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ABSTRACT
Monitoring aggregates on network traffic streams is a compelling
application of data stream management systems. Often, streaming
aggregation queries involve joining multiple inputs (e.g., client re-
quests and server responses) using temporal join conditions (e.g.,
within 5 seconds), followed by computation of aggregates (e.g.,
COUNT) over temporal windows (e.g., every 5 minutes). These
types of queries help identify malfunctioning servers (missing re-
sponses), malicious clients (bursts of requests during a denial-of-
service attack), or improperly configured protocols (short time-
out intervals causing many retransmissions). However, while such
query expression is natural, its evaluation over massive data streams
is inefficient.

In this paper, we develop rewriting techniques for streaming ag-
gregation queries that join multiple inputs. Our techniques iden-
tify conditions under which expensive joins can be optimized away,
while providing error bounds for the results of the rewritten queries.
The basis of the optimization is a powerful but decidable theory
in which constraints over data streams can be formulated. We
show the efficiency and accuracy of our solutions via experimental
evaluation on real-life IP network data using the AT&T Gigascope
stream processing engine.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query processing;
I.2.4 [Artificial Intelligence ]: Knowledge Representation For-
malisms and Methods—Temporal logic

General Terms
Theory, Algorithms, Performance

Keywords
Data stream integrity constraints, Data stream query rewriting, Data
stream joins
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1. INTRODUCTION
Network traffic monitoring is a compelling application of data

stream management systems (DSMSs). For instance, the Gigas-
cope DSMS has been developed at AT&T Labs and is now opera-
tionally used within AT&T’s IP backbone [10, 17]. Applications of
Gigascope include traffic analysis, performance monitoring, trou-
bleshooting, and detection of network attacks.

We have examined a set of monitoring queries written by net-
work analysts and found that many such queries compute aggre-
gates that summarize various properties of the underlying packet
stream. In particular, a common type of streaming aggregation re-
quires joining and correlating multiple streams (or substreams of
the same packet stream), corresponding to requests and responses
or transmissions and acknowledgements. Representative examples
include:

1. For every 5-minute interval, report the number of DNS re-
quests in that interval (i.e., packets whose destination port
equals 53) that do not have a matching response packet from
the server within 5 seconds (i.e., one whose source port is 53,
and destination IP address and port are equal to the source IP
address and port of the request).

2. For every 5-minute interval, report the number of TCPSYN
packets in that interval (i.e., requests for connection) that do
not have a matchingSYN-ACK packet within 5 seconds (i.e.,
responses from the server that establish the connections, such
that the source IP address and port of the request equal the
destination IP address and port, respectively, of the response,
and vice versa).

3. For every 5-minute interval, report the number ofSYN and
SYN-ACK pairs in that interval (denoting establishment of
a TCP connection) that do not have a matchingFIN packet
within 10 seconds (denoting connection teardown).

Queries 1 and 2 help identify malfunctioning servers (missing re-
sponses) and improperly configured protocols (requests time out
too quickly and are retransmitted before the responses arrive).
Query 3 helps detect “SYN flood” denial-of-service attacks, where
malicious clients attempt to cripple a server with millions ofSYN
packets; once the connections are accepted and valuable resources
are allocated by the server, the clients never continue or close the
bogus connections.

The above queries may be expressed as joins on the IP ad-
dress, port, and timestamp (e.g., within 5 or 10 seconds), followed
by computation of aggregates over non-overlapping temporal win-



dows (e.g., every 5 minutes). While such query expression is nat-
ural, its exact evaluation would require the DSMS to (a) store ev-
ery request packet until it finds a matching response packet or the
temporal join condition has elapsed, whichever comes first, and
(b) match every response packet with a previous request packet that
satisfies the temporal join condition. This is inefficient in practice,
both from the storage and computational perspectives, especially
over high-speed IP traffic streams with many connections among
many different IP addresses/ports.

One way to improve performance is by sampling the streams and
returning approximate query answers. In this paper, we develop
query rewrites that are more efficient and accurate than sampling,
whereby expensive joins are completelyoptimized away. For in-
stance, our technique rewrites Query 1 from above as:

For every 5-minute interval, report the difference be-
tween the number of DNS requests and responses in
that interval.

Thus, rather than storing and correlating individual requests with
matching responses, the rewritten query simply maintains two in-
dependent frequency counters. Of course, this optimized query is
not necessarily equivalent to the original query—the reported dif-
ferences may be lower or higher than the actual number of requests
in that interval without matching responses. Intuitively, this error
cannot be large under reasonable constraints on the arrival pattern
of requests and responses.

Our work is also useful for the case when the user directly ex-
presses the desired correlation by independently counting related
events, as has been employed by network analysts in an ad-hoc
fashion [20, 29]. In this case, our results formally identify the
stream constraints that need to hold for the user’s query expression
to be meaningful.

Our contributions in this paper are as follows.

1. We define a powerful but decidable theory in which con-
straints over data streams can be formulated. The proposed
theory is more powerful than temporal integrity constraints
studied so far; for a more detailed discussion see Sections 3
and 6.

2. Based upon the above theory, we identify conditions under
which joins can be eliminated from streaming aggregation
queries. We also derive error bounds for the results of the
rewritten queries.

3. Using a real-life IP packet stream and DSMS (Gigascope),
we present experimental evidence of the efficiency and accu-
racy of our rewritings, as compared to joins over appropri-
ately sampled streams. In particular, we show that to match
the efficiency of the rewritten query, a sampling rate of less
than 1% must be used for the original Query 3 above, but a
sampling rate of 10% is already less accurate than the rewrit-
ten query.

The remainder of this paper is organized as follows. Section 2
gives a detailed motivating example. Sections 3 and 4 present the
details behind the proposed stream integrity constraints and query
transformations, respectively. Section 5 provides experimental re-
sults. Related work is presented in Section 6. Section 7 concludes
the paper.

