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3. Semantic Tableaux and Resolution

Our sec?nd application of the Model Existence Theorem is Craig’s In-
terpolation Theorem. This result has important model-theoretic conse-

quences, and we will consider it more fully once first-order logic has been
introduced.
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Definition 3.6.4

Theorem 3.6.5

Exercises

A formula Z is an interpolant for the implication X D Y if every propo-
sitional letter of Z also occurs in both X and Y and if X D Zand Z 2 Y
are both tautologies.

For example, (P V (Q A R)) D (PV —-Q) has PV @ as an interpolant;
(PA-P)>Q has | as an interpolant.

(Craig Interpolation) IfX DY isa tautology, then it has an in-
terpolant.

Proof We write (S}, as usual, to denote the conjunction of the members
of S. Call a finite set S Craig consistent, provided there is a partition
of § into subsets S; and Sy (that is, § = S; U Sz and §1 N Sz = 0)
such that {S1) O ~(S2) has no interpolant. Let C be the collection of all
Craig-consistent sets. C is a Propositional Consistency Property (Exer-
cise 3.6.5).

Now we show the theorem in its contrapositive form. Suppose X D Y
has no interpolant. Let S be the set {X, —Y}, and consider the partition
Sy = {X}, S = (Y} If ({X}) D —({~Y}) had an interpolant Z, then
7 would also be an interpolant for X > Y, hence it does not have an
interpolant. Then S is Craig consistent, and so by the Model Existence
Theorem, § is satisfiable. It follows that X D Y is not a tautology. O

3.6.1. Show that every Propositional Consistency Property can be ex-
tended to one that is subset closed. Hint: Let C be a Propositional Con-
sistency Property. Let C* consist of all subsets of members of C, and
show C7 is also a Propositional Consistency Property.

3.6.2. Show that every Propositional Consistency Property of finite
character is subset closed.

3.6.3. Show that a Propositional Consistency Property that is sub-
set closed can be extended to one of finite character. Hint: Let C be a
Propositional Consistency Property that is subset closed. Let CT consist
of those sets S all of whose finite subsets are in C. Show that C* is a
Propositional Consistency Property and extends C.

3.6.4. Tinish the proof of the Propositional Compactness Theorem by
showing in detail that C is a Propositional Consistency Property.

3.6.5. Complete the proof of Theorem 3.6.5 by showing that the col-
lection of Craig-consistent sets is a Propositional Consistency Property.

3.6.6. Show that if X D Y is a tautology and X and Y have no
propositional letters in common, then one of ~X or Y is a tautology.
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8,11

Craig's
Interpolation
Theorem

Definition 8.11.1

Definition 8.11.2

Lemma 8.11.3

We- sk.etched a proof of Craig’s interpolation theorem for propositional
logic in Chapter 3 (Theorem 3.6.5). The propositional theorem doe.
not really have any interesting applications, but the first-order versi .
Tnost certainly does. In this section we extend the earlier proof Whi:ﬁ
is nonconstructive, to the first-order setting, and in the next sec,tion we
give a constructive argument as well. Applications then follow. The proof

in this secttion has superficial differences with that of Theorem 3.6.5 but
the essential features are the same. o

.Let 87 and S be sets of sentences. An interpolant for the pair 5;, S,
1sf Ej';; sentence f such that all constant, function, and relation Symi)ols
of 4 occur in formulas of both S; and S, and such that S

U
Sa U {—Z} are not satisfiable. R i ol

A finite set S of sentences is Craig consistent if there is a partition 51, S,

of § that lacks an interpolant. (S;, S5 i ;
and Sl 082‘;@‘) ( 4 zlsapa’rtltlonofslfS]_USZ=S

T;I'le ff)llc:swi‘nt_;;1 lemma is in a form that is particularly suited for an ap-
plication of the Model Existence Theorem. Craie’s T i i
e g's Theorem itself is an

Let C be the CO”BCMOH 0’ C:' ﬂ,'e.‘gﬂIO?LSZSfemf SE!ifS. C 8 a Ji1 t"O? de'f co 8-
J S 1S5t

Proof Several items must be checked; we only do a few.

vy-case 'Suppose 7 € S but for some closed term ¢, § U {v(t)} is
not Craig consistent. We show S is not Craig-consistent either, Let
51, S2 be a partition of §; we show it has an interpolant. And we
assume <y € S1; the argument if v € S5 is similar.

