
Logical Approach to Physical Data Independence
and Query Compilation

Introduction, Background, and Goals

David Toman

D.R. Cheriton School of Computer Science

1 / 25

ORGANIZATION

Introduction and Goals 2 / 25

Lectures/Exercises

web page:
http://lat.inf.tu-dresden.de/teaching/ss2014/Toman-VL/

http://cs.uwaterloo.ca/∼david/tud/tud.html

schedule:
Monday Tuesday Wednesday Thursday

14:50-18:10 14:50-16:20 16:40-18:10 14:50-16:20
E 005 E 005 3027 E 005

7–11 April - - Lecture Lecture
14–18 April Ex&Lect - Lecture Exercise
21–25 April - Lecture Lecture Exercise

Organization Introduction and Goals 3 / 25

Textbook (aka Shameless plug)

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: M. Tamer Özsu, University of Waterloo

CM& Morgan Claypool Publishers&SYNTHESIS LECTURES ON DATA MANAGEMENT

SYNTHESIS LECTURES ON DATA MANAGEMENT

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

M. Tamer Özsu, Series Editor

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

ISBN: 978-1-60845-278-1

9 781608 452781

90000

Series ISSN: 2153-5418

FUNDAM
ENTALS OF PHYSICAL DESIGN AND Q

UERY COM
PILATION

Fundamentals of Physical Design and
Query Compilation

University of Waterloo

Query compilation is the problem of translating user requests formulated over purely conceptual and
domain specific ways of understanding data, commonly called logical designs, to efficient executable
programs called query plans. Such plans access various concrete data sources through their low-level
often iterator-based interfaces. An appreciation of the concrete data sources, their interfaces and how
such capabilities relate to logical design is commonly called a physical design. This book is an introduction
to the fundamental methods underlying database technology that solves the problem of query
compilation. The methods are presented in terms of first-order logic which serves as the vehicle for
specifying physical design, expressing user requests and query plans, and understanding how query
plans implement user requests.

Fundamentals of
Physical Design and
Query Compilation

David Toman

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: M. Tamer Özsu, University of Waterloo

CM& Morgan Claypool Publishers&SYNTHESIS LECTURES ON DATA MANAGEMENT

SYNTHESIS LECTURES ON DATA MANAGEMENT

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

M. Tamer Özsu, Series Editor

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

ISBN: 978-1-60845-278-1

9 781608 452781

90000

Series ISSN: 2153-5418

FUNDAM
ENTALS OF PHYSICAL DESIGN AND Q

UERY COM
PILATION

Fundamentals of Physical Design and
Query Compilation

University of Waterloo

Query compilation is the problem of translating user requests formulated over purely conceptual and
domain specific ways of understanding data, commonly called logical designs, to efficient executable
programs called query plans. Such plans access various concrete data sources through their low-level
often iterator-based interfaces. An appreciation of the concrete data sources, their interfaces and how
such capabilities relate to logical design is commonly called a physical design. This book is an introduction
to the fundamental methods underlying database technology that solves the problem of query
compilation. The methods are presented in terms of first-order logic which serves as the vehicle for
specifying physical design, expressing user requests and query plans, and understanding how query
plans implement user requests.

Fundamentals of
Physical Design and
Query Compilation

David Toman

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: M. Tamer Özsu, University of Waterloo

CM& Morgan Claypool Publishers&SYNTHESIS LECTURES ON DATA MANAGEMENT

SYNTHESIS LECTURES ON DATA MANAGEMENT

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

M. Tamer Özsu, Series Editor

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

ISBN: 978-1-60845-278-1

9 781608 452781

90000

Series ISSN: 2153-5418

FUNDAM
ENTALS OF PHYSICAL DESIGN AND Q

UERY COM
PILATION

Fundamentals of Physical Design and
Query Compilation

University of Waterloo

Query compilation is the problem of translating user requests formulated over purely conceptual and
domain specific ways of understanding data, commonly called logical designs, to efficient executable
programs called query plans. Such plans access various concrete data sources through their low-level
often iterator-based interfaces. An appreciation of the concrete data sources, their interfaces and how
such capabilities relate to logical design is commonly called a physical design. This book is an introduction
to the fundamental methods underlying database technology that solves the problem of query
compilation. The methods are presented in terms of first-order logic which serves as the vehicle for
specifying physical design, expressing user requests and query plans, and understanding how query
plans implement user requests.

Fundamentals of
Physical Design and
Query Compilation

David Toman

D. Toman and G. Weddell.
Fundamentals of Physical Design
and Query Compilation.
Morgan and Claypool Data Man-
agement Series, 2011.

Organization Introduction and Goals 4 / 25

USE SCENARIOS AND GOALS

Organization Introduction and Goals 5 / 25

Phyical Data Independence

IDEA:
Separate the users’ view(s) of the data from
the way it is physically represented.

independent customized user views,
changes to conceptual structure without
affecting users.
physical storage details hidden from
users,
changes to physical storage without
affecting conceptual view,

Originally just two levels: physical
and conceptual/logical [Codd1970].

[ANSI/X3/SPARC Standards
Planning and Requirements
Committee, Bachman, 1975]

Use Scenarios and Goals Introduction and Goals 6 / 25

Phyical Data Independence

IDEA:
Separate the users’ view(s) of the data from
the way it is physically represented.

independent customized user views,
changes to conceptual structure without
affecting users.

physical storage details hidden from
users,
changes to physical storage without
affecting conceptual view,

Originally just two levels: physical
and conceptual/logical [Codd1970].

[ANSI/X3/SPARC Standards
Planning and Requirements
Committee, Bachman, 1975]

Use Scenarios and Goals Introduction and Goals 6 / 25

Phyical Data Independence

IDEA:
Separate the users’ view(s) of the data from
the way it is physically represented.

independent customized user views,
changes to conceptual structure without
affecting users.
physical storage details hidden from
users,
changes to physical storage without
affecting conceptual view,

Originally just two levels: physical
and conceptual/logical [Codd1970].

[ANSI/X3/SPARC Standards
Planning and Requirements
Committee, Bachman, 1975]

Use Scenarios and Goals Introduction and Goals 6 / 25

Phyical Data Independence

IDEA:
Separate the users’ view(s) of the data from
the way it is physically represented.

independent customized user views,
changes to conceptual structure without
affecting users.

physical storage details hidden from
users,
changes to physical storage without
affecting conceptual view,

Originally just two levels: physical
and conceptual/logical [Codd1970].

