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Abstract

Transaction-time temporal databases and query lan-
guages provide a solid framework for analyzing properties
of queries over data streams. In this paper we focus on is-
sues connected with the construction of space-bounded syn-
opses that enable answering of continuous queries over un-
bounded data streams while requiring only limited space.
We link the problem to the problem of query-driven data
expiration in append-only temporal databases and study
space bounds on synopses that are sufficient and necessary
for query answering under duplicate semantics.

1 Introduction

A considerable effort to understand many aspects of
query processing over streaming data—data that is arriv-
ing in fragments over time—has been the topic of research
in the last several years, e.g., [4, 5, 6, 10, 11, 12, 14, 15]
and many others. These efforts have mainly focused on ef-
ficient processing of continuous queries—queries evaluated
continuously as more data is arriving on a stream—over un-
bounded data streams. A key component of such solutions
is the construction of synopses—data summaries that allow
execution of continuous queries without the need to buffer
or otherwise store the entire history of the data stream.

The main goal of this paper is to show that certain re-
quirements, often rather desirable in such systems—such as
the use of SQL-style duplicate semantics while maintaining
reasonable bounds on the size of the summary data—are not
possible to achieve. The paper later shows how acceptable
results can be achieved by carefully limiting the expressive
power of streaming query languages in which continuous
queries are formulated.

*Preliminary version of this paper has appeared in [19].
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As we desire to derive bounds as strong as possible, we
adopt a holistic approach to the construction of synopses
for continuous queries. Unlike other approaches that often
construct synopses on a per-physical-operator basis (e.g.,
for the so called symmetric joins, etc., [4]), we develop
techniques that tailor the synopsis to a complete continuous
query—hence the use of the term holistic synopsis.

Many of the techniques presented in this paper can be traced
to approaches designed to allow efficient data expiration in
transaction-time temporal databases [17]. The novel contri-
butions of this paper are mainly concerned with the use of
duplicate semantics for queries and can be summarized as
follows:

1. We show that adopting an SQL-style duplicate seman-
tics for SQL-like streaming queries makes construc-
tion of bounded synopses impossible for many natu-
ral streaming query languages as, in general, the syn-
opses may have to grow at least linearly with respect to
the stream length. We contrast this with known upper
bounds for the same languages when set semantics is
used.

2. We show that for certain fragments of these languages,
this growth can be tamed to a logarithmic factor; that
factor, however, cannot be avoided while retaining any
meaningful duplicate semantics.

Note that the negative results presented in the paper are
based on information-theoretic properties of queries and
thus cannot be improved upon by more sophisticated algo-
rithms without resorting to approximations. The results are
contrasted to similar results obtained for the set semantics
of the same languages where constant bounds in the length
of the stream can be obtained. In addition to the technical
results, the paper establishes a strong parallel between tech-
niques developed for transaction-time temporal databases



[9], data expiration [17], and approaches to space efficient
evaluation of streaming queries. The results presented here
also refine those presented in [2, 3], mainly by distinguish-
ing between the space dependencies on the active data do-
main and on the current length of the data stream, respec-
tively, and by improving on the lower bounds by establish-
ing logarithmic and linear lower bounds as described above.

The rest of the paper is organized as follows: Section 2
provides the basic definitions and shows the links between
streaming queries and temporal databases. Section 3 shows
that in general, duplicate semantics leads at least to a loga-
rithmic lower bound on the size of the synopses, measured
in the length of the data stream; it also identifies cases in
which allowing duplicates in the data model leads to linear
lower bounds on the size of the synopses needed to answer
a continuous query. Section 4 shows fragments of query
languages for which a logarithmic bound can be achieved
and discusses variants to the standard SQL-style duplicate
semantics that could be more amenable in the streaming set-
ting. We conclude by identifying a number of open issues
topics for further research in Section 5.

2 Background

We begin with a review of the relevant definitions in the
area of transaction-time temporal databases, and relate these
definitions to querying data streams. The presentation in
this section is based on a chapter on data expiration [17]
with terminology suitably modified to data streams.

2.1 Streams and Temporal Databases

We first formalize the notion of a data stream as follows.