S1U{(t)}, Sz is a partition of SU {(¢)}, so it has an interpolant
say Z, since SU{~(t)} is not Craig-consistent. Now S, U{-Z}is notj
sa.t%sﬁable. Also, 81U {~(#)} U {Z} is not satisfiable, and it follows
easily that S; U {Z} is not satisfiable either, since vy ES.

We know that all constant, function, and relation symbols of Z are
common to Sy U{y(t)} and S. If they all occur in §;, we are done;
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Z is an interpolant for Sy, So. So now suppose Z contains some
symbol occurring in S; U {7(¢)} but not in Sy. Since y € 51, any
such symbol must occur in t and so must be a constant or a function
symbol. There may be several; for simplicity let us say Z contains
just one subterm, f(u1,...,%n}, where f occurs in ¢ but not in 5.
The more general situation is treated similarly.

Let 2 be a new free variable, and let Z* be like Z but with the occur-
rence of f(uy,...,u,) replaced by x, so Z = Zx/f(ur,. .. un)}
We claim (3z)Z* is an interpolant for 51, Ss.

First, all constant, function, and relation symbols of (Jz)Z* are
common to both S; and S, because we have removed the only
one that was a problem. Next, Sz U {=Z} is not satisfiable, hence,
neither is Se U {~(32)Z" }. This follows from the validity of

Z{a/flur,- .., un)} O (B2) 2"

Finally, S; U{Z} is not satisfiable, and it follows that S U{(Z=)Z*}
is also not satisfiable. This argument needs a little more discussion
than the others. (Its similarity to the proof of Lemma 8.3.1 is no
coincidence.)

Suppose S; U{(3z)Z*} is satisfiable, we show S1U{Z} also is. Sup-
pose the members of S1 U {(3z)Z"} are true in the model (D, T}.
Then in particular, Z +LA 5o true for some assignment A. Now de-
fine a new interpretation J to be like T on all symbols except f,
and set f7 to be the same as f! on all members of D except
WAL, ulA. Finally, set f7 (1" vy ®) = .zl Sinee T aid
J differ only on f, and that does not occur in 5;, the members
of this set will have the same truth values using either interpre-
tation. Consequently, the members of Sy are true in (D,J). Using

Proposition 5.3.7, [Z*{z/f(u1,..., un) " = ZrdA — A —

§-case This time suppose § € S but for each parameter p, S U{é(p)}
is not Craig-consistent. We show S is also not Craig-consistent. Let
S1, S5 be a partition of S; we show it has an interpolant. And once
again, we suppose 8 € Si; if it is in S5, the argument is similar.
Let p be a parameter that does not occur in § (there must be one,
since S is finite). S U {6(p)} is not Craig-consistent, so its partition
S, U {6(p)}, S2 has an interpolant, say, Z. We claim Z is also an
interpolant for Si, So-

All constant, function, and relation symbols of Z are common to
both Sy U{#(p)} and Sa. Since p was new to 5, it does not occur in
S5, and hence not in Z either. It follows that all constant, function,
and relation symbols of Z are common to S; and Ss.

SoU{~Z} is not satisfiable. Also Sy U{6(p)}U {Z} is not satisfiable,
and it follows that S; U {Z} is not satisfiable either. This is shown
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Definition 8.11.4

Theorem 8.11.5

Exercises

by a ‘redefining interpretations’ argument much like in the ~-case.
;Ne omit it. But the conclusion is that Z is an interpolant for 51,
2.

O

Now we come to Craig’s Theorem itself [12).

The sentence Z is an interpolant for the sentence X o Y if every relation
symbol, function symbol, and constant symbol of Z is common to X and
Y, and both X > Z and Z > Y are valid.

(First-Order Craig Interpolation) If X OV is a valid sentence
then it has an interpolant. J

Proof We show the contrapositive. Suppose X > Y lacks an inter-
polant. Let § = {X, Y}, and consider the partition S; = {=Y} and
S2 = {X}. If Z were an interpolant for S, Ss, it follows directly that 2
would also be an interpolant for X > V. Thus, St, Ss has no interpolant,

S0 .5' is Craig-consistent. Then by the Model Existence Theorem, S is
satisfiable, and so X D Y is not valid. O

L3

8.11.1. Wesaid in the proof of Lemma 8.11.3, in doing the y-case, that
the subcase where v € S5 was similar to that where v € &1. Nanetheless,
there are some notable differences. Do this subcase in detail.
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g.12

Craig's
Interpolation
Theorem—
Constructively

Definition 8.12.1

The proof of Craig’s Theorem in the previous section used the Model
Existence Theorem and was nonconstructive. Now we give a construc-
tive proof, showing how to extract an interpolant from a closed tab-
leau. (The previous sentence mentions an important point—one that is
easy to miss. An interpolant for a valid sentence X O Y is not con-
structed just from the sentences X and Y. It is constructed from a proof
of X O Y—different proofs can give different interpolants.) We use a
modified version of the symmetric Gentzen system method introduced
by Smullyan [48].