[ANSI/X3/SPARC Standards
Planning and Requirements
Committee, Bachman, 1975]

Use Scenarios and Goals Introduction and Goals 6 / 25

Example: PAYROLL

A Conceptual (user) view of PAYROLL data:

Example of PAYROLL data:
1 Mary is an employee.
2 Mary’s employee number is 3412.
3 Mary’s salary is 72000.

Example of PAYROLL:
4 There is a kind of entity called an employee.
5 There are attributes called enumber, name and salary.
6 Each employee entity has attributes enumber, name and salary.
7 Employees are identified by their enumber.

Use Scenarios and Goals Introduction and Goals 7 / 25

Example: PAYROLL

A physical design for PAYROLL:

8 There is a file of records called emp-file.
9 There are record fields emp-num, emp-name and emp-salary.

10 Each emp-file record has the fields
emp-num, emp-name and emp-salary.

11 File emp-file is organized as a B-tree data structure that supports an
emp-lookup operation, given a value for attribute enumber.

12 Records in file emp-file correspond one-to-one to employee entities.
13 Record fields in file emp-file encode the corresponding attribute values

for employee entities, for example, emp-num encodes an enumber.

Use Scenarios and Goals Introduction and Goals 7 / 25

Ontology-based Data Access

IDEA:
Queries are answered not only w.r.t. explicit data

but also w.r.t. background knowledge
⇒ Ontology-based Data Access (OBDA)

Example
Socrates is a MAN (explicit data)
Every MAN is MORTAL (background)

List all MORTALs⇒ {Socrates} (query)

Semantic Web 2 (2011) 43–53 43
DOI 10.3233/SW-2011-0029
IOS Press

The MASTRO system for ontology-based data
access
Editor(s): Thomas Lukasiewicz, Oxford University, UK
Solicited review(s): Carsten Lutz, Universität Bremen, Germany; Roman Kontchakov, Birkbeck College London, UK; one anonymous reviewer

Diego Calvanese a,*, Giuseppe De Giacomo b, Domenico Lembo b, Maurizio Lenzerini b,
Antonella Poggi b, Mariano Rodriguez-Muro a, Riccardo Rosati b, Marco Ruzzi b and
Domenico Fabio Savo b

a Free University of Bozen-Bolzano, Piazza Domenicani 3, I-39100, Bolzano, Italy
E-mail: lastname@inf.unibz.it
b Sapienza Universita di Roma, Via Ariosto 25, I-00185, Roma, Italy
E-mail: lastname@dis.uniroma1.it

Abstract. In this paper we present MASTRO, a Java tool for ontology-based data access (OBDA) developed at Sapienza Univer-
sità di Roma and at the Free University of Bozen-Bolzano. MASTRO manages OBDA systems in which the ontology is specified
in DL-LiteA,id , a logic of the DL-Lite family of tractable Description Logics specifically tailored to ontology-based data access,
and is connected to external JDBC enabled data management systems through semantic mappings that associate SQL queries
over the external data to the elements of the ontology. Advanced forms of integrity constraints, which turned out to be very
useful in practical applications, are also enabled over the ontologies. Optimized algorithms for answering expressive queries
are provided, as well as features for intensional reasoning and consistency checking. MASTRO provides a proprietary API, an
OWLAPI compatible interface, and a plugin for the Protégé 4 ontology editor. It has been successfully used in several projects
carried out in collaboration with important organizations, on which we briefly comment in this paper.

Keywords: Ontology-based data access, Description Logics, reasoning over ontologies

1. Introduction

In this paper we present MASTRO, a tool for
ontology-based data access developed at Sapienza
Università di Roma and at the Free University of
Bozen-Bolzano. Ontology-based data access (OBDA)
refers to a setting in which an ontology is used as a
high-level, conceptual view over data repositories, al-
lowing users to access data without the need to know
how they are actually organized and where they are
stored (cf. Fig. 1).

The OBDA approach turns out to be very useful in
all scenarios in which accessing data in a unified and
coherent way is difficult. This may happen for several

*Corresponding author.

reasons. For example, databases may have undergone
several manipulations during the years, often for op-
timizing applications using them, and may have lost

Fig. 1. Ontology-based data access.

1570-0844/11/$27.50 c© 2011 – IOS Press and the authors. All rights reserved [Calvanese et al.: Mastro]

Question:
Is Aristoteles a MORTAL?

. . . can we really say “NO”?

Use Scenarios and Goals Introduction and Goals 8 / 25

Ontology-based Data Access

IDEA:
Queries are answered not only w.r.t. explicit data

but also w.r.t. background knowledge
⇒ Ontology-based Data Access (OBDA)

Example
Socrates is a MAN (explicit data)
Every MAN is MORTAL (background)

List all MORTALs⇒ {Socrates} (query)

Semantic Web 2 (2011) 43–53 43
DOI 10.3233/SW-2011-0029
IOS Press

The MASTRO system for ontology-based data
access
Editor(s): Thomas Lukasiewicz, Oxford University, UK
Solicited review(s): Carsten Lutz, Universität Bremen, Germany; Roman Kontchakov, Birkbeck College London, UK; one anonymous reviewer

Diego Calvanese a,*, Giuseppe De Giacomo b, Domenico Lembo b, Maurizio Lenzerini b,
Antonella Poggi b, Mariano Rodriguez-Muro a, Riccardo Rosati b, Marco Ruzzi b and
Domenico Fabio Savo b

a Free University of Bozen-Bolzano, Piazza Domenicani 3, I-39100, Bolzano, Italy
E-mail: lastname@inf.unibz.it
b Sapienza Universita di Roma, Via Ariosto 25, I-00185, Roma, Italy
E-mail: lastname@dis.uniroma1.it

Abstract. In this paper we present MASTRO, a Java tool for ontology-based data access (OBDA) developed at Sapienza Univer-
sità di Roma and at the Free University of Bozen-Bolzano. MASTRO manages OBDA systems in which the ontology is specified
in DL-LiteA,id , a logic of the DL-Lite family of tractable Description Logics specifically tailored to ontology-based data access,
and is connected to external JDBC enabled data management systems through semantic mappings that associate SQL queries
over the external data to the elements of the ontology. Advanced forms of integrity constraints, which turned out to be very
useful in practical applications, are also enabled over the ontologies. Optimized algorithms for answering expressive queries
are provided, as well as features for intensional reasoning and consistency checking. MASTRO provides a proprietary API, an
OWLAPI compatible interface, and a plugin for the Protégé 4 ontology editor. It has been successfully used in several projects
carried out in collaboration with important organizations, on which we briefly comment in this paper.