Definition 2.1 (Data Stream/History) A data stream of k-
tuples is a sequence

S = (S0, S1,-.,Se...)

where each S; is a multiset of k-tuples that have arrived in
S at time t. We call the multisets S; states of S at t. We
assume discrete integer-like time with time instants drawn
from a linearly ordered set and we allow multiple tuples to
arrive at the same time. The data values forming the tuples
belong to the domain of uninterpreted constants (the data
domain) and are equipped with equality only. At any par-
ticular finite time ¢, we only have access to a finite prefix of
S of the form

S(t) = (S, S1,..., 54).

We use T(t) and D(t) to denote the active temporal and
data domains of a stream prefix S(t), respectively. Note

that the active domains change with time as new data arrives
on the stream. The active temporal domain T'(¢) is, in our
setting, simply the set {0, ...,t}; the definition, however,
allows to use timestamps from an arbitrary linearly ordered
set. The active data domain consists of all data values that
appear in S(t).

For a multiset S, we denote by dupl(S) the maximal
number of times any tuple is duplicated in S.

Without loss of generality, we present our results for a sin-
gle data stream. However, the results immediately extend to
multiple streams, e.g., by coding multiple streams by values
of a distinguished attribute. This formalization shows that
data stream is simply a variant name for an append-only
temporal database (often called a transaction-time tempo-
ral database). This observation allows us eventually to use
off-the shelf temporal query languages for querying data
streams.

Definition 2.2 (Continuous Queries) Let () be a com-
putable function that maps a stream prefix S(¢) to a multiset
StQ . An answer to a continuous query @ is then defined as
the stream

59 = (S¥, 89 ...,82,..)

7
where S is the answer to Q over the stream prefix S(t).

While the above definition does not fix the language for
the queries (), the link between data streams and tempo-
ral databases suggests that we can use off-the-shelf tempo-
ral query languages to query data streams. Indeed, it turns
out that many of the languages proposed for querying data
streams are variants of temporal query languages. Hence, in
the rest of this paper we concentrate on temporal languages
based on two-sorted first-order logic (2-FOL) and on a fix-
point variant of past first-order temporal logic (4 TL), both
assuming SQL-style duplicate semantics.

We also assume that duplicates are represented in binary
(i.e., using counts to represent the numbers of duplicates).
This representation is more compact than the explicit dupli-
cation of tuples (hence the synopses are more compact than
if the explicit representation was used).

2.2 Holistic Synopses

For continuous queries, it is not desirable and often not
practical or even feasible to store an entire data stream in
computer storage. Therefore, streaming systems use sum-
maries called synopses to remember parts of the data stream
that are necessary to generate subsequent answers to contin-
uous queries.



Definition 2.3 (Holistic Synopsis) Let () be a query over

S. A holistic synopsis £ for Q is a triple (), A, T") that sat-

isfies the property
Q(So,...,St) =T(S,E(S(t—1)))

for any prefix S(t) = (So,. .., S:) of S; Moreover, the ac-

tual synopsis we retain in the streaming system is defined
by:

E(S()) = A(St, A(Si—1, A(... A(Sp,0)...)))

where () is a constant initial synopsis, and A is a map from
synopses and states to synopses. In addition, we require that
the triple (0, A, T") can be effectively constructed from Q.

The first two components define the actual holistic synopsis
for Q as a self-maintainable materialized view of S: the ()
component tells us what the contents of this view is in the
beginning and the A component tells us how to update the
view when more data arrives in S. The last component, T,
reproduces the answers to () while only accessing the infor-
mation in the view. Note that the definition does not specify
what data model the view uses nor what query languages
are used for the three components of the synopsis.

This definition is essentially the same as the definition
of a data expiration operator for transaction-time temporal
databases [17].

How do we compare Holistic Synopses?

Intuitively, we have replaced the complete prefix of S with
a materialized view £ defined by the () and A queries. Thus
our aim is to minimize the size of the materialized view in
terms of:

1. the length of the data stream S, |T(¢)|,

2. the number of distinct values in .S, |D(t)

s

3. the maximal number of duplicates of a single tuple in
S, and

4. the size of Q.

The dependency on the length of the data stream is the most
critical factor. Thus we call a synopsis bounded if it is
bounded by a constant function in the length of the stream
(it may, however, depend on the size of the active domain
for the data elements, |[D(¢)|). Similarly, we call a synopsis
log-bounded if it is bounded by a function logarithmic in

T (2)].

