ∃wife.∃fname{"Mary"} ⊓
∃phone(∃dom−.∃ran(PHONE ⊓ ∃dnum{"212 555-1234"}))

PERSON ⊓ ∃fname.{"Mary"} ⊓ ∃lname.{"Jones"} ⊓
∃salary.{"$150000CAD"} ⊓ ∃spouse.∃fname{"John"} ⊓
∃phone(∃dom−.∃ran(PHONE ⊓ ∃dnum{"212 555-1234"}) ⊓

∃dom−.∃ran(PHONE ⊓ ∃dnum{"212 666-4567"}))

PHONE ⊓ ∃dnum{"212 555-1234"} ⊓ ∃loc.{"home"} ⊓ ∃colour.{"red"}

PHONE ⊓ ∃dnum{"212 555-4567"} ⊓ ∃loc.{"work"}

Borgida et al. Accessing Document Data Sources using Referring Expression Types
Aug 10 at 11:25 in DL 2022, Session 112C (Taub 9)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Representing Data 43 / 64

Example: Normalized CBox/Document

DOCUMENT ⊓ ∃collection.{"person"} ⊓ ∃data(
∃dom−.∃ran(PERSON ⊓ ∃fname.{"John"} ⊓ ∃lname.{"Smith"}) ⊓
∃dom−.∃ran(PERSON ⊓ ∃fname.{"Mary"} ⊓ ∃lname.{"Jones"}))

PERSON ⊓ ∃fname.{"John"} ⊓ ∃lname.{"Smith"} ⊓
∃age.{"25"} ⊓ ∃wife.∃fname{"Mary"} ⊓
∃phone(∃dom−.∃ran(PHONE ⊓ ∃dnum{"212 555-1234"}))

PERSON ⊓ ∃fname.{"Mary"} ⊓ ∃lname.{"Jones"} ⊓
∃salary.{"$150000CAD"} ⊓ ∃spouse.∃fname{"John"} ⊓
∃phone(∃dom−.∃ran(PHONE ⊓ ∃dnum{"212 555-1234"}) ⊓

∃dom−.∃ran(PHONE ⊓ ∃dnum{"212 666-4567"}))

PHONE ⊓ ∃dnum{"212 555-1234"} ⊓ ∃loc.{"home"} ⊓ ∃colour.{"red"}

PHONE ⊓ ∃dnum{"212 555-4567"} ⊓ ∃loc.{"work"}

Borgida et al. Accessing Document Data Sources using Referring Expression Types
Aug 10 at 11:25 in DL 2022, Session 112C (Taub 9)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Representing Data 43 / 64

CONCEPTUAL MODELLING

(Decoupling modelling from identification issues)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Conceptual Modelling 44 / 64

Conceptual Modeling and Identification [ER16]
Thesis:

Modeling of Entities and their Relationships should be decoupled from
issues of managing the identity of such entities.

Weak Entities and dominant entity identification

Preferred Identification in sub/super-classes

Generalizations and heterogeneity

Contributions

1 Methodology that allows decoupling identification from modeling;
2 Referring Expressions that subsequently resolve identity issues; and
3 Compilation-based technology that makes further translation to

a pure relational model seamless.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Conceptual Modelling 45 / 64

Conceptual Modeling and Identification [ER16]
Thesis:

Modeling of Entities and their Relationships should be decoupled from
issues of managing the identity of such entities.

Weak Entities and dominant entity identification

Example (ROOM within BUILDING)

For the entity set ROOM with attributes room-number and capacity

⇒ natural attributes are insufficient to identify ROOMs
⇒ need for a key of dominant set, such as BUILDING

Preferred Identification in sub/super-classes

Generalizations and heterogeneity

Contributions

1 Methodology that allows decoupling identification from modeling;
2 Referring Expressions that subsequently resolve identity issues; and
3 Compilation-based technology that makes further translation to

a pure relational model seamless.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Conceptual Modelling 45 / 64

Conceptual Modeling and Identification [ER16]
Thesis:

Modeling of Entities and their Relationships should be decoupled from
issues of managing the identity of such entities.