Keywords: Ontology-based data access, Description Logics, reasoning over ontologies

1. Introduction

In this paper we present MASTRO, a tool for
ontology-based data access developed at Sapienza
Università di Roma and at the Free University of
Bozen-Bolzano. Ontology-based data access (OBDA)
refers to a setting in which an ontology is used as a
high-level, conceptual view over data repositories, al-
lowing users to access data without the need to know
how they are actually organized and where they are
stored (cf. Fig. 1).

The OBDA approach turns out to be very useful in
all scenarios in which accessing data in a unified and
coherent way is difficult. This may happen for several

*Corresponding author.

reasons. For example, databases may have undergone
several manipulations during the years, often for op-
timizing applications using them, and may have lost

Fig. 1. Ontology-based data access.

1570-0844/11/$27.50 c© 2011 – IOS Press and the authors. All rights reserved [Calvanese et al.: Mastro]

Question:
Is Aristoteles a MORTAL?

. . . can we really say “NO”?

Use Scenarios and Goals Introduction and Goals 8 / 25

Ontology-based Data Access

IDEA:
Queries are answered not only w.r.t. explicit data

but also w.r.t. background knowledge
⇒ Ontology-based Data Access (OBDA)

Example
Socrates is a MAN (explicit data)
Every MAN is MORTAL (background)

List all MORTALs⇒ {Socrates} (query)

Semantic Web 2 (2011) 43–53 43
DOI 10.3233/SW-2011-0029
IOS Press

The MASTRO system for ontology-based data
access
Editor(s): Thomas Lukasiewicz, Oxford University, UK
Solicited review(s): Carsten Lutz, Universität Bremen, Germany; Roman Kontchakov, Birkbeck College London, UK; one anonymous reviewer

Diego Calvanese a,*, Giuseppe De Giacomo b, Domenico Lembo b, Maurizio Lenzerini b,
Antonella Poggi b, Mariano Rodriguez-Muro a, Riccardo Rosati b, Marco Ruzzi b and
Domenico Fabio Savo b

a Free University of Bozen-Bolzano, Piazza Domenicani 3, I-39100, Bolzano, Italy
E-mail: lastname@inf.unibz.it
b Sapienza Universita di Roma, Via Ariosto 25, I-00185, Roma, Italy
E-mail: lastname@dis.uniroma1.it

Abstract. In this paper we present MASTRO, a Java tool for ontology-based data access (OBDA) developed at Sapienza Univer-
sità di Roma and at the Free University of Bozen-Bolzano. MASTRO manages OBDA systems in which the ontology is specified
in DL-LiteA,id , a logic of the DL-Lite family of tractable Description Logics specifically tailored to ontology-based data access,
and is connected to external JDBC enabled data management systems through semantic mappings that associate SQL queries
over the external data to the elements of the ontology. Advanced forms of integrity constraints, which turned out to be very
useful in practical applications, are also enabled over the ontologies. Optimized algorithms for answering expressive queries
are provided, as well as features for intensional reasoning and consistency checking. MASTRO provides a proprietary API, an
OWLAPI compatible interface, and a plugin for the Protégé 4 ontology editor. It has been successfully used in several projects
carried out in collaboration with important organizations, on which we briefly comment in this paper.

Keywords: Ontology-based data access, Description Logics, reasoning over ontologies

1. Introduction

In this paper we present MASTRO, a tool for
ontology-based data access developed at Sapienza
Università di Roma and at the Free University of
Bozen-Bolzano. Ontology-based data access (OBDA)
refers to a setting in which an ontology is used as a
high-level, conceptual view over data repositories, al-
lowing users to access data without the need to know
how they are actually organized and where they are
stored (cf. Fig. 1).

The OBDA approach turns out to be very useful in
all scenarios in which accessing data in a unified and
coherent way is difficult. This may happen for several

*Corresponding author.

reasons. For example, databases may have undergone
several manipulations during the years, often for op-
timizing applications using them, and may have lost

Fig. 1. Ontology-based data access.

1570-0844/11/$27.50 c© 2011 – IOS Press and the authors. All rights reserved [Calvanese et al.: Mastro]

Question:
Is Aristoteles a MORTAL?

. . . can we really say “NO”?

Use Scenarios and Goals Introduction and Goals 8 / 25

Ontology-based Data Access

IDEA:
Queries are answered not only w.r.t. explicit data

but also w.r.t. background knowledge
⇒ Ontology-based Data Access (OBDA)

Example
Socrates is a MAN (explicit data)
Every MAN is MORTAL (background)

List all MORTALs⇒ {Socrates} (query)

Semantic Web 2 (2011) 43–53 43
DOI 10.3233/SW-2011-0029
IOS Press

The MASTRO system for ontology-based data
access
Editor(s): Thomas Lukasiewicz, Oxford University, UK
Solicited review(s): Carsten Lutz, Universität Bremen, Germany; Roman Kontchakov, Birkbeck College London, UK; one anonymous reviewer

Diego Calvanese a,*, Giuseppe De Giacomo b, Domenico Lembo b, Maurizio Lenzerini b,
Antonella Poggi b, Mariano Rodriguez-Muro a, Riccardo Rosati b, Marco Ruzzi b and
Domenico Fabio Savo b

a Free University of Bozen-Bolzano, Piazza Domenicani 3, I-39100, Bolzano, Italy
E-mail: lastname@inf.unibz.it
b Sapienza Universita di Roma, Via Ariosto 25, I-00185, Roma, Italy
E-mail: lastname@dis.uniroma1.it

Abstract. In this paper we present MASTRO, a Java tool for ontology-based data access (OBDA) developed at Sapienza Univer-
sità di Roma and at the Free University of Bozen-Bolzano. MASTRO manages OBDA systems in which the ontology is specified
in DL-LiteA,id , a logic of the DL-Lite family of tractable Description Logics specifically tailored to ontology-based data access,
and is connected to external JDBC enabled data management systems through semantic mappings that associate SQL queries
over the external data to the elements of the ontology. Advanced forms of integrity constraints, which turned out to be very
useful in practical applications, are also enabled over the ontologies. Optimized algorithms for answering expressive queries
are provided, as well as features for intensional reasoning and consistency checking. MASTRO provides a proprietary API, an
OWLAPI compatible interface, and a plugin for the Protégé 4 ontology editor. It has been successfully used in several projects
carried out in collaboration with important organizations, on which we briefly comment in this paper.