Results For set Semantics

For streaming query languages that use set semantics,
results obtained for temporal databases can be applied:

Proposition 2.4 A bounded holistic synopsis exists for any
streaming query expressed as a

e two sorted first order (2-FOL) query [16], or
e past p-calculus (W'TL) query [18]
under set semantics.

The above theorem shows that for queries under set seman-
tics, bounded synopses exist for rather powerful query lan-
guages, in particular for the languages introduced in Defi-
nitions 3.1 and 3.3 below. The rest of the paper argues that
bounded synopses cannot exist when duplicate semantics
is used for the same languages and that log-bounded syn-
opses are the best we can hope for various fragments under
any reasonable duplicate semantics.

3 Lower Bounds

In this section we establish the main results of the pa-
per: we show that allowing SQL-style duplicate seman-
tics for streaming queries effectively prevents the construc-
tion of bounded synopses. The lower bounds obtained here
show that in these cases the best synopses are asymptoti-
cally comparable in size to the (length of the) complete pre-
fix of the data stream.

3.1 Two-sorted First-order Logic

We start with two-sorted first-order logic: the natural ex-
tension of relational query languages to streams and the ba-
sis of many temporal and streaming query languages, such
as TSQL?2 [13] and CQL [4].

Definition 3.1 (First-order Queries: 2-FOL) Let S be a
data stream of k-tuples. The syntax of first-order stream-
ing queries over S is given by the following grammar.

Q S(t,x1,...,xk)

l'i:wj|ti<tj‘ti:tj|ti>tj
QANQ[TI2.Q | 3.Q[eq
QVQleA-Q

The € @ subformula stands for duplicate elimination and
can be considered an additional modality in the logic that
governs the behavior of duplicates.



S(s),0,n = S(t,z1, ...
S(s),0,1 = x; =x;
5(s),0,1 =z # x;
S(s),0,1=t; <t
S(s),0,m-nkE Q1 AQs
5(5),0, 3 pep(ry Mo F 32.Q
5(8),0, e s = IQ
S5(s),0,1 =Q
5(s),0,n+mf=Q1V Qs
S(s),0, max(0,m —n) = Q1 A Q2

Figure 1. SQL-style Duplicate Semantics for Streaming Queries.

We assume that the queries are range-restricted [1]; this
is enforced by requiring variable-compatibility conditions
for disjunctions (V) and negations (A—) and by the usual
restrictions on the occurrences of equalities and inequalities
in queries.

The semantics of 2-FOL queries is defined using the usual
Tarskian-style satisfaction relation extended to account for
duplication; we write

S(t),0,n =Q

to stand for “the substitution (tuple) 6 is an answer to Q
duplicated n times, when evaluated over S(t), a prefix of
S”. The full semantics of the above language is given in
Figure 1.

An answer to a query at time ¢ is the multiset

S .=1{0,...,0| S(t),0,n E Q).
N—_——
n
Note that the value n must be unique for a given tuple 6,
i.e., 6 functionally determines n. To simplify the definition,
we assume that substitutions not present in an answer have

0 duplicates.

The main difference from the standard definition is that it
specifies how duplicates are handled in queries. We utilize
an SQL-style definition of duplicates, i.e., we use a product
for conjunctions, a sum for disjunction (union) and existen-
tial quantification (projection), and a difference for range-
restricted negation (multiset difference).

Note, that the query language in Definition 3.1 is sim-
ply a temporal query language when the stream is regarded
as finite prefix of a database history: the semantics of the
language is defined with respect to the finite portion of the

data stream; answering queries over all potential extensions
of a stream has been shown undecidable for any reasonably
powerful query language [8], for detailed discussion of this
phenomenon see [9].

Lower Bound for 2-FOL

Now we are ready to provide lower bounds that show
why the use of unrestricted duplicate semantics for stream-
ing queries may be expensive and, in certain cases, not fea-
sible at all. An Q(log |T(¢)|) lower bound has been ob-
served for queries with the counting aggregate [16]. A sim-
ilar query in 2-FOL, e.g.,

(3t.S(t, a)) A =(3L.S(L, b)),

expressing that there were more a’s than b’s in the stream
S, for a and b distinct constants, yields such a bound
for queries with duplicates. It is easy to see using the
pigeon-hole principle that any synopsis for this query needs
Q(log |T(t)]) bits.