In proving X O Y, we start a tableau with —(X 2 Y'), then apply the
a-rule, adding X and =Y. After this, any sentence added to the tableau
must be either a descendant of X or of =Y. We begin by enhancing the
usual tableau machinery to keep track of the ancestor of each sentence.
Think of X as “left” and =Y as “right,” which are respective positions
of X and Y in X O Y. We symbolize this by writing L(X) and R(—Y)
and systematically use the “L” and “R” notation throughout. In effect,
“I” and “R” are bookkeeping devices that record a sentence’s ancestry;
they play no other role.

A biased sentence is an expression of one of the forms L(Z) or R(Z),
where Z is a sentence.

Next, the usual tableau rules are extended to biased sentences in a
straightforward way. For instance, the standard a-rule yields the fol-
lowing two biased rules:

L(a) R(q)
L(Ctl) R(O!l)
L(az) R(as)

The other tablean rules are treated in a similar way. We call a tableau
that is constructed using these rules a biased tableau. A branch of a
biased tableau is closed if it contains a syntactic contradiction, ignoring
the L and R symbols. Thus, a branch is closed if it contains L(Z) and
R(—Z) or if it contains L(Z) and L(—Z}, and so on.

If the sentence X O Y has a tableau proof, it can be converted into a
closed biased tableau for {L(X), R(~Y)}. Simply take the closed tableau
beginning with (X D Y), drop the first line, thus getting a tableau
beginning with X and —Y; replace X by L(X) and —Y with R(-Y),
then continue the insertion of L and R symbols downward through the
tableau, in the obvious way. We extract an interpolant from this closed
biased tableau.
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Definition 8.12.2

Essentially, the idea is this. We begin with each closed branch, assign an
interpolant (to be defined shortly) to it, then, one by one, we undo each
tableau rule application, calculating interpolants for the resulting short-
ened branches from those for the original longer ones. Thus, for instance,
suppose the last rule applied on a branch is one of the biased a-rules—
say the set of biased sentences on the branch is SU{L(a), L(a;), L{as)},
and we have an interpolant for this set. Using it, we say how to calcu-
late an interpolant for the smaller set S U {L(a)}, corresponding to the
branch before the a-rule was applied. Continuing in this way, we work
our way back to the beginning, thus producing an interpolant for the
set {L(X), R(-Y)}, and we will see this is also an interpolant for the
sentence X O Y. Now to define the terminology precisely.

We say the sentence Z is an interpolant for the finite set {L(A41),- ..,
L(Ay), R(B1),..., R(By)}, provided Z is an interpolant, in the sense of
Definition 8.11.4, for the sentence (A; A... AA,) D (=B V... V-By).
(Take the empty conjunction to be T and the empty disjunction to be
L)

We use the notation § 2% 7z to symbolize that Z is an interpolant for
the finite set S of biased sentences.

B
Note that by this definition, an interpolant for the set {L(X), R(-Y)}
will be an interpolant for the sentence X > =Y, and hence for X > V.

Now we give calculation rules, starting with those for closed branches.

SU{L(4),L(-4)} " |
SU{R(A), R(~4)} T T
SU{L(A), R(-4)} ™ 4
SU{R(A),L(-4)} ™ _4
Fuintnl 5 1
Su{R(L)} ™ T

Next the easy propositional cases.

SULM} ™ a4 su{zw) 4
SULEL} ™ 4 sufL-T)} ¥ 4
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SURTN T 4 SU{RW)} E—”’i A
SULR(-)} ™ 4 SU{RE-T) ™ 4
SULLE)) % A SuU{R(Z)} ™ A

; int
SU{L(—2)} A4 Su{B(--2)} 4
The o~cases are also straightforward.