Weak Entities and dominant entity identification

Preferred Identification in sub/super-classes

Example (PERSON and FAMOUS-PERSON)

For the entity set FAMOUS-PERSON a sub-entity of PERSON
⇒ choice of key (ssn) for PERSON forces the same key for FAMOUS-PERSON
⇒ we may prefer to use name in this case (e.g., Eric Clapton or The Edge)

Generalizations and heterogeneity

Contributions

1 Methodology that allows decoupling identification from modeling;
2 Referring Expressions that subsequently resolve identity issues; and
3 Compilation-based technology that makes further translation to

a pure relational model seamless.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Conceptual Modelling 45 / 64

Conceptual Modeling and Identification [ER16]
Thesis:

Modeling of Entities and their Relationships should be decoupled from
issues of managing the identity of such entities.

Weak Entities and dominant entity identification

Preferred Identification in sub/super-classes

Generalizations and heterogeneity

Example (LEGAL-ENTITY: PERSON or COMPANY)

For the entity set LEGAL-ENTITY a generalization of PERSON and COMPANY

⇒ commonly required to create an artificial attribute le-num
⇒ despite the fact that all entities are already identified

by the (more) natural ssn and (name,city) identifiers.

Contributions

1 Methodology that allows decoupling identification from modeling;
2 Referring Expressions that subsequently resolve identity issues; and
3 Compilation-based technology that makes further translation to

a pure relational model seamless.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Conceptual Modelling 45 / 64

Conceptual Modeling and Identification [ER16]
Thesis:

Modeling of Entities and their Relationships should be decoupled from
issues of managing the identity of such entities.

Weak Entities and dominant entity identification

Preferred Identification in sub/super-classes

Generalizations and heterogeneity

Contributions

1 Methodology that allows decoupling identification from modeling;
2 Referring Expressions that subsequently resolve identity issues; and
3 Compilation-based technology that makes further translation to

a pure relational model seamless.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Conceptual Modelling 45 / 64

Abstract (Relational) Model ARM

A simple conceptual model C

Common features of so-called “attribute-based” semantic models
⇒ class hierarchies, disjointness, coverage, attributes and typing,

functional dependencies, . . .

Example (DMV)
class PERSON (ssn: INT, name: STRING,

isa LEGAL-ENTITY, disjoint with VEHICLE)
class COMPANY (name: STRING, city: STRING,

isa LEGAL-ENTITY)
class LEGAL-ENTITY (covered by PERSON, COMPANY)
class VEHICLE (vin: INT, make: STRING,

owned-by: LEGAL-ENTITY)
class CAN-DRIVE (driver: PERSON, driven: VEHICLE)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Abstract Models 46 / 64

Abstract (Relational) Model ARM

A simple conceptual model ARM

Common features of so-called “attribute-based” semantic models
⇒ class hierarchies, disjointness, coverage, attributes and typing,

functional dependencies, . . .

Example (DMV and Relational Understanding)
table PERSON (self: OID, ssn: INT, name: STRING,

isa LEGAL-ENTITY, disjoint with VEHICLE)
table COMPANY (self: OID, name: STRING, city: STRING,

isa LEGAL-ENTITY)
table LEGAL-ENTITY (covered by PERSON, COMPANY)
table VEHICLE (self: OID, vin: INT, make: STRING,

owned-by: LEGAL-ENTITY)
table CAN-DRIVE (self: OID, driver: PERSON, driven: VEHICLE)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Abstract Models 46 / 64

Abstract Relational Queries

SQLP

(pretty) standard select-from-where-union-except SQL syntax
. . . with extensions to ARM: abstract attributes (OID) and attribute paths

The name of anyone who can drive a vehicle made by Honda:
select d.driver.name from CAN-DRIVE d
where d.driven.make = ’Honda’

attribute paths in the select and where clauses

The owners of Mitsubishi vehicles:
select v.owned-by from VEHICLE v
where v.make = ’Mitsubishi’

retrieving abstract attributes may yield
heterogeneous results (PERSONs and COMPANies)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Abstract Models 47 / 64