However, it turns out that log-bounded synopses are not
sufficient in general for 2-FOL queries with duplicate se-
mantics.

Theorem 3.2 There is a first-order query for which the
space required by any synopsis must be bounded from below

by Q(|T(t)])-
Proof (sketch): Consider the query

edty, to.tr < toa A((Fx.S(t1, x)) A =(Fz.S(t2, x)))
A=((Fx.S(ta, ) A =(F2.S(t1,x)))

The query expresses the condition that two states of S, t;
and ts, contain the same number of tuples. Now consider a



S(s),0,t,n = S(zy,...,xx
S(s),0,t,1 =x; = x;
S(s),0,t,1 = x; # x;
S(s),0,t,m-nE Q1 AQ2
5(5),0,t, > ep@y Mo E F2.Q
S(s),0,t,1 =Q
S(s),0,t,n+mEQ1V Q2
S(s),0,t,max(0,m —n) = Q1 A Q2
S(s),0,t,n = @Q
S(s),0,t,n = nX.Q

) if <0(11)7 AR

0(zy)) € S; duplicated n times
if 6(x;) = 0(z;)
it 0(ws) £ 0(c;)
if S(s),0,t,mE Q1 and S(s),0,t,n |E Q2
if S(s), [v/x] t,n, EQ
if S(s),0,t,nE=Q
if S(s),0,t,m = Q1 and S(s),0,t,n = Q2
if S(s),0,t,m = Q1 and S(s),0,t,n = Q2
if S(s),0,t—1,nE=Q and t >0

(s),

if S(s),0,t,n = Q[X/uX.Q]

Figure 2. SQL-style Duplicate Semantics for Past ,TL Streaming Queries.

prefix of a data stream S(¢) such that S; contains the value
a duplicated m; times, m; # m; for 0 < @ # j < t.
To be able to answer the above query when the stream is
extended by the state 5,11 we need at least a set of values
{mo, ..., m:}. To represent this set we need at least

t

Z log(m;) >t - log(min{my, . ..,
i=0

bits.

mi}) € QT (X))

The reason for this lower bound can be traced to 2-FOL’s
ability to refer to individual past states of S using temporal
variables, the same result thus applies to two-dimensional
temporal logics when evaluated under duplicate semantics.

3.2 Fixpoint Temporal Logic Queries

The second language for which bounded synopses exist
in the set semantics case is the past fragment of first-order
fixpoint temporal logic (also called p-calculus), a logic
based on implicit access to the temporal attribute of tuples
using temporal operators. This way the number of coexist-
ing temporal contexts is limited while still commanding a
sufficient expressive power. The syntax of the language is
defined as follows:

Definition 3.3 (Fixpoint Temporal Logic 4 TL) Let S be
a data stream of k-tuples. The syntax of Past uTL queries
over S is given by the following grammar.

Q == S(z,...,
| QAQ|3riQ[eq
| QVQ[QA-Q
| eQ|pXQ|X

l‘k) | ZT; :LL'J‘

Similarly to 2-FOL, we require the standard conditions that
guarantee range-restrictedness for variables to hold in the
queries. In addition, for the fixpoint variables X, we re-
quire for them to appear in the scope of an even number of
negations and in the scope of at least one @ (previous time)
operator!,

Note that formulas of ¢TL do not use variables ranging
over the temporal domain; handling of this aspect of the
queries is encapsulated in the temporal operator ®. Thus
the semantics is defined with respect to an evaluation point
s € T(t) using a satisfaction relation

S(t),0,s,n = Q

which, similarly to Definition 3.1, states that the tuple 0 is
an answer to @ at time s with n duplicates in S(t). Note
that the time point s may be different from ¢; this allows
referring to past states of the data stream S in queries.

An answer to a 4 TL query @ is defined as

S .=10,...,0| S(t),0,t,n = Q}.

The duplicate semantics of p'TL mimics that of 2-FOL in-
troduced in Figure 1: first-order connectives and quantifiers
are evaluated per state of S (using the so-called snapshot
semantics [13]).