SU{L(a), (o)} ™ 4 SU (Rlan), R(co)} nt 4
SU{L(@)} 2 4 SU{R(®)} ™ 4

Finally the f-cases, which are the most interesting of the propositional

rules, follow:

SUL@B) ™ 4 su{Len ™ B
int

SULB) B AvB

i int
SU{RE)L ™ A SU{R(B)} ™ B
int
SU{RPB)I L AAB
This completes the set of propositional rules. Before moving to those for
quantifiers, we verify one of the rules and give an example. The rule we
verify is the one for R(5).

Verification Suppose S = {L(X1),..., L(X,), R(Y1),..., R(Yy)}, and
we have both
SU(RGB) 24 4 and SU{R(B)} 2 B.

Then A is an interpolant for the sentence (X1 A ... A X,) D (-¥1 V
...V =Y, V—=f), so all the relation, function, and constant symbols of A
appear in both X; A ... A X, and Y7 V...V oY, V5. I.t follows that
they also appear in —Y; V...V ~Y, V —f3, since every relation, cons_tant,
and function symbol of B, appears in 3. A similar observation applies to
B. It follows that all relation, constant, and function symbols of A A B
are common to both X7 A ... A X, and =¥ V...V =Y, V -4,

Next, AD(=Y1Vv...Vv-¥V-f)and BD ("Y1 V... V¥ V —f3) are
both valid. Then we have the following;:

AMNB (Y1 V... VY V=B A (RY1 V.V Y Vo)
{"Yl \% ...V"Yk\/(_‘ﬁlf\*‘ﬁg)}

(‘!Yl \/...VﬂYk\/—'(ﬁl \/ﬂg))

(3 W 8 N

[/
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In a similar (and simpler) way, we have the validity of (X; A... A X,) D
(A A B). Consequently,

SU{RB) ™ anB.

Example We compute an interpolant for the tautology [A A (B A D)V C)] D
-[(AV E) > =(=B > C)]. First, here is a closed biased tableau for
{LAAN((BAD)VC),R(—~[(AV E) > =(-B > C)])}. At the end
of each branch, we give in square brackets an interpolant for the set of
biased sentences on that branch, computed using the rules just given.

LIAA((BAD)vC))
R(~-[(AV E) > ~(=B > O)])
R((AV E) > ~(-=B > C))
L(A)

L{(BAD)VC)

2N

R(-(AV E)) -(=B > C))
(_'A) R(ﬁB) b
R(-E)

VN

L{(B A D)
L(B) [@
L(D)
(B]
Now we progressively undo tableau rule applications. For reasons of

space, we concentrate on the subtree heginning with the biased sentence
R(—~(-B > C)), displaying only it. Progressively, it becomes:

R(-~(-B > () R(-(-B > ()) R(—(-B > ()
R(ﬁB) R(-B) [BVvC]
R(=C)
/ \ [BvC]
LBAD) LG
[B] [ﬂ

We leave it to you to continue the process fully. When complete, A A
(B v C) is the computed interpolant.
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Next we give the first-order rules, which are the most complicated. We
assume the language has no function symbols—a treatment of these can
be added, but it obscures the essential ideas. Once again, we suppose § =
{L(X1),..., L(Xyn), R(Y1),..., R(Y)}. The first two rules are simple.
Let p be a parameter that does not occur in S or in 0.

SU{GE@)) ™ 4 SULREE)) M A
SU{LE) T 4 SU{R(S)} ™ 4

This leaves the y-cases, each of which splits in two, giving four rules. In
the following, ¢ is some constant symbol (the only kind of closed term we
have now), and A{c/z} is the result of replacing all occurrences of ¢ in
A with occurrences of the variable z. We assume x is a “new” variable,
one that does not appear in S or in .

SU{L(y(e)} ™ 4 SU{R(v(e)} ™ 4
SU{L()} % 4 SU{R()) ™ 4
if c occurs in {X1,...,Xn} if ¢ oceurs in {Y7, .. Yk}
SU{L((e)} ™ 4 SU{R((e)} ™ A
SU{L(M)} @» (vo)Afefr)  SU{R()} % (Ez)A{e/x)
otherwise otherwise

Once again we verify the correctness of one of these rules, that for B(7),
leaving the other to you.

Verification Suppose SU{R(( ))} M 4 Then both (Xin.. .AXR) D
Aand A D (=Y1 V...V =Y, V—y(c)) are valid, and all constant and rela-
tion symbols of A are common to {X1,...,X,} and {¥3,..., ¥, v(c)}.