Keywords: Ontology-based data access, Description Logics, reasoning over ontologies

1. Introduction

In this paper we present MASTRO, a tool for
ontology-based data access developed at Sapienza
Università di Roma and at the Free University of
Bozen-Bolzano. Ontology-based data access (OBDA)
refers to a setting in which an ontology is used as a
high-level, conceptual view over data repositories, al-
lowing users to access data without the need to know
how they are actually organized and where they are
stored (cf. Fig. 1).

The OBDA approach turns out to be very useful in
all scenarios in which accessing data in a unified and
coherent way is difficult. This may happen for several

*Corresponding author.

reasons. For example, databases may have undergone
several manipulations during the years, often for op-
timizing applications using them, and may have lost

Fig. 1. Ontology-based data access.

1570-0844/11/$27.50 c© 2011 – IOS Press and the authors. All rights reserved [Calvanese et al.: Mastro]

Question:
Is Aristoteles a MORTAL?

. . . can we really say “NO”?

Use Scenarios and Goals Introduction and Goals 8 / 25

Ontology-based Data Access

IDEA:
Queries are answered not only w.r.t. explicit data

but also w.r.t. background knowledge
⇒ Ontology-based Data Access (OBDA)

Example
Socrates is a MAN (explicit data)
Every MAN is MORTAL (background)

List all MORTALs⇒ {Socrates} (query)

Semantic Web 2 (2011) 43–53 43
DOI 10.3233/SW-2011-0029
IOS Press

The MASTRO system for ontology-based data
access
Editor(s): Thomas Lukasiewicz, Oxford University, UK
Solicited review(s): Carsten Lutz, Universität Bremen, Germany; Roman Kontchakov, Birkbeck College London, UK; one anonymous reviewer

Diego Calvanese a,*, Giuseppe De Giacomo b, Domenico Lembo b, Maurizio Lenzerini b,
Antonella Poggi b, Mariano Rodriguez-Muro a, Riccardo Rosati b, Marco Ruzzi b and
Domenico Fabio Savo b

a Free University of Bozen-Bolzano, Piazza Domenicani 3, I-39100, Bolzano, Italy
E-mail: lastname@inf.unibz.it
b Sapienza Universita di Roma, Via Ariosto 25, I-00185, Roma, Italy
E-mail: lastname@dis.uniroma1.it

Abstract. In this paper we present MASTRO, a Java tool for ontology-based data access (OBDA) developed at Sapienza Univer-
sità di Roma and at the Free University of Bozen-Bolzano. MASTRO manages OBDA systems in which the ontology is specified
in DL-LiteA,id , a logic of the DL-Lite family of tractable Description Logics specifically tailored to ontology-based data access,
and is connected to external JDBC enabled data management systems through semantic mappings that associate SQL queries
over the external data to the elements of the ontology. Advanced forms of integrity constraints, which turned out to be very
useful in practical applications, are also enabled over the ontologies. Optimized algorithms for answering expressive queries
are provided, as well as features for intensional reasoning and consistency checking. MASTRO provides a proprietary API, an
OWLAPI compatible interface, and a plugin for the Protégé 4 ontology editor. It has been successfully used in several projects
carried out in collaboration with important organizations, on which we briefly comment in this paper.

Keywords: Ontology-based data access, Description Logics, reasoning over ontologies

1. Introduction

In this paper we present MASTRO, a tool for
ontology-based data access developed at Sapienza
Università di Roma and at the Free University of
Bozen-Bolzano. Ontology-based data access (OBDA)
refers to a setting in which an ontology is used as a
high-level, conceptual view over data repositories, al-
lowing users to access data without the need to know
how they are actually organized and where they are
stored (cf. Fig. 1).

The OBDA approach turns out to be very useful in
all scenarios in which accessing data in a unified and
coherent way is difficult. This may happen for several

*Corresponding author.

reasons. For example, databases may have undergone
several manipulations during the years, often for op-
timizing applications using them, and may have lost

Fig. 1. Ontology-based data access.

1570-0844/11/$27.50 c© 2011 – IOS Press and the authors. All rights reserved [Calvanese et al.: Mastro]

Question:
Is Aristoteles a MORTAL? . . . can we really say “NO”?

Use Scenarios and Goals Introduction and Goals 8 / 25

Data Exchange

PROBLEM:
How to transfer (reformat) data conforming to a source schema to

data conforming to a target schema?

[Arenas et al: Foundations of Data Exchange]

Issues:
what should happen when the target is more complex than the source?
how do we answer queries over the target?

Use Scenarios and Goals Introduction and Goals 9 / 25

Data Exchange

PROBLEM:
How to transfer (reformat) data conforming to a source schema to

data conforming to a target schema?

[Arenas et al: Foundations of Data Exchange]

Issues:
what should happen when the target is more complex than the source?
how do we answer queries over the target?

Use Scenarios and Goals Introduction and Goals 9 / 25

Data Exchange

PROBLEM:
How to transfer (reformat) data conforming to a source schema to

data conforming to a target schema?

[Arenas et al: Foundations of Data Exchange]

Issues:
what should happen when the target is more complex than the source?
how do we answer queries over the target?

Use Scenarios and Goals Introduction and Goals 9 / 25

Information Integration

IDEA:
Data integration provides a uniform access to a set of data sources, through a
unified representation called global schema. A mapping specifies the
relationship between the global schema and the sources.

[Genesereth: Data Integration]

Variants “which way do the arrows point” [Lenzerini]
GAV (global as a view), LAV (local as a view), and GLAV (“both ways”).

Use Scenarios and Goals Introduction and Goals 10 / 25

Information Integration

IDEA:
Data integration provides a uniform access to a set of data sources, through a
unified representation called global schema. A mapping specifies the
relationship between the global schema and the sources.

[Genesereth: Data Integration]

Variants “which way do the arrows point” [Lenzerini]
GAV (global as a view), LAV (local as a view), and GLAV (“both ways”).