I'Without the last restriction, duplicate semantics is not well defined in
the presence of fixpoints. This arrangement also allows us to define the
semantics of the least fixpoint operator by unfolding rather than by the
equivalent, but more common fixpoint iteration. This is convenient for the
development of the synopses for fixpoint queries.



Lower Bound for yTL

Unlike 2-FOL, ' TL, by the virtue of using fixpoints, can
express conjunction with number of conjuncts proportional
to the length of the input stream. This, in the presence of
duplicates and the multiplicative nature of how duplicates
are handled by a conjunction, leads to the following result:

Theorem 3.4 There is a uTL query for which the space
required by any synopsis must be bounded from below by

QT()]).
Proof (sketch):
query

Consider the following propositional

Q = puX.(eq) V O((true V true) A X)

over a data stream reporting on the truth value of the propo-
sition ¢q. Under duplicate semantics, the above query returns
the empty tuple (standing for true) as long as ¢ is reported
true at least once in the stream. The number of duplicates
of this value, however, record the complete history of the
stream: at time ¢, the s-th bit in the binary representation
of the number of duplicates corresponds to the truth value
of ¢ in S;_5, s < t. Note the crucial use of the duplicate
semantics for disjunction: the “true V true” formula allows
us to define the value 2 which, in turn allows us to shift the
bits in the binary representation of the duplicate count.

Example 3.5 Consider a prefix S(6) of a data stream S

S6)=(q.7q,7q, q, ¢, q)

at time 6. Then S(6),{},6,39 = @ where { } stands for
the empty tuple as 39 in binary is 100111. Note that the
result holds even when the input stream is duplicate-free.

Unlike the 2-FOL case, the reason for this lower bound can
be traced to the way new duplicate values are constructed
in queries from old values, in particular by conjunction.

An unfortunate consequence of these lower bounds is that,
in general, the best synopses for queries expressed in com-
mon streaming languages when evaluated under duplicate
semantics are essentially as big as the original data stream
and thus we may be better off simply storing the stream
itself, perhaps with the help of a standard lossless compres-
sion. These results also imply a linear lower space bound
for streaming query languages that allow the use of the
counting aggregate.

4 Upper Bounds

We now investigate restrictions in which logarithmic
bounds on the size of holistic synopses can be obtained. To

this end, we need to restrict the streaming query languages.
We consider two different fragments of first-order logic:

1. restricted fixpoint temporal logic queries, and

2. positive first-order queries (unions of conjunctive
queries).

In both cases our aim is to make the proof of Theorems 3.2
and 3.4 inapplicable. In the first case by disallowing nega-
tion and multiple temporal contexts to exist at the same
time, in the second case by restricting the number of dupli-
cates in answers to queries. The proposed synopsis main-
tains a sufficient amount of temporal information needed to
evaluate a given restricted 4TL query as an instance of an
extended database schema; the approach is an extension of
[7, 18] to duplicate semantics.

Definition 4.1 (Extended Database Schema) Let ¢ be a
#TL query over a stream S. We define

{RY(n,x1,...,71) : @1 is a subformula of ¢

with free variables z1, ...,z }

to be the extended schema for , in which queries can refer
to streams RY in addition to S. We call the new predicates
RY auxiliary; its first argument is the explicit representation
of the number of duplicates.

The synopsis is defined as a set of materialized view main-
tenance rules for RY. The definition of the rules is based
on the unfolding property of the fixpoint operator, uX.Q) =
Q(puX.Q). Before we define the operator itself, we need an
auxiliary technical definition.

Definition 4.2 Let ¢ be a ' TL formula of the form pX.v
such that ¥ is a subformula of ¢ containing a free occur-
rence of the fixpoint variable X. We define the X -closure
of ¥ in ¢ to be the formula ¥[X/uX .4, i.e., in which all
occurrences of X have been replaced by their fixpoint defi-
nition.

For i a subformula of ¢ with free fixpoint variables
X1,..., X we define the closure (with respect to the fix-
point variables and ) to be the ' TL formula

¢[X1//.LX1.1/)1, . ,Xk/uXk.wk]

where p1.X;.1); are subformulas of ¢ (assuming all fixpoint
variables in ¢ are distinct).

