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Abstract We investigate whether identification constraints such as keys and func-
tional dependencies can be granted full status as concept constructors in a Boolean-
complete description logic. In particular, we show that surprisingly simple forms of
such constraints lead to undecidability of the associated logical implication problem
if they are allowed within the scope of a negation or on the left-hand side of inclusion
dependencies. We then show that allowing a very general form of identification con-
straint to occur in the scope of monotone concept constructors on the right-hand side
of inclusion dependencies still leads to decidable implication problems. We consider
the relationship between certain classes of identification constraints and nominals.

Keywords Description logics · Path-functional dependency · Relational keys

1 Introduction

To date, description logics (DLs) have incorporated keys or functional dependencies
in one of two ways. The first adds a separate family of terminological constraints to
inclusion dependencies, for example, in the form of a key box [5, 7, 13, 14], while
the second avoids this by adding a new concept constructor called a path-functional
dependency (PFD) [11, 19, 20]. However, the second approach still falls short of a full
integration of keys or functional dependencies because of syntactic restrictions on
occurrences of PFDs and on the syntax of the PFD constructor itself. In particular, all
earlier work has required that any occurrence of this constructor appear only at the
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top level on the right-hand side of inclusion dependencies and that the left-hand sides
of PFDs themselves are nonempty. Note that an ordinary functional dependency
of the form “{} → A” has an empty left-hand side and consequently enforces a
fixed A value. In this paper, we investigate whether such syntactic restrictions are
necessary—unfortunately, it turns out that this is indeed the case—and study the
limits of decidability in such a setting. The main contributions are as follows.

– We show that allowing PFDs on the left-hand side of inclusion dependencies or
in the scope of a containing negation on the right-hand side leads to undecidabil-
ity. Notably, this remains true when PFDs are limited to very simple forms of
relational keys or functional dependencies.

– Conversely, we show that allowing PFDs within the scope of monotone concept
constructors on the right-hand side of inclusion dependencies still leads to
decidable implication problems.

– We show that allowing left-hand sides of PFDs to be empty also leads to undecid-
ability. Specifically, we first show that the introduction of an ABox to previously
decidable PFD dialects already makes logical implication undecidable. The result
follows by showing that such PFDs can simulate nominals.

DLs have become an important part of the Semantic Web. Indeed, OWL—the
current standard for capturing Semantic Web ontologies—is based largely on a DL
dialect. DLs have also been used as a lingua franca for a large variety of languages
for capturing metadata: UML class diagrams, ER models, relational schema, object-
oriented schema, DTDs for XML, and XML itself are all examples [6, 15].

1.1 Identification is Important

Identification constraints are fundamentally tied to issues of equality; and as Web
services with query languages such as SWRL that are based on OWL are introduced,
important questions inevitably surface when finding execution strategies for services
and when communicating results of such services. For example, How can one reliably
identify resources? and Is there at most one kind of Web service? With the addition of
the PFD concept constructor along the lines considered in this paper, it becomes
possible to express, for example, that among all possible clients, social security
numbers are a reliable way of identifying those that are registered. In particular, this
information can be captured by the following inclusion dependency.

Client " ¬Registered # Client : SIN → Id

To paraphrase: If a client is registered, then no other client will share his social
insurance number. Note that social insurance numbers may not be a reliable way
of identifying an arbitrary unregistered client in general.

A number of additional applications and capabilities become possible after re-
moving syntactic restrictions on PFDs, beyond the fact that a simple and elegant
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presentation of the associated DL would ensue. For example, to say that all informa-
tion about clients is located at a single site, one can add the following dependency.

Client " Client :→ LocationOfData

Again to paraphrase: For any pair of clients, both will agree on the location of
available data.

As we shall see, relaxing existing restrictions to accommodate the first example is
possible because disjunction is a monotone concept constructor, but it is not possible
for the second example without the introduction of alternative restrictions on the use
of PFDs or syntax of the PFD constructor itself.

1.2 Background and Related Work

PFDs were first introduced and studied in the context of object-oriented data models
[9, 23]. An FD concept constructor was subsequently proposed and incorporated
in Classic [4], an early DL with a PTIME reasoning procedure, without changing
the complexity of its implication problem. The generalization of this constructor to
PFDs alone leads to EXPTIME completeness of the implication problem [11]; this
complexity remains unchanged in the presence of additional concept constructors
common in rich DLs [19, 20]. Note that all earlier work has assumed the above
syntactic restrictions on occurrences of the PFD concept constructor in inclu-
sion dependencies.