First, assume we are in the case where ¢ occurs in one of the sentences
of {¥1,...,Y%}. Since v D ¥{c) is valid, so is ~y(¢) O —v, and it follows
that A 5 (=Y; V...V =Y, V =) is valid. Also, all relation and constant
symbols of A occur in both {Xi,...,X,} and {Y1,...,Y}, v}, since the
only one that might have been a problem was ¢, which appeared in y(c)
and does not appear in . This causes no difficulties, however, since
we are assuming that c is in one of {¥i,...,Ys}. Thus, A is still an
interpolant.

Next, assume ¢ does not occur in {¥7,...,Y;}. We have that (X; A
A Xp) D Alis valid. Also A © (3x)A{c/x} is valid, consequently,
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Theorem 8.12.3

(Xin...AX,) D (3z)A{c/z} is valid. Further, all constant and relation
symbols of (3z)A{c/x} also appear in A and hence in {X3,...,X,}.

On the right hand side, 4 > (=Y} V... V¥, vV =7(c)) is valid, hence
sois (Y1 A ... AY. Av(c)) D —A. For a new variable z, the validity of
(V2)[Y1 AL AY Ay(e)]{e/z} D (Va)-A4{c/z} follows. But ¢ does not
occur in {Y3,..., Y3}, so (VZ)[Yi A ... AY Av(e){c/z} = [ViA ... A
Y A (Vz)y(e)(e/x)] = [Y1 A ... AV, Ay]. Thus, we have the validity of
ﬁg‘/\m)m;l{c/m} S (¥ M N N o (Bajddefal o (58 Ve
=¥ Ny,

Finally, the constant and relation symbols of (3z)A{c/z} are those of
A except for c. (In fact, if ¢ does not actually appear in A, the quantifi-
cation is vacuous, and (3z)A{¢/x} and A have the same constant and
relation symbols.) The constant and relation symbols of {X;,...,X,}
include those of A, hence trivially those of (3x)4{c/z}. The constant and
relation symbols of {¥7, ..., Y%, v(c)} include those of A, so the constant
and relation symbols of {Y1,..., Y}, v} also include those of (Jz)A{c/x}.

We have thus verified that (3z)A{c/x} is an interpolant.

Craig’s Theorem was strengthened by Lyndon [32]. Recall from Defini-
tion 8.2.3 the notion of positive and negative formula occurrence. Say
a relation symbol R occurs positively in a fofmula X if it appears in
a positive atomic subformula of X—similarly for negative occurrences.
Note that a relation symbol may appear both positively and negatively
in the same formula.

(Lyndon Interpolation) If X DY is a valid sentence, then it has
an interpolant Z such that every relation symbol occurring positively in
Z has a positive occurrence in both X and Y, and every relation symbol
occurring negatively in Z has a negative occurrence in both X and Y.

Lyndon’s result cannot be extended to account for positive and negative
occurrences of constant or function symbols. Consider the valid sentence
[(Vz)(P(z) D -~Q(z)) A P(c)] O =Q(c). The constant symbol ¢ will oceur
in any interpolant for this sentence, but it occurs positively on the left
and negatively on the right.

In effect, Lyndon’s interpolation theorem has already been proved. That
is, the two proofs we gave actually verify the stronger version. We leave
it to you to check this, as an exercise.

Here is a different strengthening of Craig’s theorem. As usual, we need
some terminology first.
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8.13

Beth's
Definability
Theorem

Definition 8.13.1

A formula is universal if every quantifier occurrence in it is essentially
universal, in the sense of Definition 8.5.1. Likewise, a formula is eristen-
tial if every quantifier occurrence in it is essentially existential.

Suppose X 'Y is a valid sentence. If Y is universal, there is an inter-
polant that is also universal. Similarly, if X is existential, there is an
ezistential interpolant. Finally, if X is existential and Y is universal,
there is a gquantifier-free interpolant.

8.12.1. Use the procedure of this section to compute an interpolant
for the valid sentence [(Vz){P(z) D —Q(z)) A P(e)] D ~Q(c).

8.12.2. Show that the procedure of this section actually verifies Lyn-
don’s strengthening of the Craig Interpolation Theorem.

8.12.3. Prove Theorem 8.12.5 using the procedures of this section.

8.12.4F. Implement the propositional part of the procedure of this
section in Prolog, producing a propositional theorem prover for implica-
tions that computes interpolants.

8.12.5F. Extend the Prolog implementation of the previous exercise
to a full first-order version.