This definition guarantees that, for every subformula 1) of
a given uTL query ¢, there is a uTL formula v’ in which
all fixpoint variables X; are in the scope of an appropriate



fixpoint operator. Due to the unfolding rule, such a formula
always exists and is equivalent to the original formula in the
context of .

Definition 4.3 (Synopsis for () Let Q be a uTL query
and @1, ..., ®; be all temporal subformulas of (). We
define a synopsis & for @ as follows:

e We define ) to be a constant instance of the extended
schema defined by RV = ().

e The A operator consists of rematerialization rules

5O for R®¥: defined by:
8V (S, E(S(t — 1)) = ¥E (S, RY",...,R™)

where £(S(t — 1)) is an instance of the auxiliary re-
lations R¥',..., R¥" and z/)f is the closure of %; in
which all occurrences of temporal subformulas @)
were replaced by R”. The operator A is then de-
fined by a simultaneous update of the instances of
(RYr,..., R¥") by the results of (6¥1,...,6%1).

e We define I to be the query @) in which all occurrences
of temporal subformulas @1 were replaced by R”.

& is then defined by the triple (9, A, T") as required.

Theorem 4.4 £ is a synopsis for PastuTL. Moreover, £’s
components T, (), and A are first-order queries.

Proof (sketch): Correctness,
Q(S(t)) =T(S, E(S(t - 1)),

follows by induction on the length of S(¢) and the obser-
vation that the view maintenance rules ©)¢ maintain the in-
stance of R¥ to be equivalent to @1/ in every state of S.

Restricting yTL

Unfortunately, as indicated by Theorem 3.4, the above
construction alone is insufficient to guarantee that the con-
structed synopsis is log-bounded. Indeed, the above syn-
opsis is linear in the length of the stream prefix due to the
space needed to store the number of duplicates (even when
represented in binary; cf. Example 3.5).

To prevent this from happening, we need to restrict the
wTL queries allowed to those that limit the growth of the
duplicate values when fixpoints are involved.

Definition 4.5 (Duplicate-bounded ¢ TL) Let Q be a
uTL query. We say that Q) is duplicate-bounded if there

is a constant ¢ such that dupl(Q’[X/R])) < dupl(R)+ ¢ for
every subformula ¢ X.Q" of @ and R a relational instance
with the same schema as Q.

The duplicate-boundedness property of queries is unde-
cidable (follows immediately from reduction from query
emptiness). Hence, syntactic restriction on the appearances
of fixpoint variables in the queries must be imposed. For the
remainder of this paper we assume that the fixpoint vari-
ables may only appear in conjunctions in which all other
conjuncts are duplicate free?, under duplicate elimination
operator, or in disjunctions with arbitrary other formulas.

Theorem 4.6 Let Q be an arbitrary duplicate bounded
WTL query. Then there is a log-bounded synopsis for Q.

Proof (sketch): Follows from Theorem 4.4 by observing
that, due to the restriction imposed by Definition 4.5, the
values representing the number of duplicates in the auxiliary
relations are bounded by log(|T(¢)]).

4.1 First-order Fragment of ,TL: FOTL

We consider the first-order fragment of past pTL (de-
noted FOTL): a logic that uses the ® and since connec-
tives. The since connective is defined by a fixpoint unfold-
ing. However, to guarantee duplicate-boundedness (and a
reasonable interpretation of what the number of duplicates
represents) the way duplicates are generated by the since
connective has to be carefully controlled. This considera-
tion yields the following definitions:

Q1 since; Q2 = uX.(eQ1) N (Q2 V 0X)
Q1 sincey Q2 = puX.(Q1 A (eQ2))V
(Q1 A ((c@X) A=Q2))V
(@X) A ((eQ1) A —Q2)

The two variants, since; and since,, differ in the way
they handle duplicates: since; counts the number of times
the tuple 6 satisfies ()2 such that (J; was true since then;
since, counts the number of the answers 6 satisfying ()4
since ()2 was true for the last time>. Note that both since;
and since, have been chosen in such a way that the cor-
responding fixpoint formulae are duplicate bounded (this,
however, would not be true if the classical fixpoint unfold-
ing without the careful use of duplicate elimination were to
be used).