Calvanese et al. have considered a DL with functional dependencies and a
general form of keys added as additional varieties of dependencies, called a key
box [5]. They show that their dialect is undecidable for DLs with inverse roles but
becomes decidable when unary functional dependencies are disallowed. This line
of investigation is continued in the context of PFDs and inverse attributes, with
analogous results [18]. (We therefore disallow inverse attributes in this paper to
exclude an already known cause for undecidability.)

A form of key dependency with left-hand-side feature paths has been considered
for a DL coupled with various concrete domains [13, 14]. In this case, the authors
explore how the complexity of satisfaction is influenced by the selection of a
concrete domain together with various syntactic restrictions on the key dependencies
themselves.

PFDs have been used in a number of applications: in object-oriented schema
diagnosis and synthesis [2, 3], in query optimization [8, 10], and in the selection of
indexing for a database [16].

We note that the results reported in this paper are an expansion of earlier
preliminary work in Toman and Weddell [21].

The remainder of the paper is organized as follows. The definition of DLFD, a
Boolean complete DL based on attributes that includes the PFD concept constructor,
immediately follows. In Section 3, we show that the interaction of this constructor
with negation leads to undecidability for a variety of simple cases of PFDs. Section 4
then shows how decidability can be regained while still allowing PFDs in the scope
of monotone concept constructors on the right-hand sides of inclusion dependencies,
most significantly in the scope of concept union and attribute restriction. In Section 5,
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we consider relaxing the requirement that PFDs have nonempty left-hand sides,
showing that both this and a (weaker) alternative of admitting an ABox leads to
undecidability. Our summary comments follow in Section 6.

2 Definitions

Our investigations are based on the following dialect of description logic called
DLFD. To simplify the presentation, we base the dialect on attributes (also called
features) instead of the more common case of roles. Note that ALCN with a suitable
PFD construct can simulate our dialect. Conversely, DLFD can simulate ALCQI
[17, 19].

Definition 1 (Description Logic DLFD) Let F andC be sets of (names of) attributes
and primitive concepts, respectively. A path expression is defined by the grammar
“Pf ::= f.Pf | Id” for f ∈ F. We define derived concept descriptions by the grammar
on the left-hand side of Fig. 1. A concept description obtained by using the fourth
production of this grammar is called an attribute value restriction. A concept descrip-
tion obtained by using the final production is called a path functional dependency
(PFD). Note that we assume for this production that k > 0, that the left-hand side of
a PFD is nonempty. In addition, a PFD is called. (1) unary when k = 1, (2) key when
the right-hand side is Id, and (3) simple when there is no path expression with more
than a single attribute name.

An inclusion dependency C is an expression of the form D " E. A terminology T
consists of a finite set of inclusion dependencies.

The semantics of expressions is defined with respect to a structure (!, ·I), where
! is a domain of “objects” and (.)I an interpretation function that fixes the inter-
pretation of primitive concepts C to be subsets of ! and primitive attributes f to
be total functions ( f )I : ! → !. The interpretation is extended to path expressions,
(Id)I = λx.x, ( f.Pf)I = (Pf)I ◦ ( f )I and derived concept descriptions D and E as
defined on the right-hand-side of Fig. 1.

An interpretation satisfies an inclusion dependency D " E if (D)I ⊆ (E)I . The
logical implication problem asks whether T |= D " E holds; that is, for a posed
question D " E, if (D)I ⊆ (E)I for all interpretations that satisfy all inclusion
dependencies in T .

Fig. 1 Syntax and semantics of DLFD
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To improve readability in the remainder of the paper, we follow the simple
protocol of identifying single attributes f with path expressions f. Id.

3 Undecidability

Allowing arbitrary use of very simple varieties of the PFD concept constructor leads
to undecidable implication problems, particularly for three boundary cases:

1. when all PFDs are simple and key,
2. when all PFDs are simple and unary, and
3. when all PFDs are simple and nonkey.

In the first case, a PFD has the form C : f1, . . . , fk → Id, which captures the standard
notion of relational keys. In the second case, a PFD has either the form C : f → g or
the form C : f → Id. The standard notion of a (relational) functional dependency
(FD) is captured by the third case, in which a PFD resembles C : f1, . . . , fk → f .

The three cases are exhaustive in the sense that the only possibility not covered
happens when all PFDs have the form C : f → Id (i.e., are simple, unary, and key).
However, it is a straightforward exercise in this situation to map logical implication
problems to alternative formulations in decidable DL dialects with inverses and
number restrictions. In the rest of this section, we elaborate on each of these cases.
Notably, the reductions make no use of attribute value restrictions in the first two of
these cases; they rely solely on PFDs and the standard Boolean constructors.