Use Scenarios and Goals Introduction and Goals 10 / 25

Common Threads and Issues

In general two schemas: Conceptual/Logical and Physical

⇒ both endowed with metadata (vocabulary, . . .)
⇒ mappings connect the schemas
⇒ (source) data only “in” the physical schema
⇒ queries only over the conceptual/logical schema

Issues to be formalized/fixed:
1 Formal description of the two schemas (same formalism for both?)
2 Language(s) for metadata and mappings
3 (user level) Data representation
4 (user level) Query language (semantics–aka when is an answer an answer?)

5 Algorithms/Execution model for queries: e.g., does materialization matter?

Use Scenarios and Goals Introduction and Goals 11 / 25

Common Threads and Issues

In general two schemas: Conceptual/Logical and Physical

⇒ both endowed with metadata (vocabulary, . . .)
⇒ mappings connect the schemas
⇒ (source) data only “in” the physical schema
⇒ queries only over the conceptual/logical schema

Issues to be formalized/fixed:
1 Formal description of the two schemas (same formalism for both?)
2 Language(s) for metadata and mappings
3 (user level) Data representation
4 (user level) Query language (semantics–aka when is an answer an answer?)

5 Algorithms/Execution model for queries: e.g., does materialization matter?

Use Scenarios and Goals Introduction and Goals 11 / 25

Common Threads and Issues

In general two schemas: Conceptual/Logical and Physical

⇒ both endowed with metadata (vocabulary, . . .)
⇒ mappings connect the schemas
⇒ (source) data only “in” the physical schema
⇒ queries only over the conceptual/logical schema

Issues to be formalized/fixed:
1 Formal description of the two schemas (same formalism for both?)
2 Language(s) for metadata and mappings
3 (user level) Data representation
4 (user level) Query language (semantics–aka when is an answer an answer?)
5 Algorithms/Execution model for queries: e.g., does materialization matter?

Use Scenarios and Goals Introduction and Goals 11 / 25

Phyical Data Independence: My Motivation

Goal: Application of the Ideas to Embedded Systems
1 High-level conceptual view of the system

[relational]

2 High level query (and, eventually, update) language

[SQL]

3 Fine-grained physical schema description

[records, pointers, . . .]

4 Flexible conceptual-physical mappings
5 Queries (updates) compiled to operations on physical level

[pointer navigation, field extraction, conditionals, . . .]

Challenge
The code generated from queries must be competitive with hand-written code.

LINUX-INFO System Introduction and Goals 12 / 25

Phyical Data Independence: My Motivation

Goal: Application of the Ideas to Embedded Systems
1 High-level conceptual view of the system [relational]
2 High level query (and, eventually, update) language [SQL]
3 Fine-grained physical schema description [records, pointers, . . .]
4 Flexible conceptual-physical mappings
5 Queries (updates) compiled to operations on physical level

[pointer navigation, field extraction, conditionals, . . .]

Challenge
The code generated from queries must be competitive with hand-written code.

LINUX-INFO System Introduction and Goals 12 / 25

Phyical Data Independence: My Motivation

Goal: Application of the Ideas to Embedded Systems
1 High-level conceptual view of the system [relational]
2 High level query (and, eventually, update) language [SQL]
3 Fine-grained physical schema description [records, pointers, . . .]
4 Flexible conceptual-physical mappings
5 Queries (updates) compiled to operations on physical level

[pointer navigation, field extraction, conditionals, . . .]

Challenge
The code generated from queries must be competitive with hand-written code.

LINUX-INFO System Introduction and Goals 12 / 25

LINUX-INFO System: Conceptual View

Example of LINUX-INFO data:
1 process (called) gcc is running;
2 gcc’s process number is 1234;
3 the user (id) running gcc is 145;
4 gcc uses files “foo.c” and “foo.o”.

Example of LINUX-INFO metadata:
5 There entities called process and file.
6 There are attributes called pno, pname, uname, and fname.
7 Each process entity has attributes pno, pname and uname.
8 Each file entity has attribute fname.
9 Processes are identified by their pno.

10 Files are identified by their fname.
11 There is a relationship uses between processes and files.

LINUX-INFO System Introduction and Goals 13 / 25

LINUX-INFO System: Conceptual View

Example of LINUX-INFO data:
1 process (called) gcc is running;
2 gcc’s process number is 1234;
3 the user (id) running gcc is 145;
4 gcc uses files “foo.c” and “foo.o”.

Example of LINUX-INFO metadata:
5 There entities called process and file.
6 There are attributes called pno, pname, uname, and fname.
7 Each process entity has attributes pno, pname and uname.
8 Each file entity has attribute fname.
9 Processes are identified by their pno.

10 Files are identified by their fname.
11 There is a relationship uses between processes and files.

LINUX-INFO System Introduction and Goals 13 / 25

The LINUX-INFO System: Physical Design

A physical design for LINUX (selected by Linus Torvalds).
12 There are process records called task-struct.
13 Each task-struct record has record fields pid, uid, comm, and fds.
14 All task-structs is organized as a tree data structure.
15 The task-struct records correspond one-to-one to process entities.
16 Record fields in task-struct encode the corresponding attribute

values for process entities, for example, pid encodes an pno, etc.
17 Similarly, fss correspond appropriately to (open) file entities.
18 fds field of task-struct is an array of fds; a non-null entry in this

array indicates that the process corresponding to this task-struct is
using the file identified by the name field of the fd record in the array.

LINUX-INFO System Introduction and Goals 14 / 25

LINUX-INFO System: Queries and Query Plans

Back to Desiderata
User Query:

find all files used by processes invoked by user 145.

Query Plan:

for each task-struct t in tree of task-structs
check if t ’s uid field is 145 and, if so

scan the fds array in t and
if the file descriptor (fd) is non-NULL

print out the name of file field in fd.

Is the plan correct?
. . . and how do/can we answer this question?

LINUX-INFO System Introduction and Goals 15 / 25

LINUX-INFO System: Queries and Query Plans

Back to Desiderata
User Query:

find all files used by processes invoked by user 145.

Query Plan:

for each task-struct t in tree of task-structs
check if t ’s uid field is 145 and, if so

scan the fds array in t and
if the file descriptor (fd) is non-NULL

print out the name of file field in fd.

Is the plan correct?
. . . and how do/can we answer this question?