Abstract Relational Queries

SQLP

(pretty) standard select-from-where-union-except SQL syntax
. . . with extensions to ARM: abstract attributes (OID) and attribute paths

The name of anyone who can drive a vehicle made by Honda:
select d.driver.name from CAN-DRIVE d
where d.driven.make = ’Honda’

attribute paths in the select and where clauses
The owners of Mitsubishi vehicles:
select v.owned-by from VEHICLE v
where v.make = ’Mitsubishi’

retrieving abstract attributes may yield
heterogeneous results (PERSONs and COMPANies)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Abstract Models 47 / 64

Abstract Relational Queries

SQLP

(pretty) standard select-from-where-union-except SQL syntax
. . . with extensions to ARM: abstract attributes (OID) and attribute paths

The name of anyone who can drive a vehicle made by Honda:
select d.driver.name from CAN-DRIVE d
where d.driven.make = ’Honda’

attribute paths in the select and where clauses
The owners of Mitsubishi vehicles:
select v.owned-by from VEHICLE v
where v.make = ’Mitsubishi’

retrieving abstract attributes may yield
heterogeneous results (PERSONs and COMPANies)

Note that queries do NOT rely on (external) identification of entities/objects.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Abstract Models 47 / 64

How to Make this Technology Succeed?

1 ARM/SQLP Helps Users (User Study) [EKAW18]

2 ARM/SQLP Can be Efficiently Implemented [ER16]

Mapping to standard relational model with the help of referring expressions
⇒ and WITHOUT introducing explicit, material OIDs

Reverse-Engineering ARM from Legacy Relational Schemata

Borgida, Toman, and Weddell Referring Expressions in AI&KR Abstract Models 48 / 64

Experimental Design (HCI experiments)

Hypotheses

Ht : no difference between RM/SQL and ARM/SQLP in the mean time taken
Hc : no difference between RM/SQL and ARM/SQLP in the mean correctness

Methods

Undergraduate (9) and Graduate (15) UW students
Protocol

1 Instructions (5”) and Examples of SQL/SQLP (10”)
2 Six Questions (Q1–Q6), no time limit
3 Subjects recorded start/end times for each Question

Performance Assessment
1 3 assessors
2 agreed upon grading scale

Borgida, Toman, and Weddell Referring Expressions in AI&KR Experiments 49 / 64

Course Enrollment as an RM Schema

Borgida, Toman, and Weddell Referring Expressions in AI&KR Experiments 50 / 64

Course Enrolment as an ARM Schema

ARM completely frees domain experts/users from the need to understand
how entities are identified in an information system.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Experiments 51 / 64

Course Enrolment as an ARM Schema

ARM completely frees domain experts/users from the need to understand
how entities are identified in an information system.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Experiments 51 / 64

Example Queries

Query: Names of students who have been taught by Prof. ‘Alan John’

RM/SQL:
select distinct s.sname as name
from STUDENT s, ENROLLMENT e, CLASS c, PROFESSOR p
where e.snum = s.snum
and e.deptcode = c.deptcode and e.cnum = c.cnum
and e.term = c.term and e.section = c.section
and c.pnum = p.pnum and p.pname = ’Alan John’

Domain expert needs to understand structure of PK/FKs: BAD!!

ARM/SQLP:
select distinct e.student.sname as name
from ENROLLMENT e
where e.class.professor.pname = ’Alan John’

Borgida, Toman, and Weddell Referring Expressions in AI&KR Experiments 52 / 64

Example Queries

Query: Names of students who have been taught by Prof. ‘Alan John’

RM/SQL:
select distinct s.sname as name
from STUDENT s, ENROLLMENT e, CLASS c, PROFESSOR p
where e.snum = s.snum
and e.deptcode = c.deptcode and e.cnum = c.cnum
and e.term = c.term and e.section = c.section
and c.pnum = p.pnum and p.pname = ’Alan John’

Domain expert needs to understand structure of PK/FKs: BAD!!