2. MOTIVATING EXAMPLE
We model data streams as relations with a fixed schema, in which

tuples are timestamped according to their arrival times. Building

upon Query 3 from the introduction, we consider three sub-streams
of a TCP packet stream:SYN packets sent by clients that origi-
nate TCP connections,SYN-ACK packets sent by servers that ac-
knowledge the originalSYN packets, andFIN packets from clients
or servers that terminate the connections1. Similarly, we can de-
fine DNS request and response sub-streams for Query 1. We rep-
resent the TCP sub-streams using three relational schemes,SYN,
SYN-ACK andFIN, with attributesip standing forIP addresses
(for simplicity of exposition, we encapsulate the parts represent-
ing the source and destination addresses, ports, etc., in a single at-
tribute), andtime denoting thetimestamp(the time of arrival of
the tuple, in seconds, in the respective stream).

We would like to answer the query:

For each5-minute interval, how manySYN packets in
that interval have a matchingSYN-ACK packet within
5 seconds, but do not have a matchingFIN packet
within 10 seconds?

This query may be formulated (in SQL syntax) over the above
schemes as follows:

SELECT tb, count(*) as cnt
FROM SYN s, SYN- ACK sa
WHERE s.ip = sa.ip

AND sa.time >= s.time
AND sa.time − s.time <= 5
AND NOT EXISTS

( SELECT *
FROM FIN f
WHERE sa.ip = f.ip

AND f.time >= sa.time
AND f.time − sa.time <= 10 )

GROUP BY s.time/300 as tb

Note that the above query requires expensive join and anti-join op-
erations over the three streams. While efficient algorithms for data
stream joins have been proposed [13, 19, 28], at high streaming
speeds, such joins become infeasible.

In this paper, we pursue a more indirect approach to evaluating
the above query, expressed as follows:

SELECT s.tb, min(s.cnt,sa.cnt) −f.cnt as cnt
FROM ( SELECT tb, count(*) as cnt

FROM SYN
GROUP BY time/300 as tb ) s,

( SELECT tb, count(*) as cnt
FROM SYN- ACK
GROUP BY time/300 as tb ) sa

( SELECT tb, count(*) as cnt
FROM FIN
GROUP BY time/300 as tb ) f

WHERE s.tb = sa.tb AND sa.tb = f.tb
AND min(s.cnt,sa.cnt) − f.cnt > 0

The rewritten query computes an arithmetic expression over in-
dependent counts ofSYN, SYN-ACK and FIN packets in a 5-
minute interval, provided this difference is positive. This query
completely eliminates the join operation between individualSYN
andSYN-ACK packets, and the (anti-)join operation between the
result of the previous join operation and theFIN packets. The three
counts can be computed on the fly, and theWHEREcondition that
equates thetb attributes merely states that every 5 minutes the
1Technically, a TCP connection may also be terminated by aRST
(reset) packet. For simplicity, we assume thatRST packets are part
of theFIN sub-stream.



arithmetic expression over the counters is computed and the coun-
ters are reset.

However, in general, the two queries are not necessarily equiva-
lent (or even close). Thus, we studyintegrity constraintsthat, when
satisfied by data streams, make the above transformation possible.
We use the following constraints, which can be obtained from TCP
specifications [15] or using mining techniques [21].

• In the SYN, SYN-ACK andFIN streams, theip attribute
can serve as an identifier of a TCP connection (a key) for
the duration of a connection. But, it is not a key in general
as there may be multiple connections between a particular
source-destination pair of IP addresses over time.

• For every normal TCP connection, there is a singleSYN, a
singleSYN-ACK, and a singleFIN (or RST) packet. How-
ever, in abnormal circumstances (e.g., during aSYN flood
attack), some packets may be missing (e.g.,FINs never pro-
duced by malicious clients, or fewerSYN-ACKs generated
by the attacked server, which is unable to grant every con-
nection request).

• The SYN, SYN-ACK, and FIN packets belonging to the
same TCP flow are temporally co-located in the three sub-
streams, withSYNs andSYN-ACKs appearing at most 5
seconds apart, andSYN-ACKs andFINs at most 10 seconds
apart.

These constraints must have been known (at least intuitively)
to the user when formulating theoriginal query, in particular,
when specifying maximum time intervals between matchingSYN,
SYN-ACK, andFIN packets. Also, note that the above constraints
hold only approximately. In our example, this is mainly due to net-
work latencies (lateSYN-ACKs) and a small percentage of long-
lasting TCP flows (lateFINs). There are two ways to solve this
problem:

• use a more complex but precise specification that accounts
for the deviations, or

• use more intuitive constraints that are satisfied by most of the
stream.

While the first solution may seem preferable from the theoretical
point of view, the complexity of developing comprehensive de-
scriptions that account for all possible deviations is prohibitive and
the computational properties of such theories are often quite poor.

Continuing with our example, the errors induced by the rewritten
query can be traced to two main sources:

1. Boundary effects: incurred by dividing the time line into
5-minute buckets—the (SYN, SYN-ACK) and (SYN-ACK,
FIN) pairs thatcrossbucket boundaries are not accounted for.
This error cannot be completely avoided by, e.g., shifting the
5 minute window forSYN-ACK andFIN packets by a few
seconds, as we would incur the same error for the matching
packets that arrive closer together.

2. Approximate satisfaction of integrity constraints: in-
curred, e.g., by asserting that allFIN packets arrive within
10 seconds of the correspondingSYN-ACK packets. If some
FINs arrive later, but still in the same 5-minute bucket, then
the lateFINs will not be accounted for in the original query,
but would in the rewritten query.