Sometimes information is explicit: “The murderer is John Smith.” Often
we find an implicit characterization instead, as in “The murderer is the
only person in town who wears glasses, has red hair, and owns a dog and
a canary.” Puzzles often involve turning implicit characterizations into
explicit ones. Beth’s Definability Theorem [4] essentially says that in
classical logic such puzzles can always be solved. This is a fundamental
result that says that classical logic has a kind of completeness where
definability is concerned. We begin this section with some terminology,
then we state and prove Beth's Theorem. The proof we give is not Beth's
original one but is based on Craig’s Theorem and comes from Craig’s
1957 paper [12].

Let R be an n-place relation symbol, and ®(z1,...,z,) be a formula
with free variables among z1,...,Z,, and with no occurrences of R. We
say ® is an ezplicit definition of R, with respect to a set S of sentences,
provided

S |:f (V.I?l) . . -(an)[R(ml,...,mn) = @(a;l,...,:rn)].
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Example

Definition 8.13.2

Example

Theorem 8.13.3

In a group, y is the conjugate of  under conjugation by a if y = a 'za.

Conjugation is a three-place relation, between a, x, and y that has an
explicit definition (we just gave it informally) with respect to the set S
of axioms for a group. Of course, to properly present this as an example,
we need a first-order language with equality. Equality will be investigated
in the next chapter, and it can be shown that the results of this section
do carry over.

Again, let R be an n-place relation symbol. We say R is implicitly de-
fined by a set S of sentences, provided S determines R uniquely, in the
following sense. Let R* be an n-place relation symbol different from R,
that does not occur in 5, and let 5* be like S except that every occur-
rence of B has been replaced by an occurrence of R*. Then S determines
R uniquely if

S 8% =¥y ) o (Vi )Rty on ) SR B1 500 525)]
Let S = {(Vz)(R(z) > A(z)), (Vz)(R(x) D> B(z)), (Vz)(A(z) D (B(z) D
R(z)))}. Tt is easy to check that S determines R uniquely, and so R

is implicitly defined by S. In fact, 1% also has the explicit definition
(V) [R(z) = (A(z) A B(z))]-

B
(Beth Definability)  If R is implicitly defined by a set S, then R
has an explicit definition with respect to 5.

Proof Suppose R is implicitly defined by §. Let R* be a new relation
symbol, and let S* be like § but with occurrences of R replaced by
occurrences of B*. Then

SUWS* Er (Vo) (Vzo)[R(z1,. .., 2:) = R*(21,. .., Z5)],
so by Theorem 5.10.2,
8o L8 Ep (Va1 )~ (V) [Blzns ox v85) = BN (14  58a)l;

where Sy and S are finite subsets of § and S*, respectively. Let A Sp be
the conjunction of the members of Sy, and let A S§ be the conjunction
of the members of 5j, so that both A Sy and A S are sentences. Then
(Exercise 5.10.3, part 7),

(A Son A\S§) > (Var) -+ (Yan)[R(z1, -, Tn) = R (21, -, 20))]

is valid. Choose n distinct parameters, py...., p,. Then the following is
also valid:

(A So A N\ S3) 2 [Rp1,-...pn) = R (pr,-. . o)),

and from this follows the validity of

[A\So A Bpr,-.. )] 2 [\ S5 2 R (b1, p)l

Now by Craig’s Theorem 8.11.5, there is an interpolant for this. The
interpolant may contain some or all of the parameters we introduced,
so we denote it by ®(p;,...,p,). Since it is an interpolant, all constant,
function, and relation symbols of ®(p1,...,ps) are common to [/ Sy A
R(p1,...,pn)] and [A S; D R*(p1,...,pn)], and both

[ASoAR(Dr,...,pa)] D 2(p1, - Pn)
and

®(p1,...,pu) D[\ S§ 2 R (prs- -, p0)]
are valid.