2 Answers to these subqueries must be sets; this can be achieved syn-
tactically by requiring a top-level duplication elimination operator.

3Similar to the duplicate semantics for SQL, this is just a particular
a way of choosing how many duplicates are in an answer to a particular
query. The definitions above work correctly with the rest of the technical
development in this paper. A comprehensive study of various possibilities
to define duplication of tuples for temporal queries is beyond the scope of
this paper.



Additional temporal connectives can be derived from the
since and @ operators; again, the handling of duplicates is
the only concern here.

Example 4.7 The sometime in the past (®) connective can
be defined as follows:

®,() =true since;
€,() =true since; )

The two variants differ again in how duplication of results
is defined: in the first case it indicates how many times Q)
has been true in the past and the second case how far in the
past was the last  has been*. Again additional connectives
can be defined by combining the above two. For example,
should we wish to know how far in the past the earliest @
appeared, we could write (—Q) since; Q.

Note that one might be tempted to define the duplicate se-
mantics for, e.g., the sometime in the past (®) operator as
follows:

S(t),0,t,n = ®Qif S(t),0,s,n = ®Q foras < t.

This definition would seemingly allow formulating the
query “were there two time instants with the same number
of elements in the stream?”. However, it is important to
see that such a definition is incompatible with the definition
of duplicate semantics: it allows assigning two different du-
plicities to the same tuple—this is illegal under the duplicate
semantics.

Example 4.8 The upper bound for duplicate bounded pTL
also matches the lower bound from Section 3 as the query
“have there been more a values than b values in the stream
S” can be formulated in ' TL using the formula

(®15(a)) A —(®15(b))-

Thus the above technique is (worst-case) optimal up to a
constant factor (w.r.t. |T(t)|).

The auxiliary views for the query above are derived by
translating the 4, connectives to TL as follows:

®,5(a) = true since; S(a)
= pX.(e(true)) A (S(a) vV @X)
=uX.(S(a) v @X),

similarly for 4 5(b). For readability, we label the two in-
duced auxiliary relations by the original temporal subfor-
mulas: R®:15(@) (n) and R’ls(b)(n); note that both the
views have single integer attribute since the original sub-
queries are closed formulas.

4 Assuming the constant true is not duplicated.

The A operator is therefore defined by
R¥S@ = (n+m | S(), {},m,t = S(a),
R(t), {},n.t =1 | R*5@)

where the stream R®15(@) is the stream generated for the
auxiliary relation by the above definition. A similar defini-
tion is used for R®15(%) (n). Note that as streams, the auxil-
iary relations in this example are 0-ary—conceptually they
contain the frue tuple duplicated an appropriate number of
times; the actual binary representations therefore contain a
single integer value in each case.

The T part is then defined as R®15(@ A ~R®150),
which reduces to the numerical difference of the two counts
held in the auxiliary relations.

4.2 Conjunctive and Positive Queries

Queries in pTL provide a powerful way of querying
data streams. They also generalize the so called windowed
queries in a natural way. However, there is a mismatch be-
tween streaming query languages that use SQL-like syntax
(with explicit access to the time instant attributes [4]) and
uTL.

In this section we therefore look on common sub-
languages of 2-FOL, namely on conjunctive queries (CQ)
and unions of conjunctive queries (UCQ). We show that,
the technique developed for uTL can be adopted to both
CQ and UCQ.

Definition 4.9 (Conjunctive Query) A conjunctive query
is an expression of the form

E|t1,...,tk,g.S(thfl),/\... /\S(tk,fk) ANONY

where &; are vectors of data variables, ¢ is a conjunction of
equalities over the data variables and v a ordering condition
over the temporal variables. The query can be potentially
prefixed by duplicate elimination.

Note that we require the answers to CQ not to contain any
free temporal variables in order for them to serve as contin-
uous queries over data streams.

The construction of synopses for CQ proceeds in two
steps:

1. First a given CQ is rewritten to an equivalent union
of CQs, such that the condition v in each of the con-
structed queries imposes a linear order among the vari-
ables tq,...,tk.

2. Second, each of the above queries is translated to (the
first-order fragment of ) x'TL and then the synopsis
construction for pTL is used.