LINUX-INFO System Introduction and Goals 15 / 25

LINUX-INFO System: Queries and Query Plans

Back to Desiderata
User Query:

find all files used by processes invoked by user 145.

Query Plan:

for each task-struct t in tree of task-structs
check if t ’s uid field is 145 and, if so

scan the fds array in t and
if the file descriptor (fd) is non-NULL

print out the name of file field in fd.

Is the plan correct?
. . . and how do/can we answer this question?

LINUX-INFO System Introduction and Goals 15 / 25

UNIFYING LOGIC-BASED APPROACH

LINUX-INFO System Introduction and Goals 16 / 25

Metadata and Signatures

Vocabularies: Relational Model for both Conceptual and Physical Schemata.

Conceptual/Logical (SL):

predicate symbols R1/a1, . . . ,Rk/ak (ai is the arity of Ri)
(possibly) constants c1, . . . , cn

Physical (SP):

predicate symbols S1/b1, . . . ,Sk/bk

a distinguished subset SA ⊆ SP of access paths
⇒ denote capabilities to retrieve tuples (i.e., data structures)
⇒ (optionally) binding patterns (restrictions on tuple retrieval)
⇒ associated with set of tuples (closed-world semantics)

. . . a standard way of defining interpretations

Unifying Logic-based Approach Introduction and Goals 17 / 25

Metadata and Signatures

Vocabularies: Relational Model for both Conceptual and Physical Schemata.

Conceptual/Logical (SL):

predicate symbols R1/a1, . . . ,Rk/ak (ai is the arity of Ri)
(possibly) constants c1, . . . , cn

Physical (SP):

predicate symbols S1/b1, . . . ,Sk/bk

a distinguished subset SA ⊆ SP of access paths
⇒ denote capabilities to retrieve tuples (i.e., data structures)
⇒ (optionally) binding patterns (restrictions on tuple retrieval)
⇒ associated with set of tuples (closed-world semantics)

. . . a standard way of defining interpretations

Unifying Logic-based Approach Introduction and Goals 17 / 25

Metadata and Signatures

Vocabularies: Relational Model for both Conceptual and Physical Schemata.

Conceptual/Logical (SL):

predicate symbols R1/a1, . . . ,Rk/ak (ai is the arity of Ri)
(possibly) constants c1, . . . , cn

Physical (SP):

predicate symbols S1/b1, . . . ,Sk/bk

a distinguished subset SA ⊆ SP of access paths
⇒ denote capabilities to retrieve tuples (i.e., data structures)
⇒ (optionally) binding patterns (restrictions on tuple retrieval)
⇒ associated with set of tuples (closed-world semantics)

. . . a standard way of defining interpretations

Unifying Logic-based Approach Introduction and Goals 17 / 25

Metadata and Constraints

Metadata: First-order sentences Σ over SL ∪ SP.

Conceptual/Logical (ΣL):

⇒ keys, inclusion dependencies, hierarchies, . . .

Physical (ΣP):

⇒ keys, inclusion dependencies, hierarchies, . . .
⇒ formulae that link to symbols in SL (mapping constraints).

. . . we resort to fragments of FOL to gain better computational properties

Unifying Logic-based Approach Introduction and Goals 18 / 25

Metadata and Constraints

Metadata: First-order sentences Σ over SL ∪ SP.

Conceptual/Logical (ΣL):

⇒ keys, inclusion dependencies, hierarchies, . . .

Physical (ΣP):

⇒ keys, inclusion dependencies, hierarchies, . . .
⇒ formulae that link to symbols in SL (mapping constraints).

. . . we resort to fragments of FOL to gain better computational properties

Unifying Logic-based Approach Introduction and Goals 18 / 25

Metadata and Constraints

Metadata: First-order sentences Σ over SL ∪ SP.

Conceptual/Logical (ΣL):

⇒ keys, inclusion dependencies, hierarchies, . . .

Physical (ΣP):

⇒ keys, inclusion dependencies, hierarchies, . . .
⇒ formulae that link to symbols in SL (mapping constraints).

. . . we resort to fragments of FOL to gain better computational properties

Unifying Logic-based Approach Introduction and Goals 18 / 25

Example: LINUX-INFO

Conceptual/Logical:

SL = { process/3,file/1,uses/2 }
ΣL = { process(x , y1, z1) ∧ process(x , y2, z2)→ y1 = y2 ∧ z1 = z2,

uses(x , y)→ ∃z,w .process(x , z,w) ∧ file(y), . . . }

Physical:

SA = {task_struct/1/0,pid/2/1,uid/2/1,fds/2/1,fname/2/1}
ΣP = { task_struct(x)→ ∃y , z,w .pid(x , y) ∧ uid(z) ∧ fds(x ,w)

pid(x1, y) ∧ pid(x2, y)→ x1 = x1
process(x , y , z)→ ∃t .task_struct(t) ∧ pid(t , x), . . . }

Unifying Logic-based Approach Introduction and Goals 19 / 25

Queries and Answers

Queries: First-order formulae (ϕ) over SL.

⇒ ∃p,n,u.process(p,n,u) ∧ u = 145 ∧ uses(p, f) ∧ file(f)

Data D:
Sets of (ground) tuples that fix meaning of every access path.

Query Answers:
answers in common when evaluating ϕ over every interpretation (database)
that is a model of Σ and that extend D.

Definition (Certain Answers)
certΣ,D(ϕ) = {~a | Σ ∪ D |= ϕ(~a)} logical implication

=
⋂

I|=Σ∪D{~a | I |= ϕ(~a)} answer in every model

Unifying Logic-based Approach Introduction and Goals 20 / 25

Queries and Answers

Queries: First-order formulae (ϕ) over SL.

⇒ ∃p,n,u.process(p,n,u) ∧ u = 145 ∧ uses(p, f) ∧ file(f)

Data D:
Sets of (ground) tuples that fix meaning of every access path.

Query Answers:
answers in common when evaluating ϕ over every interpretation (database)
that is a model of Σ and that extend D.

Definition (Certain Answers)
certΣ,D(ϕ) = {~a | Σ ∪ D |= ϕ(~a)} logical implication

=
⋂

I|=Σ∪D{~a | I |= ϕ(~a)} answer in every model

Unifying Logic-based Approach Introduction and Goals 20 / 25

Queries and Answers

Queries: First-order formulae (ϕ) over SL.