The relation symbol R* does not occur in [A Sy AR(p1,...,Pn)], and the
relation symbol R does not occur in [A S§ D R*(p1,...,pn)], and so nei-
ther R nor R* can occur in ®(py,...,pn). Also, ®(p1,...,pn) D [ASF D
R*(p1,...,p,)] is valid, hence so is the result of replacing all occurrences
of R* by a relation symbol that does not appear in this sentence. Since R*
does not occur in ®(py,...,p,), replacing occurrences of B* with occur-
rences of R yields the validity of ®(p1,...,pn) D [ASo D R(p1,.--,pn)],
from which the validity of A Sy O [®(p1,....Ps) D R(p1,....pn)] fol-
lows. We also have the validity of [A So A R(p1,--..0)] 2 ®(p1,-..,pn)
from which the validity of A Sp O [R(p1,...,pn) 2 ®(p1,...,pn)] fol-
lows. Combining these two, we have the validity of

/\SU ) [R(Ph :pn) = (I)(plapn)]u

from which we immediately obtain

So =7 [R(p1s- ... Pn) = B(p1, ..., pn)]

and hence

S Es R, ... p0) = D(p1,...,00)]-
Finally, from this (Exercise 8.13.1) we have the validity of

Skr (Vo) - - (Vo) [R(z1, . .., Z0) = (21, ..., 20)]-

Since ®{x1,...,z,) contains no occurrences of R, it is an explicit defi-
nition of B. O

The proof of Beth’s Theorem given above is entirely constructive, pro-
vided we have a constructive method of finding interpolants. Our first
proof of Craig’s Theorem was not constructive, but our second was.
Also Craig’s original proof [12] was constructive by design. It follows
that the conversion from implicit to explicit definition is a constructive
one, suitable for mechanization, at least in principle.
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Exercises

8.14
Lyndon's Ho-
momorphism
Theorem

Example

Definition 8.14.1

Definition §.14.2

8.13.1. Suppose ® is a formula with only x free, and p is a parameter
that does not occur in @, or in any member of the set S of sentences.
Show that if S =7y ®{z/p} then S =; (Vz)®. Hint: see Exercises 5.3.2
and 5.10.2.

Let L be a first-order language with no constant or function symbols,
and let M = (D,I) and N = (E,J} be two models for the language
L. A mapping A : D — E is a homomorphism, provided the following:
For each n-place relation symbol R of L and for each by,..., b, € D, if
RY(by,...,b,) is true in M then R (h(by),...,h(b,)) is true in N.

Suppose L has a single three-place relation symbol, K. Let M be the
model whose domain is the integers and in which A is interpreted by the
addition relation; that is, R¥(a, b,¢) is true in M just in case a + b = c.
Let N have domain {0,1}, and interpret R by the addition modulo 2
relation; R?(a,b,¢) istruein Nifa+b=c (mod 2). If & is the function
mapping the evens to 0 and the odds to 1, & is a homomorphism from
M to N.

A sentence X of L is preserved under homomorphisms, provided, when-
ever X is true in a model M, and there is a hemomorphism from M to
N, then X is also true in N.

Being preserved under homomorphisms is a semantic notion—the def-
inition talks about models and truth. The question for this section is,
Does this semantic notion have a syntactic counterpart? We will see that
it does—being a positive sentence.

Let L-be a first-order language (with or without constant and function
symbols). The positive formulas of L are the members of the smallest
set S such that:

1. If A is atomic, 4 € S.
. LeS=ZeS

o eESanda e S= e s

oW

,61658.1’1(21,6265:}‘,665.
5. 4) e S=y€S.
6. () e S= 6 S.
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Proposition 8.14.3

Theorem 8.14.4

Informally, the positive formulas are those that can be rewritten us-
ing only conjunctions and disjunctions as propositional connectives (in
particular without negation symbols). You are asked to show this as
Exercise 8.14.1. Equivalently, the positive formulas are those in which
every relation symbol appears only positively.

Now, here is the easy half of the semantic/syntactic connection we are
after; we leave its proof to you. (It generalizes considerably—see Exer-
cise 9.2.3.)

Let L be a longuage with no constant or function symbols. Every positive
sentence of L is preserved under homomorphisms.

The hard half is Lyndon’s Homomorphism Theorem. It asserts the con-
verse.

(Lyndon Homomorphism)  Let L be a language with no constant
or function symbols. If the sentence X is preserved under all homomor-
phisms, then X is equivalent to some positive sentence.

Proof Without loss of generality, we assume L has a finite number of
relation symbols, since it is only necessary to consider those that actually
appear in X . For each (n-place) relation symbol R of L, let R’ be another
relation symbaol (also n-place) that is new to the language. Let L’ be
the result of enlarging L with these additional relation symbols. By the
homomorphism sentence for R, we mean the sentence

(Vz1) - (Vou)[R(z1, ... 20) D R(21,...,20)]

Now, let H be the conjunction of all the homomorphism sentences for
the relation symbols of L. Also, let X’ be the sentence that is like X,
except that each relation symbol R has been replaced by its counterpart
R'. (More generally, for any sentence Z, let Z’ be the result of replacing
each R by the corresponding R'.)