Note also that these errors cannot be eliminated altogether as theip
attribute serves as a TCP flow identifier for a limited period of time.
Thus, on noisy networks, the exact accounting of lost/superfluous
packets is not possible, save reproducing the whole TCP state ma-
chine [15] in the query.

The motivation behind this paper originates from Internet pro-
tocols that exhibit behaviors of the form: request-response,
transmission-acknowledgement, or initiation-establishment-tear-
down. However, our solution is applicable in other situations where
properties of a single (conceptual) entity are monitored on multi-
ple data streams at different time instants. For instance, we can
watch thetwo-phase commit(2PC) protocol for irregularities, e.g.,
attempts to commit transactions for which one of the participants
did not voteyes.

We introduce stream integrity constraints next, and then describe
how these are used in our query rewrites in Section 4.

3. STREAM INTEGRITY CONSTRAINTS
It is often the case thathigh-level entities, such as TCP con-

nections, are decomposed into multiple data items (packets) before
they can be transmitted over (possibly multiple) data streams. The
decomposition and reassembly are governed by a transmission pro-
tocol.2 For the purposes of stream query optimization, we extract
the relevant constraints governing the arrival of data items in the
data streams and represent them usingstream integrity constraints.
These constraints are defined by extending the standard SQL DDL
for data streams as follows.

First, each data stream must have adistinguished attributetime ,
of type TIMESTAMP, that captures the arrival time of each data
item. Second, to represent higher-level entities, we introducevir-
tual attributes, of typeVIRTUAL, that capture the identity of these
entities (e.g., TCP connections). The combination of timestamps
and virtual attributes allows us to conveniently specifystream in-
tegrity constraintsin terms of higher-level conceptual objects. Note
that virtual attributes are solely used in the integrity constraints and
neither the original nor the final optimized queries actually refer to
them.

The stream integrity constraintsthemselves form a part of the
declaration of a stream(DEFINE STREAMS). The constraints
are specified using the following DDL clauses.

The Stream key clause. A stream keycaptures the idea that a
certain attribute (or set of attributes) identifies higher-level concepts
acrossseveral data streams in a particular time window. The syntax
is an extension of the SQL DDL key specification:

STREAM KEY(a1, . . . , ak) SPANS S′ WINDOW[ts, te]

The constraint states that(a1, . . . , ak) uniquely identifies items in
both streamsS andS′ in the window[ts, te] that isrelative to the
S item; for this declaration to be valid, bothS andS′ have to have
a common signature.

The Foreign stream key clause. A foreign keyis a simple exten-
sion of the SQL DDL constraint with a windowing construct:

FOREIGN KEY(a1, . . . , ak)
REFERENCESS′(b1, . . . , bk) WINDOW[ts, te]

This constraint states that the(a1, . . . , ak) tuple inS must appear
in S′ as a(b1, . . . , bk) tuple in the[ts, te] window.

2In the case of network protocols, a state machine is commonly
used for this purpose. The protocol specification itself can be
thought of as a set ofintegrity constraints.



The Co-occurrence clause.Last, we can specify that items arriv-
ing in separate streams and satisfying certain conditionscan only
appear(co-occur) within a window:

COOCCURS(a1, . . . , ak)
AND S′(b1, . . . , bk) WINDOW[ts, te]

All the windowparts of the declarations are always relative to the
timestamp of the item inS.

Example 1 In our running example, the Stream DDL declaration
for theSYN-ACK stream is as follows:

DEFINE STREAM SYNACK (
time TIMESTAMP,
id VIRTUAL,
ip ADDRESS,
PRIMARY KEY (id),
STREAM KEY (id) SPANS FIN WINDOW [0,*],
STREAM KEY (ip) SPANS FIN WINDOW [0,15],
FOREIGN KEY (id,ip) REFERENCES SYN(id,ip)

WINDOW [-5,0]
)

We use * to denote unbounded windows. Note that the
PRIMARY KEYdeclaration and its meaning are identical to the
standard SQL DDL. In our example, the virtual attributeid iden-
tifies a TCP flow, and therefore is a primary key and stream key
across all three sub-streams. On the other hand,ip is a stream
key across the three sub-streams only for the duration of a single
flow (within a 15-second window that starts when aSYN packet
arrives). Figure 3 in Appendix A lists all the constraints in the
SYN, SYN-ACK, andFIN streams.

The stream constraints are, however, not used for checking (con-
straint enforcement), but forreasoningabout equivalence of stream
queries. To this end, we need to define the notion ofconstraint in-
ference.

Example 2 In our example, assuming thatid is a key in theSYN
stream as well, the co-occurrence constraint3

DEFINE STREAM SYNACK (
COOCCURS (id) AND SYN(id) WINDOW [-5,0]

)

is a logical consequence of the explicit stream constraints (namely
those which state thatid is a primary key, stream key, and foreign
key within a five-second window) and thus can be used for query
optimization.

Existing theories on temporal integrity constraints do not allow
constraints expressive enough to capture the properties of data
streams needed to enable the desired query rewrites. The stream
integrity constraints defined in this section are based on a novel un-
derlying constraint theory developed in this paper. The proposed
theory overcomes the shortcomings of existing temporal constraint
theories, in particular their inability of expressing powerful equa-
tional constraints needed to capturestream keysand otherwindow-
basedstream constraints. Our solution is based on a combination
of a powerful logic for linear time, S1S [6], and generalized full de-
pendencies, both tuple- and equality-generating [7]. A major con-
tribution of this paper is showing that the combined theory is still
decidable and that the complexity of the logical implication prob-

3We slightly abuse the DDL syntax here to be able to talk aboutin-
dividualconstraints holding on a stream rather than about the com-
plete specification for that stream.

lem is, under reasonable assumptions, comparable to other con-
straints.