⇒ ∃p,n,u.process(p,n,u) ∧ u = 145 ∧ uses(p, f) ∧ file(f)

Data D:
Sets of (ground) tuples that fix meaning of every access path.

Query Answers:
answers in common when evaluating ϕ over every interpretation (database)
that is a model of Σ and that extend D.

Definition (Certain Answers)
certΣ,D(ϕ) = {~a | Σ ∪ D |= ϕ(~a)} logical implication

=
⋂

I|=Σ∪D{~a | I |= ϕ(~a)} answer in every model

Unifying Logic-based Approach Introduction and Goals 20 / 25

Queries and Answers

Queries: First-order formulae (ϕ) over SL.

⇒ ∃p,n,u.process(p,n,u) ∧ u = 145 ∧ uses(p, f) ∧ file(f)

Data D:
Sets of (ground) tuples that fix meaning of every access path.

Query Answers:
answers in common when evaluating ϕ over every interpretation (database)
that is a model of Σ and that extend D.

Definition (Certain Answers)
certΣ,D(ϕ) = {~a | Σ ∪ D |= ϕ(~a)} logical implication

=
⋂

I|=Σ∪D{~a | I |= ϕ(~a)} answer in every model

Unifying Logic-based Approach Introduction and Goals 20 / 25

The BAD News (and what can be done)

Theorem
“~a ∈ certΣ,D(ϕ)?” is undecidable.

⇒ sources of undecidability: both Σ and ϕ!

Standard solution:
1 restrict Σ to decidable fragments of FOL (e.g., DLs)
2 restrict ϕ to a decidable fragment of FOL (e.g., UCQ)

SL,ΣL SP,ΣP queries

OBDA (lite) TBox ABox CQ/UCQ

Data Exchange target, target deps source, st-tgds CQ/UCQ

Information Integration global view local view, {G|L}AV CQ/UCQ

Unifying Logic-based Approach Introduction and Goals 21 / 25

The BAD News (and what can be done)

Theorem
“~a ∈ certΣ,D(ϕ)?” is undecidable.

⇒ sources of undecidability: both Σ and ϕ!

Standard solution:
1 restrict Σ to decidable fragments of FOL (e.g., DLs)
2 restrict ϕ to a decidable fragment of FOL (e.g., UCQ)

SL,ΣL SP,ΣP queries

OBDA (lite) TBox ABox CQ/UCQ

Data Exchange target, target deps source, st-tgds CQ/UCQ

Information Integration global view local view, {G|L}AV CQ/UCQ

Unifying Logic-based Approach Introduction and Goals 21 / 25

The BAD News (and what can be done)

Theorem
“~a ∈ certΣ,D(ϕ)?” is undecidable.

⇒ sources of undecidability: both Σ and ϕ!

Standard solution:
1 restrict Σ to decidable fragments of FOL (e.g., DLs)
2 restrict ϕ to a decidable fragment of FOL (e.g., UCQ)

SL,ΣL SP,ΣP queries

OBDA (lite) TBox ABox CQ/UCQ

Data Exchange target, target deps source, st-tgds CQ/UCQ

Information Integration global view local view, {G|L}AV CQ/UCQ

Unifying Logic-based Approach Introduction and Goals 21 / 25

What do Relational Systems do??

IDEA: “make it look like a single model”
(severely) restrict what logical schema may look like:

every logical predicate P(~x) must correspond 1-1 to some access path.

. . . conceptual/logical symbols in queries are (mere aliases of) access paths.
. . . completely against the idea of physical data independence.

IDEA-2: “only queries that think there is a single model”
A formula ϕ is domain independent if for all pairs of models I1, I2 of D and
valuation θ we have

I1, θ |= ϕ if and only if I2, θ |= ϕ.

. . . I1 and I2 can only differ in their domains (hence the name).

Unifying Logic-based Approach Introduction and Goals 22 / 25

What do Relational Systems do??

IDEA: “make it look like a single model”
(severely) restrict what logical schema may look like:

every logical predicate P(~x) must correspond 1-1 to some access path.

. . . conceptual/logical symbols in queries are (mere aliases of) access paths.
. . . completely against the idea of physical data independence.

Is this enough?

¬P(x)? ∀x .P(x)?

. . . depend on the domain of the model

IDEA-2: “only queries that think there is a single model”
A formula ϕ is domain independent if for all pairs of models I1, I2 of D and
valuation θ we have

I1, θ |= ϕ if and only if I2, θ |= ϕ.

. . . I1 and I2 can only differ in their domains (hence the name).

Unifying Logic-based Approach Introduction and Goals 22 / 25

What do Relational Systems do??

IDEA: “make it look like a single model”
(severely) restrict what logical schema may look like:

every logical predicate P(~x) must correspond 1-1 to some access path.

. . . conceptual/logical symbols in queries are (mere aliases of) access paths.
. . . completely against the idea of physical data independence.

Is this enough? ¬P(x)? ∀x .P(x)?

. . . depend on the domain of the model

IDEA-2: “only queries that think there is a single model”
A formula ϕ is domain independent if for all pairs of models I1, I2 of D and
valuation θ we have

I1, θ |= ϕ if and only if I2, θ |= ϕ.

. . . I1 and I2 can only differ in their domains (hence the name).

Unifying Logic-based Approach Introduction and Goals 22 / 25

What do Relational Systems do??

IDEA: “make it look like a single model”
(severely) restrict what logical schema may look like:

every logical predicate P(~x) must correspond 1-1 to some access path.

. . . conceptual/logical symbols in queries are (mere aliases of) access paths.
. . . completely against the idea of physical data independence.

Is this enough? ¬P(x)? ∀x .P(x)? . . . depend on the domain of the model

IDEA-2: “only queries that think there is a single model”
A formula ϕ is domain independent if for all pairs of models I1, I2 of D and
valuation θ we have

I1, θ |= ϕ if and only if I2, θ |= ϕ.

. . . I1 and I2 can only differ in their domains (hence the name).

Unifying Logic-based Approach Introduction and Goals 22 / 25

What do Relational Systems do??

IDEA: “make it look like a single model”
(severely) restrict what logical schema may look like:

every logical predicate P(~x) must correspond 1-1 to some access path.

. . . conceptual/logical symbols in queries are (mere aliases of) access paths.
. . . completely against the idea of physical data independence.