Now assume that X is preserved under homomorphisms. We claim the
following sentence is valid:

X o (H>X').

Suppose this is not so. Let My = {Dg, Iy) be a model for L' in which it is
not true, hence in which X and H are true, but X’ is false. We construct
two new models M; = (D,1;} and My = (D2, 1), for the original
language L, by “pulling apart” this one. First, set D; = Dy = Dy, so
all models have the same domain. Next, for each relation symbol R of
L, set RI* = Rl and Rz = R'o.
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In effect, M; acts like the “unprimed” part of M, and My acts like the
“primed” part. This can be made more precise, as follows (we leave the
proof as an exercise):

Pulling Apart Assertion For any sentence Z of L:

1. Z is true in My if and only if Z is true in M;.

2. Z is true in My if and only if Z’ is true in M.

Now, let a1, ..., an be in Dy, and suppose R (a1, ..., ay) is true in M.
By definition, R%(ay,...,a,) is true in My. But the sentence H is true
in My, so in particular (Va1) - - (Vz,)[R(z1, ..., 2n) D R (x1,...,70)] s
true. It follows that R (ay,...,a,) is true in My, and hence By, 5
a,) is true in My. Then the identity map is a homomorphism from M,
to MQI

Finally, X is true in My, hence X is true in M; by the Pulling Apart As-
sertion. But we are assuming that X is preserved under homomorphisms,
hence X is true in My. Then by the Pulling Apart Assertion again, X’
must be true in My, but it is not. This contradiction establishes the
validity of X > (H 2 X').

Now, by Lyndon’s Interpolation Theorem 8.12.3, there is a sentence Z
such that

1. X o Z is valid.
2. Z > (H > X') is valid.

3. Every relation symbol that occurs positively (negatively) in Z oc-
curs positively (negatively) in both X and H O X'.

No primed relation symbol R’ occurs in X, hence it cannot occur in
Z. Also, R does not occur in X', and the only occurrence of R in H
is in the homomorphism sentence for R, (Vz1) - (Van)[R(z1,. .., 20) D
R'(z1,...,%,)], where it occurs negatively. Consequently, the only oc-
currence of R in H o X' is positive, and hence any occurrence of R in
7 must be positive. It follows that Z itself is a positive sentence of L.

We have established that Z > (H D X') is valid. For each relation
symbol R of L, if every occurrence of R’ in this sentence is replaced by an
occurrence of R, the sentence remains valid. This does not affect Z, since
no R’ oceurs in Z. Making the replacement turns X' into X. And finally,
replacing R’ by R converts H into a tautology, since the homomorphism
sentence for R becomes (V) - (¥2,)[R(z1,. .., %n) D R(T1,. .., 20)]-
Consequently, Z O X must be valid. We also know that X O Z is valid,
hence we have the validity of X = Z for a positive sentence Z of L. O
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Exercises

We note that the Interpolation Theorem 8.12.5 can also be used to prove
a “preservation” result. It can be used to show that a sentence is pre-
served under passage to submodels if and only if it is equivalent to a
universal sentence. We do not give the argument here.

8.14.1. Show that if X is a positive formula then there is a formula
X" in which there are no negation symbols and in which the only binary
propositional connectives are A and V, such that X = X* is valid.

8.14.2. Prove Proposition 8.14.3. Hint: You need to prove a more gen-
eral result, about formulas, not just sentences. Let A be a homomorphism
from the model M = (D, I) to the model N = (E, J}. For each assign-
ment A in M, let A be the assignment in N given by z"* = h(z®).
Now show by structural induction that, for each positive formula X, and
any assignment A in M, if X14 is true in M, then XJ*# is true in N.

8.14.3. Verify the Pulling Apart Assertion in the proof of Lyndon’s
Theorem. Hint: As in the previous exercise, you need to establish a
stronger result about formulas.

8.14.4. Let L be the language with R as a binary relation symbol
and no function or constant symbols. Being a reflexive relation can be
characterized by a positive sentence: (V) R(z,z). The obvious charac-
terization of being a symmetric relation is (Vz)(Vy)[R(z,y) > R(y, )],
but this is not a positive sentence.

1. Show there is no positive sentence that characterizes the symmetric
relations.

2. Show the same for transitivity.