Appendix A gives a formal proof for the following theorem, in-
cluding the appropriate complexity bounds:

Theorem 3 The theory of stream integrity constraints is decidable
for full FOREIGN KEYconstraints. The complexity of reasoning
is identical to the standard relational case.

4. QUERY TRANSFORMATIONS
We consider queries based on applying an aggregate operator (in

particular, the count aggregate) on the result of join and/or anti-
join operations. Satisfaction of stream integrity constraints is the
prerequisite for each of the rewrites. We assume that we have been
given stream constraints that describe the data streams involved in
the queries.

The rewrites are formulated for a pair of streams (or substreams),
S1 andS2, with a common schema. For simplicity, the schema uses
three generic attributes,time , id , anda, standing for the times-
tamp, a (possibly virtual) identifier of tuples corresponding to the
same entity, andotherattributes in the tuples arriving in the streams
(denoted here by a single attributea). This arrangement simplifies
the exposition of the rules without limiting their applicability.

4.1 Window Predicate Elimination
The first rewrite eliminates window predicates in theWHERE

clause by rediscovering thetrue identities (e.g., of the actual TCP
flows) to which individual items arriving on the stream(s) belong.
Note that here we use thevirtual attributeid to represent this iden-
tifier.

The window predicate elimination rule is defined as follows. The
selection condition

WHERE S1.a = S2.a AND S2.time− S1.time ≤ δ

that relates two data streams simplifies to

WHERE S1.id = S2.id

if the following constraints

DEFINE STREAMS1 (
STREAM KEY (a) SPANSS2 WINDOW[0, ε]
STREAM KEY (id) SPANS S2 WINDOW[0, ∗]
COOCCURS (id) AND S2(id) WINDOW [0, ε′]

)

hold in S1 for ε ≥ δ ≥ ε′. Note that the third required con-
straint is only implied in our running example by stating, e.g., that
there is only oneFIN packet (id is a key for theFIN stream) and
that theFIN packet arrives at most ten seconds after the matching
SYN-ACK packet.

PROOF. Having two tuples that satisfy the first selection condi-
tion, theirid attribute values must be the same due to the first con-
straint asε ≥ δ. On the other hand, two packets that agree on the
id attribute and thus satisfy the second selection condition, must,
by the second and third constraints, also satisfy the first selection
condition, in particular the window condition asδ ≥ ε′.

In our running example,ε′ = 5 in the COOCCURSclause be-
tween theSYN and SYN-ACK streams, andε′ = 10 in the
COOCCURSclause between theSYN-ACK andFIN streams. Fur-
thermore,ε = 15 in both cases (ip is a key within a 15-second
window). Therefore, the above rewriting is valid only if the values
of δ in the join and anti-join predicates of the original query are
between 5 and 15, and between 10 and 15, respectively.



4.2 Join Elimination
The join/anti-join elimination rules are used to completely re-

move the join/anti-join from the query and replace it by an arith-
metic expression that involves independent counts over the in-
volved streams. Note the crucial use of the conceptualid attribute
in the integrity constraints enabling this rewrite.

The join elimination rule reads as follows. LetG ∈ a be a set
of grouping attributes appearing in bothS1 andS2 (note thatG
is empty in our motivating example). Sinceid is the identifier
attribute, it functionally determinesa, and therefore tuples fromS1

andS2 that join onid belong to the same group. Letp(G) be a
predicate that enforces that the values of each grouping attribute in
G are equal inS1 andS2. The query

SELECT tb, G, count(*) as cnt
FROM S1, S2

WHERE S1.id= S2.id
GROUP BYS1.time/ k as tb, G

rewrites to

SELECT tb, G, min(s1.cnt,s2.cnt) as cnt
FROM ( SELECT tb, G, count(*) as cnt

FROM S1

GROUP BY time/k as tb, G ) s1,
( SELECT tb, G, count(*) as cnt

FROM S2

GROUP BY time/k as tb, G ) s2
WHERE s1.tb=s2.tb AND p(G) AND

min(s1.cnt,s2.cnt)>0

with a boundary error bounded byε/k (assuming uniformity of
packet arrival overk time units) if the following constraints hold

DEFINE STREAMS1 (
PRIMARY KEY (id)

)
DEFINE STREAMS2 (

PRIMARY KEY (id)
FOREIGN KEY (id,a) REFERENCES S1(id,a)

WINDOW[−ε, 0]
)

PROOF. Theid attribute is the key for both streamsS1 andS2,
thus there can be at most one pair of tuples that agree onid . The
inclusion dependency constraint postulates that there indeed must
be exactly one such pair for each tuple inS1 (orS2). Thus the min-
imal value of the independent counts is indeed equal to the count
of tuples in the result of the join.

We reiterate that the boundary error ofε/k assumes that packets
on S1 andS2 arrive at a uniform rate throughout each window of
sizek. Given this assumption, only thoseS1-tuples which arrive
within the lastε time units of the current window may have match-
ingS2-tuples that arrive in the next group-by window and therefore
are not included in the count over the current window. Clearly, no
bound can be given in the general case, where an adversary may
send allS1-tuples without matchingS2-tuples near window bound-
aries. In practice, one way to eliminate this worst-case scenario is
to issue a set of queries that all count the number of packets on
each input stream, but whose group-by windows are offset from
one another.

We also note that the above rewriting is consistent with the
well-known rule for estimating the cardinality of a join ofS1 and
S2 as |S1||S2|

max(V (S1,id),V (S2,id))
, whereV (S, j) denotes the number

of distinct values of the join attributej in tableS [12]. In the

above rewriting, the join attributeid is a primary key, therefore
V (S1, id) = |S1| andV (S2, id) = |S2|. Moreover,id anda are
foreign keys, therefore the assumption of containment of value sets
needed for the above formula to hold is satisfied. Hence, the size
of the above join ismin(|S1|, |S2|).