IDEA-2: “only queries that think there is a single model”
A formula ϕ is domain independent if for all pairs of models I1, I2 of D and
valuation θ we have

I1, θ |= ϕ if and only if I2, θ |= ϕ.

. . . I1 and I2 can only differ in their domains (hence the name).

Unifying Logic-based Approach Introduction and Goals 22 / 25

A LOGSPACE Algorithm

IDEA
Domain independent formulae can be evaluated in a model based on the
active domain of D (set of individuals that appear in the access paths).

. . . active domain of D is a finite set.

A Turing machine Tϕ

read only input tape storing (an encoding of) ~a and D;
read/write work tape storing a counter for each variable in ϕ (log |D| bits)
and fixed number of auxiliary counters;
a finite control that implements top-down satisfaction check w.r.t. a
valuation defined by the current state of the counters

⇒ used as pointers to individuals on the work tape.

Theorem

certΣ,D(ϕ) = {~a | 〈~a,D〉 ∈ L(Tϕ)}.

Unifying Logic-based Approach Introduction and Goals 23 / 25

A LOGSPACE Algorithm

IDEA
Domain independent formulae can be evaluated in a model based on the
active domain of D (set of individuals that appear in the access paths).

. . . active domain of D is a finite set.

A Turing machine Tϕ

read only input tape storing (an encoding of) ~a and D;
read/write work tape storing a counter for each variable in ϕ (log |D| bits)
and fixed number of auxiliary counters;
a finite control that implements top-down satisfaction check w.r.t. a
valuation defined by the current state of the counters

⇒ used as pointers to individuals on the work tape.

Theorem

certΣ,D(ϕ) = {~a | 〈~a,D〉 ∈ L(Tϕ)}.

Unifying Logic-based Approach Introduction and Goals 23 / 25

A LOGSPACE Algorithm

IDEA
Domain independent formulae can be evaluated in a model based on the
active domain of D (set of individuals that appear in the access paths).

. . . active domain of D is a finite set.

A Turing machine Tϕ

read only input tape storing (an encoding of) ~a and D;
read/write work tape storing a counter for each variable in ϕ (log |D| bits)
and fixed number of auxiliary counters;
a finite control that implements top-down satisfaction check w.r.t. a
valuation defined by the current state of the counters

⇒ used as pointers to individuals on the work tape.

Theorem

certΣ,D(ϕ) = {~a | 〈~a,D〉 ∈ L(Tϕ)}.

Unifying Logic-based Approach Introduction and Goals 23 / 25

A LOGSPACE Algorithm

IDEA
Domain independent formulae can be evaluated in a model based on the
active domain of D (set of individuals that appear in the access paths).

. . . active domain of D is a finite set.

A Turing machine Tϕ

read only input tape storing (an encoding of) ~a and D;
read/write work tape storing a counter for each variable in ϕ (log |D| bits)
and fixed number of auxiliary counters;
a finite control that implements top-down satisfaction check w.r.t. a
valuation defined by the current state of the counters

⇒ used as pointers to individuals on the work tape.

Theorem

certΣ,D(ϕ) = {~a | 〈~a,D〉 ∈ L(Tϕ)}.

Unifying Logic-based Approach Introduction and Goals 23 / 25

Range-restricted Formulas and Relational Algebra

Nobody uses that algorithm!

Instead:
Range-restricted Formulae (queries):

ϕ ::= R(~x) | ϕ ∧ x = y | ϕ ∧ ϕ | ∃s.ϕ | ϕ ∨ ϕ | ϕ ∧ ¬ϕ

Bottom-up “Algebraic” Query Evaluation:
every production above maps (at least naively) to a algebraic
operation on finite relations:

scan (with renaming),
selection,
join,
projection,
union, and
difference.

Datalog (limited iteration)
additional predicates defined as a fixpoint positive query
allows PTIME-complete problems.

Unifying Logic-based Approach Introduction and Goals 24 / 25

Range-restricted Formulas and Relational Algebra

Nobody uses that algorithm! Instead:
Range-restricted Formulae (queries):

ϕ ::= R(~x) | ϕ ∧ x = y | ϕ ∧ ϕ | ∃s.ϕ | ϕ ∨ ϕ | ϕ ∧ ¬ϕ

Bottom-up “Algebraic” Query Evaluation:
every production above maps (at least naively) to a algebraic
operation on finite relations:

scan (with renaming),
selection,
join,
projection,
union, and
difference.

Datalog (limited iteration)
additional predicates defined as a fixpoint positive query
allows PTIME-complete problems.

Unifying Logic-based Approach Introduction and Goals 24 / 25

Range-restricted Formulas and Relational Algebra

Nobody uses that algorithm! Instead:
Range-restricted Formulae (queries):

ϕ ::= R(~x) | ϕ ∧ x = y | ϕ ∧ ϕ | ∃s.ϕ | ϕ ∨ ϕ | ϕ ∧ ¬ϕ

Bottom-up “Algebraic” Query Evaluation:
every production above maps (at least naively) to a algebraic
operation on finite relations:

scan (with renaming),
selection,
join,
projection,
union, and
difference.

Datalog (limited iteration)
additional predicates defined as a fixpoint positive query
allows PTIME-complete problems.

Unifying Logic-based Approach Introduction and Goals 24 / 25

Summary

comprehensive framework based on certain answers that unifies many
database/KR approaches to handling information in presence of
background information/theory/ontology;
too expressive and in turn computationally in-feasible;
practical (relational) systems: (almost) trivial instance of the framework.

Plan of Lectures:
1 Classical OBDA: another way of gaining tractability (and its limits)
2 Database Approach Extension and Interpolation
3 Modeling Complex Physical Designs
4 Updates of Data and Future Directions

Unifying Logic-based Approach Introduction and Goals 25 / 25

Summary

comprehensive framework based on certain answers that unifies many
database/KR approaches to handling information in presence of
background information/theory/ontology;
too expressive and in turn computationally in-feasible;
practical (relational) systems: (almost) trivial instance of the framework.

Plan of Lectures:
1 Classical OBDA: another way of gaining tractability (and its limits)
2 Database Approach Extension and Interpolation
3 Modeling Complex Physical Designs
4 Updates of Data and Future Directions

Unifying Logic-based Approach Introduction and Goals 25 / 25

	Organization
	Use Scenarios and Goals
	Unifying Logic-based Approach