ARM/SQLP:
select distinct e.student.sname as name
from ENROLLMENT e
where e.class.professor.pname = ’Alan John’

Borgida, Toman, and Weddell Referring Expressions in AI&KR Experiments 52 / 64

Example Queries

Query: Names of students who have been taught by Prof. ‘Alan John’

RM/SQL:
select distinct s.sname as name
from STUDENT s, ENROLLMENT e, CLASS c, PROFESSOR p
where e.snum = s.snum
and e.deptcode = c.deptcode and e.cnum = c.cnum
and e.term = c.term and e.section = c.section
and c.pnum = p.pnum and p.pname = ’Alan John’

Domain expert needs to understand structure of PK/FKs: BAD!!

ARM/SQLP:
select distinct e.student.sname as name
from ENROLLMENT e
where e.class.professor.pname = ’Alan John’

Borgida, Toman, and Weddell Referring Expressions in AI&KR Experiments 52 / 64

ARM Schema and Path Navigation

select distinct e.student.sname as name
from ENROLLMENT e
where e.class.professor.pname = ’Alan John’

Borgida, Toman, and Weddell Referring Expressions in AI&KR Experiments 53 / 64

Experiments: Results

Mean performance for all subjects: SQL solid; SQLP dashed.

SQLP outperforms SQL in time taken
No significant difference in correctness (Q3, Q5 almost significant)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Experiments 54 / 64

Experiments: Results

Mean performance for all subjects: SQL solid; SQLP dashed.

SQLP outperforms SQL in time taken
No significant difference in correctness (Q3, Q5 almost significant)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Experiments 54 / 64

How to make the Technology Succeed?

1 ARM/SQLP Helps Users (User Study)

2 ARM/SQLP Can be Efficiently Implemented [ER16]

Mapping to standard relational model with the help of referring expressions

Reverse-Engineering ARM from Legacy Relational Schemata

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions 55 / 64

Referring to Abstract Entities

Example (How to refer to LEGAL-ENTITY)

invent a new attribute for this purpose (will be inherited by subclasses)

use (a combination of) the identities of generalized entities, e.g.,
ssn for PERSON and (name, city) for COMPANY.

⇒ but what happens to objects that are both a PERSON and a COMPANY??

⇒ we need to resolve the preferred identification:
PERSON → ssn=?; COMPANY → (name=?, city=?).

Goal(s)

1 Flexible assignment of Referring Expression Types to classes,
2 Automatic check(s) for sanity of such an assignment, and
3 Compilation of queries (updates) over ARM to ones over concrete tables.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions 56 / 64

Referring to Abstract Entities

Example (How to refer to LEGAL-ENTITY)

invent a new attribute for this purpose (will be inherited by subclasses)
use (a combination of) the identities of generalized entities, e.g.,

ssn for PERSON and (name, city) for COMPANY.

⇒ but what happens to objects that are both a PERSON and a COMPANY??

⇒ we need to resolve the preferred identification:
PERSON → ssn=?; COMPANY → (name=?, city=?).

Goal(s)

1 Flexible assignment of Referring Expression Types to classes,
2 Automatic check(s) for sanity of such an assignment, and
3 Compilation of queries (updates) over ARM to ones over concrete tables.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions 56 / 64

Referring to Abstract Entities

Example (How to refer to LEGAL-ENTITY)

invent a new attribute for this purpose (will be inherited by subclasses)
use (a combination of) the identities of generalized entities, e.g.,

ssn for PERSON and (name, city) for COMPANY.
⇒ but what happens to objects that are both a PERSON and a COMPANY??

⇒ we need to resolve the preferred identification:
PERSON → ssn=?; COMPANY → (name=?, city=?).

Goal(s)

1 Flexible assignment of Referring Expression Types to classes,
2 Automatic check(s) for sanity of such an assignment, and
3 Compilation of queries (updates) over ARM to ones over concrete tables.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions 56 / 64

Referring to Abstract Entities

Example (How to refer to LEGAL-ENTITY)

invent a new attribute for this purpose (will be inherited by subclasses)
use (a combination of) the identities of generalized entities, e.g.,

ssn for PERSON and (name, city) for COMPANY.
⇒ but what happens to objects that are both a PERSON and a COMPANY??
⇒ we need to resolve the preferred identification:

PERSON → ssn=?; COMPANY → (name=?, city=?).