4.3 Anti-Join Elimination
Similarly to thejoin casewe can treat anti-joins:

SELECT tb, G, count(*) as cnt
FROM S1

WHERE NOT EXISTS
( SELECT *

FROM S2

WHERE S1.id= S2.id )
GROUP BYS1.time/ k as tb, G

rewrites to

SELECT tb, G, s1.cnt-s2.cnt as cnt
FROM ( SELECT tb, G, count(*) as cnt

FROM S1

GROUP BY time/k as tb, G ) s1,
( SELECT tb, G, count(*) as cnt

FROM S2

GROUP BY time/k as tb, G ) s2
WHERE s1.tb=s2.tb AND p(G) AND

s1.cnt-s2.cnt>0

with a boundary error bounded byε/k (again, assuming uniformity
overk time units) if the following constraints hold

DEFINE STREAMS1 (
PRIMARY KEY (id)

)
DEFINE STREAMS2 (

PRIMARY KEY (id)
FOREIGN KEY (id,a) REFERENCES S1(id,a)

WINDOW[−ε, 0]
)

PROOF. Since theid attribute is a key for both streams, for each
S1 tuple there is at most oneS2 and for eachS2 there is exactly one
S1 tuple in the streams and thus the difference of the independent
counts is equal to the count of tuples in the set difference (note
that here we use theconceptualid attribute in a crucial way as
thereal attributes of tuples arriving on the streams do not have this
property). The first aggregate subquery gives the exact count of the
S1 tuples and the second one the count of matchingS2 tuples not
accounting for tuples within the lastε time units.

Note that the symmetric variant in the anti-join case is vacuous as it
implies that the result is empty (due to the constraint stating that for
everyS2 tuple there must be at least one correspondingS1 tuple).

Note also that it is relatively easy to see that instances of streams
that violate the integrity constraints make the above rewrites in-
valid.

4.4 Multiple Streams and Complex Queries
While the rules presented so far have been specified in terms

of two data streams, it is easy to extend the technique to mul-
tiple streams whose items refer to the same conceptual entities
(otherwise there is little point of asking queries that correlate the
streams). Using a natural inductive argument, the rewrites can be
extended to queries of the form



SELECT tb, count(*) as cnt
FROM Q′

GROUP BYS1.time/ k as tb

whereQ′ is an arbitrary combination of joins and anti-joins over
a finite set of input streams, such that the integrity constraints re-
quired by the atomic rewrites in Sections 4.1–4.3 are satisfied for
each operator inQ′. This allows applying the rules top-down, ul-
timately eliminating all joins and anti-joins. As the integrity con-
straints are preserved under common join reordering, we are not
restricted to searching for a particular plan forQ′ to perform the
rewriting.

Example 4 The rewrite used in our example in Section 2 uses the
composition ofwindow predicate elimination, join eliminationand
anti-join eliminationtransformations.

In practice, however, the rules should be integrated in a DSMS
query optimizer, where their application will be determined by the
optimizer’s search strategy and cost model.

5. EXPERIMENTS

5.1 Setting
We now present experimental results to illustrate the efficiency

and accuracy of our rewrite rules in a practical setting. We used
Gigascope to test four versions of the running example from Sec-
tion 2, using default settings for Gigascope system parameters such
as hash table sizes. The four queries are: the original version with
a join and anti-join, the original version over sampled inputs with
sampling rates of 1 or 10 percent, and our rewritten version, which
counts the total number ofSYNs, SYN-ACKs andFINs in each
5-minute interval. For brevity, we omit the results of experiments
with other types of queries listed in the Introduction (e.g., DNS or
HTTP requests and responses) as the results were similar. In or-
der to maximize the accuracy of the sampled queries, we instructed
Gigascope to perform per-connection rather than random sampling
[24]. That is, if aSYN packet happened to be included in the sam-
ple, then the correspondingSYN-ACK andFIN packets (i.e., those
having the same IP addresses and ports, and having timestamps
within 5 or 10 seconds, respectively, of one another) were also in-
cluded.

To ensure consistency across experiments, we captured one hour
of IP packets from an AT&T data source and separately performed
each experiment by replaying the captured stream. The aver-
age data rate was approximately 100,000 packets/sec (about 400
Mbits/sec) in each direction and the total number of packets in the
captured data stream was over 700 million. In order to test the scal-
ability of our solution, we also created a faster stream by merging
five copies of the captured IP trace and perturbing the IP addresses
to ensure that there were five times as many TCP connections. We
label the original trace “slow” and the merged trace “fast”.

The experiments were performed on a dual-core 3GHz Intel
Xeon server with 4Gb of RAM, running Linux 2.4.21. Two prop-
erties were measured: efficiency and accuracy. Since streaming
queries continuously monitor their inputs, it does not make sense to
measure efficiency in terms of running time. Instead, we recorded
the total CPU time taken to process the one-hour trace and calcu-
lated the average CPU utilization. In terms of accuracy, we report
the relative error of the result returned by each technique (i.e., the
number of TCP connections with missingFINs), as compared to
the original query with joins and no sampling. Technically, even the
original query incurs errors (e.g., due to TCP flows lasting longer
than 15 seconds), which we ignore since we are only interested in

Figure 1: CPU utilization measurements

the relative error of independent counting versus joining sampled
streams. In practice, this error is small and can be estimated via
profiling and incorporated into the application logic. For instance,
we found that only approximately 2 percent of TCP connections in
the tested packet stream were longer than 15 seconds; this obser-
vation is consistent with recent work on modeling TCP traffic [22].
Therefore, the application should not report a possibleSYN flood
attack unless the number of missingFINs is significantly higher
than 2 percent.