This approach is supported by the following two lemmas:

Lemma 4.10 Let Q be a CQ of the form
dtq,... ,tk7§.5(t1, "fl), VANAN S(tk, ka;) Ao A
Then there is a finite set of CQ such that

e the (duplicate preserving) disjunction of these CQ is
equivalent to the original CQ and

e the subformulas % in these queries impose a linear or-
der on valuations of the variables ¢, ..., tx.

Proof (sketch): Let W be the set of all formulas that ex-
press linear orders over ¢y, ..., t; consistent with ). This
set is finite and due to the law of excluded middle, no two
elements of W can be made true by the same valuation. Thus
the set of CQ

{31, te, .S, TN NSk, TE) NP A@ | @ € T}
fulfills the requirements of the Lemma.

Thus, for each pair of variables, we have t; < ;, {; = t;,
or t; > t;. This allows us to construct a 4TL formula by
using the €, connective to simulate the inequalities. Hence
the following Lemma:

Lemma 4.11 Let () be a CQ of the form
Ft, .tk S, T1), Ao AS(E, TE) A DN p.

in which ¢ imposes a linear order on the temporal variables
t1,...,tx. Then there is an equivalent formula in pTL.

Proof (sketch): We replace the CQ by a uTL query of the
form

37.€1(S(@i) Ao AS(T,)A
. (S(Zj)N...ANS(Zj, )N N
(ST, ) N NS (Zgy, )N) - 2)

where the subscripts i1, . . . , ¢; refer to those conjuncts in the
original query that are first in the linear ordering of temporal
variables, ji,...,Jjrto the second, and kq,..., Kk to the
last, i.e., the linear order of the temporal variables was

t“:...:til >tj1:"':tjl/ > ...
>tk1:"':tklu

in ¢.

We finish the construction by applying the approach to con-
struction of bounded synopses introduces in Section 3.2.
The use of this approach for UCQ is immediate.

5 Conclusion

In this paper we have shown that duplicate semantics
causes severe difficulties in constructing bounded synopses
for processing continuous queries. Indeed, even simple
queries may require a synopsis (linearly) proportional to
the length of the original stream—which defeats the use-
fulness of such synopsis. We have also developed restricted
fragments of streaming queries that allow logarithmically-
bounded synopses to be used and shown how such synopses
can be constructed.

Future Directions of Research

There are many possible directions of future research,
among which are the following:

Alternatives to standard duplicate semantics. In this pa-
per we mainly considered the standard SQL-style ap-
proach of defining duplicate semantics of queries.
However, beyond compatibility concerns, there is no
principal reason why other numerical functions, such
as the “min” and “max’ functions, couldn’t be used to
define the duplicate semantic for conjunctions and dis-
junctions, respectively. Note that such an arrangement
makes all 4 TL queries duplicate bounded and hence
the lower bound derived for SQL-style semantics in
Section 3.2 no longer applies to ' TL. The main open
question is, however, whether such a plausible dupli-
cate semantics can exist for first-order queries (i.e., for
which Theorem 3.2 no longer applies.)

2-FOL queries with log-bounded synopses. We have
shown two sub-languages of 2-FOL queries for which
log-bounded synopses can be constructed: FOTL and
UCQ. However, it is not clear whether it is possible to
syntactically characterize those 2-FOL queries (possi-
bly up to query equivalence) for which log-bounded
synopses exist.

Aggregates. Another question relates to the possibility
of introducing aggregate functions into the query
language—again, the best lower bounds we know to-
day are logarithmic in the length of the stream. How-
ever, the techniques proposed in this paper cannot cope
with aggregates mainly since such functions introduce
new domain elements. Moreover, unlike the duplicate
counts, aggregates can associate multiple count values
with a single tuple in the query.

Possible and certain answers. Yet another direction of re-
search is to study fragments of query languages for
which the possible result semantics is viable.



Also, the focus of this paper was on developing techniques
that allow precise answers to continuous queries to be com-
puted. Another direction of research is to consider appropri-
ate ways to approximate the answers and trade-offs between
quality of the approximations and space needed for storing
synopses. While there has been a large amount of work in
this area, surveying the issues connected with approximate
query answers is beyond the scope of this paper.
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