Goal(s)

1 Flexible assignment of Referring Expression Types to classes,
2 Automatic check(s) for sanity of such an assignment, and
3 Compilation of queries (updates) over ARM to ones over concrete tables.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions 56 / 64

Referring to Abstract Entities

Example (How to refer to LEGAL-ENTITY)

invent a new attribute for this purpose (will be inherited by subclasses)
use (a combination of) the identities of generalized entities, e.g.,

ssn for PERSON and (name, city) for COMPANY.
⇒ but what happens to objects that are both a PERSON and a COMPANY??
⇒ we need to resolve the preferred identification:

PERSON → ssn=?; COMPANY → (name=?, city=?).

Goal(s)

1 Flexible assignment of Referring Expression Types to classes,
2 Automatic check(s) for sanity of such an assignment, and
3 Compilation of queries (updates) over ARM to ones over concrete tables.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions 56 / 64

Referring Type Assignment (RTA)
IDEA
Assign a referring expression type RTA(T) to each table T in Σ.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions 57 / 64

Referring Type Assignment (RTA)
IDEA
Assign a referring expression type RTA(T) to each table T in Σ.

Example

Is every RTA(.) assignment “good”? Consider the SQLP query

select x .self from PERSON x ,COMPANY y where x .self = y .self

1 assignment: RTA(PERSON) = (ssn = ?),
RTA(COMPANY) = (name = ?,city = ?)

⇒ the ability to compare the OID values is lost ⇒ BAD RTA!;

2 (modified) assignment:
RTA(COMPANY) = (PERSON → ssn = ?); (name = ?,city = ?)

⇒ the ability to compare the OID values is preserved as COMPANY
objects are identified by ssn values when also residing in PERSON.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions 57 / 64

Referring Type Assignment (RTA)
IDEA
Assign a referring expression type RTA(T) to each table T in Σ.

Example

Is every RTA(.) assignment “good”? Consider the SQLP query

select x .self from PERSON x ,COMPANY y where x .self = y .self

1 assignment: RTA(PERSON) = (ssn = ?),
RTA(COMPANY) = (name = ?,city = ?)

⇒ the ability to compare the OID values is lost ⇒ BAD RTA!;

2 (modified) assignment:
RTA(COMPANY) = (PERSON → ssn = ?); (name = ?,city = ?)

⇒ the ability to compare the OID values is preserved as COMPANY
objects are identified by ssn values when also residing in PERSON.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions 57 / 64

Referring Type Assignment (RTA)
IDEA
Assign a referring expression type RTA(T) to each table T in Σ.

Definition (Identity-resolving RTA(.))

Let Σ be a ARM schema and RTA a referring type assignment for Σ. Given a
linear order O = (Ti1 , . . . ,Tin) on the set Tables(Σ), define O(RTA) as the
referring expression type RTA(Ti1); . . . ;RTA(Tik).

We say that RTA is identity resolving if there is some linear order O such that
the following conditions hold for each T ∈ Tables(Σ):

1 RTA(T) = Prune(O(RTA),T),
2 Σ |= (covered by {T1, ...,Tn}) ∈ T , and
3 for each component Tj → (Pfj,1 = ?, . . . ,Pfj,kj = ?) of RTA(T), the

following also holds:
(i) Pfj,i is well defined for Tj , for 1 ≤ i ≤ kj , and
(ii) Σ |= (pathfd Pfj,1, . . . ,Pfj,kj → id) ∈ Tj .

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions 57 / 64

Referring Type Assignment (RTA)
IDEA
Assign a referring expression type RTA(T) to each table T in Σ.

Definition (Identity-resolving RTA(.))