We summarize our findings as follows.In order to match the
efficiency of the rewritten query, the original query requires a sam-
pling rate of less than one percent. However, once the sampling
rate drops to ten percent, the original query is already less accu-
rate than the rewritten query.

5.2 Results
Figure 1 illustrates the CPU utilization over the slow and fast

streams. The rewritten query is the fastest, followed by the original
queries with 1 percent sampling, 10 percent sampling, and no sam-
pling, respectively. On the slower stream, the rewritten query is ap-
proximately five times more efficient than the original query with-
out sampling, though both use less than one percent of the CPU.
However, the CPU usage of the original query grows to nearly 5
percent over the fast stream, which is roughly six times that of the
rewritten query (i.e., simple aggregation is more scalable than a
join). We hypothesize that the original query can be an order of
magnitude slower than the rewritten query over very fast streams.
In general, given that a DSMS is expected to run a large collection
of streaming queries, even using 5 percent of the CPU for a single
query may be excessive.

Next, we measured the errors incurred by the tested queries as
compared to the original query without sampling. Each variant
was tested with three time window sizes: 1 minute, 2 minutes,
and 5 minutes. Intuitively, as the window size grows, the rewritten
query should be more accurate since there are fewer error-inducing
boundaries (recall Section 2). Similarly, the original queries (with
sampling) should be more accurate over larger windows, which cor-
respond to larger sample sizes. In either case, the window length
must be small enough (e.g., up to 5 minutes) in order to allow new
results (and alarms) to be generated in a timely manner.

Figure 2 shows the ranges of relative errors (per window) over
the one-hour packet trace. In all cases, more accurate results are
obtained over larger windows, as expected. Moreover, the rewrit-
ten query is more accurate than the 10-percent-sampled original
query, and much more accurate than the 1-percent-sampled origi-



Figure 2: Accuracy measurements

nal query, both in absolute terms and in terms of the variance in the
approximation error.

Notably, the error in the rewritten query is roughly an order of
magnitude below the upper bound ofε/k described in Section 4.
Here, ε = 15 seconds andk is 1, 2, or 5 minutes, giving upper
bounds of25, 12.5, and5 percent, respectively. On the other hand,
the results in Figure 2 show that the approximation error of the
rewritten query does not exceed3, 1.5, and0.5 percent, respec-
tively. There are two main reasons why the boundary error ofε/k
is a loose upper bound.

First, the upper bound assumes that all TCP connections areε
seconds long. That is, anySYN packet that arrives withinε sec-
onds before the end of a window is assumed to have a matching
FIN packet in the next window, thereby causing a boundary er-
ror. This is not true in our data set. In fact, we observed that for
most time windows of size between one and 5 minutes, at least two
thirds of the TCP connections were one or two seconds long. Fur-
thermore, at least 90 percent of connections were at most 5 seconds
long. Given this distribution of TCP flow lengths, we can tighten
the error bounds by assuming that two thirds of the connections are
exactly 2 seconds long,(0.9− 2

3
) of the connections are exactly 5

seconds long, and the remaining ten percent are exactly 15 seconds
long. Hence, all the two-second connections that start in the last
two minutes before the end of a window have matchingFINs in the
next window, and so on. Given a window of sizew, the proportion
of connections causing boundary errors is:

( 2
3
× 2) + ((0.9− 2

3
)× 5) + (0.1× 15)

w

Thus, the revised bounds are6.7, 3.3, and1.3 percent for window
sizes of1, 2, and5 minutes, respectively.

The above numbers are still higher than the observed error
bounds. Most of the remaining discrepancies between the predicted
and observed errors may be explained as follows. Some missing
FINs from a particular time window (that arrive in the next win-
dow) are “canceled out” by superfluousFINs that arrived earlier in
this window (and belong to connections from a previous window).

6. RELATED WORK
The optimization framework presented in this paper generalizes

those of Kompellaet al.[20] and Wanget al.[29], who propose
to monitor the difference between the number ofSYNs andFINs
in order to detect denial-of-service attacks. We have formalized
this idea, showed how to integrate it into a DSMS, and experimen-

tally verified its advantages over current DSMS query optimization
strategies.

Integrity constraints for time-dependent data have been studied
in the area of temporal databases. For example,temporal functional
dependencieshave been studied by Jensenet al. [16] and extended
to accommodate granularities of time by Wanget al. [30] and Wi-
jsen [31]. The main goal of these approaches was to develop tools
for modeling of temporal databases, e.g., the ERVT data model [1]
that supports time-stamping and evolution constraints, IS-A links,
and disjointness and covering constraints. However, none of these
approaches provides constraints expressive enough to allow captur-
ing the properties of data streams enabling the rewrites proposed in
this paper. The underlying constraint theory is a combination of a
powerful logic for linear time, S1S [6], with generalized full de-
pendencies, both tuple- and equality-generating [7]. The technique
used to combine these theories is based, in part, onDatalog1S [8].

Previous work on stream constraints includes the concept of join
referential integrity, which is similar to ourCOOCCURSclause [4].
However, identifying higher-level entities across several streams,
which enables the rewrites proposed in this paper, was not dis-
cussed. Furthermore, inference of constraints was not considered.

The (Anti-)Join-Count query rewriting rule proposed in this pa-
per rule is fundamentally different from aggregate-join pushdown
rules proposed, e.g., by Paulley&Larson [23], Guptaet al. [14],
Srivastavaet al. [25], or DeHaanet al. [11]: all the above use func-
tional dependencies (under constraints with varying expressive-
ness) to identify whether a subquery of a join functionally deter-
mines all grouping attributes. This allows commuting the grouping-
aggregation with the join. In our approach, the join operation is
completely eliminated (replaced with a scalar operation) based on
an inclusion dependency. Note also that the groups in our case are,
in general, not functionally determined by either of the join sub-
queries.

Efficient techniques for evaluating joins over streaming data have
been studied in the past [13, 19, 28]. Our solutions aim at elimi-
nating the joins altogether. At gigabit speeds, this may be the only
feasible option.

Also, the proposed technique is complementary to the work on
optimization of streaming queries, based, e.g., on rate of delivery
[2], utilization of resources [3, 26], or quality of service [27], as the
application of the proposed optimization rules can be integrated
with an appropriate search strategy and a cost function in the query
optimizer.

7. CONCLUSIONS
In this paper, we developed rewriting techniques that eliminate

joins from streaming aggregation queries in the presence of appro-
priate integrity constraints. We defined a theory in which various
constraints may be expressed, presented a suite of rewrite rules, and
showed the advantages of our solution in a real-world setting.

An interesting direction of future work is to analyze errors due to
approximate satisfaction of constraints (e.g., as already mentioned,
some TCP flows last longer than 15 seconds), and their propaga-
tion during query transformation, based on logical inference. We
are also interested in expanding our constraint theory to find other
types of useful rewritings. One example involves counting out-of-
order packets and retransmissions in IP traffic streams. Rather than
performing an explicit self-join and looking for multiple copies of
the same packet, we want to formalize the necessary conditions
and transformation rules for answering these types of queries using
aggregation alone, e.g., by countinggapsbetween the sequence
numbers of consecutive packets.
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APPENDIX

A. DECIDABILITY AND COMPLEX-
ITY OF STREAM INTEGRITY CON-
STRAINTS

For a fixed theory of linearly ordered time we define stream con-
straints as follows:

Definition 5 (Constraints) Let R1, . . . , Rk, S1,. . ., Sl be predi-
cate symbols (not necessarily distinct), ψ and ψ′ conjunctions of
atomic equalities, and ϕ and ϕ′ formulas in the theory of time. We
define stream integrity constraintsto be formulas of the form:

∀t∀x.R1(t1,x1) ∧ . . . ∧Rk(tk,xk) ∧ ϕt ∧ ψx

→

8<: ∃t′.ψ′
t,t′ ∧ S1(t

′
1,y1) ∧ . . . ∧ Sl(tl,yl)

ψ′
x

ϕ′
t

for y1 ∪ . . . ∪ yl ⊆ x = x1 . . .xk vectors of data variables,
t = {t1, . . . , tk}, and t′ = {t′1, . . . , t′l} to be time variables. The
subscripts of the ϕ and ψ formulas in the constraints indicate the
sets of allowable free variables in these formulas.

Given a finite set of constraints Σ and a constraint C, an implica-
tion problemΣ |= C is a question whether C is true in all models
of Σ.

The above constraints can be thought of astemporalvariants of
functional dependencies and inclusion dependencies. Note how-
ever, that the temporal part of the constraints can use arbitrarily
complex formulae in the theory of time—this arrangement makes
this approach much more expressive than virtually any temporal in-
tegrity constraints proposed in the literature so far [5, 9, 16]. We



also allow combining right hand sides of constraints with the same
antecedent by conjunction; this is mere syntactic convenience.

The constraints present in our running example are shown in Fig-
ure 3 (we omit the external universal quantifiers). They specify that
(i-iii) the virtual attributeid is atruekey of each sub-stream, (iv-v)
id is aforeignkey, (vi-vii) ip is a key within 15-second windows,
and (viii-ix) FIN packets arrive within 10 seconds after the corre-
spondingSYN-ACK packet, andSYN-ACK packets arrive within
5 seconds after the correspondingSYN packet.

A.1 Correspondence Theorem
First we show how to convert a logical implication problem for
stream constraints to a decision problem in the underlying theory
of time. We need several (technical) definitions to simulate the
effects of the data values in the constraints. In particular, for every
predicate symbolR(t,x) and every substitution[a/x] of constants
in A for the variablesx we define a unary predicate symbolRa(t);
the collection of these unary predicates representsR(t,x) in the
result of the transformation.

Definition 6 Let σ be a schema and A a finite set of constants. We
define

σ(A) = {Ra(t) : R(t,x) ∈ σ,a ∈ A|x|}

AUXσ
A = {Ea,a,Ea,b ↔ Eb,a,Ea,b ∧ Eb,c → Ea,c,

∀t.Ea,b → (Raab(t) ↔ Rabb(t)) :
a, b, c ∈ A,Raab, Rabb ∈ σ(A) }.

The additional propositionsEa,b simulate the effects of equality in
the original formulae: whenever constantsa andb are forced to be
equal in a model of the original constraints, e.g., as a consequence
of a functional dependency, the propositionEa,b is true in the cor-
responding model on the transformed theory. The setAUXσ

A cap-
tures the interactions between theEa,b propositions and the remain-
der of the translation. The symbols defined above are used to trans-
form constraints in the constraint theoryΣ as follows:

Definition 7 Let C be a constraint, A a finite set of constants, and
θ is a substitution for variables x with values from A. We define

Cθ = ∀tRx1θ
1 (t1) ∧ . . . ∧Rxkθ

k (tk) ∧ ϕt ∧ (ψxθ)

→

8<: ∃t′.ψ′
t,t′ ∧ S

y1
1 (t′1) ∧ . . . ∧ Syl

l (t′l)
(ψ′

xθ)
ϕ′

t

where (ψxθ) is the formula ψ in which each atomic subformula
xi = xj is replaced by a proposition Exiθ,xjθ and Rxθ

i , Syθ
j ∈

σ(A) are unary predicates in the theory of time.

Given a theory Σ for the schema σ, we define a set of formulas

SATA(Σ) = {Cθ : C ∈ Σ, θ a substitution
for x with values fromA}.