The definition achieves the following:
1 Referring expression types assigned to classes (tables) that can share

objects must guarantee that a particular object is uniquely identified;
2 Referring expression types for disjoint classes/tables can be assigned

independently;

Consequences:

Referring expressions serve as a sound&complete proxy
for entity/object (OID) equality;

Referring expression can be coerced to a least common supertype.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions 57 / 64

Course Enrollment as an ARM Schema

Borgida, Toman, and Weddell Referring Expressions in AI&KR Referring Expressions 58 / 64

Concrete Relational Back-end
1 Every abstract attribute and its referring expression type

⇒ a concrete relational representation (denoted by Rep(.)):
essentially a discriminated variant record;

2 Representations can be coerced to a common supertype
⇒ the ability to compare the representations

a sound and complete proxy for comparing object ids;
3 A SQLP query is compiled to a standard SQL query over the concrete

representation of an abstract instance in such a way that:

Theorem

Let Σ be a ARM schema and let RTA an identity resolving type assignment for
Σ. For any SQLP query Q over Σ

Rep(Q(I),Σ) = (CΣ,RTA(Q))(Rep(I,Σ))

for every database instance I of Σ. 2

Borgida, Toman, and Weddell Referring Expressions in AI&KR Relational Representation 59 / 64

Obtaining an Initial ARM Schema (legacy setting)

RM2ARM Algorithm (highlights; see [EKAW18])

For every table in RM:

1 add “self OID” (as a new primary key)

2 replace foreign keys with unary ones and discard original FK attributes
⇒ what if original FK overlaps with primary key attributes?
⇒ how about cycles between (overlapping) PKs and FKs?

3 add ISA constraints (and remove corresponding FKs)
⇒ from PK to PK foreign keys in RM

4 add disjointness constraints
⇒ for tables with different PKs

5 generate referring expressions (so the ARM2RM mapping works)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Relational Representation 60 / 64

Obtaining an Initial ARM Schema (legacy setting)

RM2ARM Algorithm (highlights; see [EKAW18])

For every table in RM:

1 add “self OID” (as a new primary key)

2 replace foreign keys with unary ones and discard original FK attributes
⇒ what if original FK overlaps with primary key attributes?
⇒ how about cycles between (overlapping) PKs and FKs?

3 add ISA constraints (and remove corresponding FKs)
⇒ from PK to PK foreign keys in RM

4 add disjointness constraints
⇒ for tables with different PKs

5 generate referring expressions (so the ARM2RM mapping works)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Relational Representation 60 / 64

SUMMARY

Borgida, Toman, and Weddell Referring Expressions in AI&KR Summary 61 / 64

Summary

Contributions

Referring expressions allow one to get more/better (certain) answers . . .

1 General approach to OBDA-style query answering
⇒ Ability to refer to implicit individuals/entities

2 General approach to representing data
⇒ without need for object id invention;

3 Methodology that allows decoupling identification from modeling
⇒ Referring Expressions resolve identity issues and
⇒ Compilation to pure relational model.

Borgida, Toman, and Weddell Referring Expressions in AI&KR Summary 62 / 64

Future work&Extensions
1 Strong Identification (distinct referring expr’s refer to distinct objects);

2 More complex referring expression types;

3 Replacing types by other preferred way to chose among referring
expressions (e.g., length/formula complexity/. . . measure);

4 Alternatives to concrete representations;

5 More general/axiomatic definition of identity resolving RTA(.)s;

Borgida, Toman, and Weddell Referring Expressions in AI&KR Summary 63 / 64

Message from our Sponsors
Data Systems Group at the University of Waterloo

∼15 professors, affiliated faculty, postdocs, ∼50 grads, . . .
Wide range of research interests

Advanced query processing/Knowledge representation
System aspects of database systems and Distributed data management
Data quality/Managing uncertain data/Data mining
Information Retrieval and “big data”
New(-ish) domains (text, streaming, graph data/RDF, OLAP)

Research sponsored by governments, and local/global companies
NSERC/CFI/OIT and Google, IBM, SAP, OpenText, . . .

Part of a School of CS with 90+ professors, 450+ grad students, etc.
AI&ML, Algorithms&Data Structures, PL, Theory, Systems, . . .

. . . and we are always looking for good graduate students (MMath/PhD)

Borgida, Toman, and Weddell Referring Expressions in AI&KR Summary 64 / 64

	Identifying and Communicating References (to objects)
	Referring Expressions (Background)
	Queries and Ontologies