For an implication problemΣ |= C, the consequentC is trans-
formed into a contrapositive form by Skolemizing all quantifiers
over data variables as follows:

Definition 8 Let C be a constraint and {x1, . . . , xk} the set of
(universally quantified) data variables in C. We define AC to be
the set {a1, . . . , ak} of distinct constants and

NSAT(C) = ¬(C[a1/x1, . . . , ak/xk]).

This wayΣ |= C is transformed to a corresponding satisfiability
problem in the theory of time.

Theorem 9 Let Σ be a set of constraints and C a constraint over
the schema σ. Then Σ |= C if and only if AUXσ

AC
∪SATAC (Σ)∪

{NSAT(C)} is not satisfiable.

PROOF. Consider first that AUXσ
AC

∪ SATAC (Σ) ∪
{NSAT(C)} is satisfiable and thus has a model T with a
domain domT . In T , the propositions Ea,b define an equivalence
relation on AC . We designate a canonical valuefor each of the
equivalence classes. We say that a substitution θ is canonicalif it
only uses canonical values in AC .

Now we construct a structure M as follows:

Ri(t,xθ) is true inM ⇐⇒
Rxθ

i (t) is true in T for θ canonical and t ∈ domT .

It is easy to verify that M |= Σ, assuming otherwise leads to a
contradiction with T |= AUXσ

AC
∪ SATAC (Σ). However, M 6|=

C as otherwise we would have T |= NSAT(C).

For the converse, consider a structure M such that M |= Σ and
M 6|= C. Then, for C to be falsified, there must be a substitution
[a1/x1, . . . , ak/xk] that makes the precondition of C true and the
consequent false in M . Let A = {a1, . . . , ak} and substitutions θ
range over A. We construct a structure T setting

Rxθ
i (t) is true in T ⇐⇒ M |= R(t,xθ) is true inM

for θ a substitution and t ∈ domM . We also make Ea,a true and
Ea,b, a 6= b, false in T for a, b ∈ A. Then T |= AUXσ

AC
(triv-

ially) and T |= SATAC (Σ) since falsifying Ciθ ∈ SATAC (Σ)
would also falsify M |= Ci. T |= NSAT(C) follows from the
construction.

AUXσ
AC

∪ SATAC (Σ) ∪ {NSAT(C)} is a monadic formula in
the theory of time (with one quantifier alternation in addition to
alternations present in the temporal parts of the constraints). Hence,
using [6], we have:

Corollary 10 Let the theory of time be the theory of one successor
function (S1S). Then the logical implication problem is decidable.

PROOF. Immediate by observing that the second-order exis-
tential closure of the conjunction of formulas in AUXσ

AC
∪

SATAC (Σ) ∪ {NSAT(C)} is a S1S sentence.

The choice of a very powerful logic to serve as the basis for reason-
ing about time in the proposed stream constraints allows the user
to specify (non first-order) properties of data streams, e.g., peri-
odic events [18], time granularities [5], etc., in addition to the more
common temporal keys and functional dependencies [31].

A.2 Complexity of Reasoning
In general, the constraints imposed on the temporal dimension

can be arbitrary complex S1S formulas, yielding a (tight) non-
elementary complexity bound even for deciding satisfiability of a
single constraint. However, the size of individual constraints is
fixed for the translations of streaming constraints and therefore we
are mainly concerned with thenumber of constraintsresulting from
the instantiationby Skolem constants:

Lemma 11 The size of AUXσ
AC

∪ SATAC (Σ)∪ {NSAT(C)} is
exponential in the (maximal) number of variables in a constraint C
and polynomial in the number of constraints.

Thus, following the standard construction of a Büchi automaton [6]
for S1S and assumingconstantsize of the automata for the individ-
ual constraints, we end with an automaton roughly exponential in
the size of the constraint theory. This is no worse than other schema



(i) SYN(t1, i, a1) ∧ SYN(t2, i, a2) → a1 = a2 ∧ t1 = t2
(ii) SYN-ACK(t1, i, a1) ∧ SYN-ACK(t2, i, a2) → a1 = a2 ∧ t1 = t2
(iii) FIN(t1, i, a1) ∧ FIN(t2, i, a2) → a1 = a2 ∧ t1 = t2
(iv) SYN(t1, i, a1) ∧ SYN-ACK(t2, i, a2) → a1 = a2 ∧ t2 ≥ t1
(v) SYN-ACK(t1, i, a1) ∧ FIN(t2, i, a2) → a1 = a2 ∧ t2 ≥ t1
(vi) SYN(t1, i1, a) ∧ SYN-ACK(t2, i2, a) ∧ (t2 ≥ t1) ∧ (t2 − t1 ≤ 15) → i1 = i2
(vii) SYN-ACK(t1, i1, a) ∧ FIN(t2, i2, a) ∧ (t2 ≥ t1) ∧ (t2 − t1 ≤ 15) → i1 = i2
(viii) FIN(t1, i, a) → ∃t2.SYN-ACK(t2, i, a) ∧ (t1 ≥ t2) ∧ (t1 − t2 ≤ 10)
(ix) SYN-ACK(t1, i, a) → ∃t2.SYN(t2, i, a) ∧ (t1 ≥ t2) ∧ (t1 − t2 ≤ 5)

Figure 3: Constraints present in and across theSYN, SYN-ACK, and FIN sub-streams.

languages proposed for database systems. Note also that logi-
cal implication for the theory of full dependencies combined with
functional dependencies alone, a non-temporal sub-theory of our
constraint theory, is already EXPTIME-complete [7] and the tem-
poral sub-theory, restricted to universally-quantified Horn clauses
(Datalog1S) is PSPACE-complete [8].