The undecidability results are based on a reduction of the unrestricted tiling
problem to the DLFD implication problem. An instance U of this problem is a triple
(T, H, V) where T is a finite set of tile types and H, V ⊆ T × T two binary relations.
A solution to T is a mapping t : N × N → T such that (t(i, j), t(i + 1, j)) ∈ H and
(t(i, j), t(i, j + 1)) ∈ V for all i, j ∈ N. This problem is #0

0-complete [1, 22].

3.1 PFDs that are Simple and Key (Relational Keys)

The reduction constructs a terminology for a given tiling problem U = (T, H, V),
denoted T 1

U , by first establishing an integer grid. This is achieved in three steps.

1. Introduce primitive concepts A, B, C, and D to serve as possible grid points.

A ( B " ⊥ A ( C " ⊥ A ( D " ⊥ B ( C " ⊥ B ( D " ⊥ C ( D " ⊥

2. Create an “infinitely branching” tree of squares. Such a tree can be rooted at a
hypothetical top-left with, for example, an A object.

A " ¬(B : g, k → Id) ( ¬(C : f, g → Id)

B " ¬(A : f, h → Id) ( ¬(D : f, g → Id)

C " ¬(A : h, k → Id) ( ¬(D : g, k → Id)

D " ¬(B : h, k → Id) ( ¬(C : f, h → Id)

3. Flatten and align the tree into an integer grid using keys.

A " A : h → Id B " B : k → Id C " C : f → Id D " D : g → Id
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Fig. 2 Defining a grid (first and second case)

The accumulated effect of these inclusion dependencies on an interpretation is
illustrated in Fig. 2. Note that the thick edges indicate places where flattening of the
infinitely branching tree of squares happens.

We model the tiling problem U using primitive concepts Ti for each tile type
ti ∈ T, asserting that Ti ( T j " ⊥ for all i < j. The tiles are placed on the grid points
with the inclusion dependency (A # B # C # D) " ⊔

ti∈T Ti. The adjacency rules for
the instance U of the tiling problem can now be captured as follows:

– for (ti, t j) *∈ H:

A ( Ti " (B ( T j) : g → Id B ( Ti " (A ( T j) : f → Id
C ( Ti " (D ( T j) : k → Id D ( Ti " (C ( T j) : h → Id

– for (ti, t j) *∈ V:

A ( Ti " (C ( T j) : f → Id C ( Ti " (A ( T j) : h → Id
B ( Ti " (D ( T j) : g → Id D ( Ti " (B ( T j) : k → Id

where Ti corresponds to tile type ti ∈ T. The above inclusion dependencies form a
terminology T 1

U associated with an unrestricted tiling problem U that immediately
yields the following result.

Theorem 2 An instance U = (T, H, V) of the infinite tiling problem admits a solution
if and only if

T 1
U *|= A " ⊥.

Corollary 3 The logical implication problem for DLFD with PFDs that are simple
and key is undecidable. This remains true in the absence of attribute values restrictions.
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3.2 PFDs that are Simple and Unary

Again, the reduction constructs a terminology for a given tiling problem U =
(T, H, V), denoted this time as T 2

U , by first establishing an integer grid. For this case,
an extra step is needed.

1. As before, introduce primitive concepts A, B, C, and D to serve as possible grid
points.

A ( B " ⊥ A ( C " ⊥ A ( D " ⊥ B ( C " ⊥ B ( D " ⊥ C ( D " ⊥

2. To create an analogous infinitely branching tree of squares, first create “raw
material” consisting of the necessary chains.

A " ¬(B : k → Id) ( ¬(C : f → Id) B " ¬(A : h → Id) ( ¬(D : g → Id)

C " ¬(A : h → Id) ( ¬(D : g → Id) D " ¬(B : k → Id) ( ¬(C : f → Id)

3. Shape the chains into squares with functional dependencies.

A " (B : k → g) ( (C : f → g) B " (A : h → f ) ( (D : g → f )
C " (A : h → k) ( (D : g → k) D " (B : k → h) ( (C : f → h)

4. Flatten and align the tree, using keys, to obtain an integer grid.

A " A : h → Id B " B : k → Id C " C : f → Id D " D : g → Id

The accumulated effect of these inclusion dependencies on an interpretation is the
same as in Fig. 2. Since a tiling problem can then be overlaid on this grid as we did
for PFDs that are simple and key, we have the following result.

Theorem 4 An instance U = (T, H, V) of the infinite tiling problem admits a solution
if and only if

T 2
U *|= A " ⊥.

Corollary 5 The logical implication problem for DLFD with PFDs that are
simple and unary is undecidable. This remains true in the absence of attribute value
restrictions.

3.3 PFDs that are Simple and NonKey (Relational FDs)

The final reduction also constructs a terminology for a given tiling problem U =
(T, H, V), denoted T 3

U , by first establishing an integer grid in three steps.

1. Introduce primitive disjoint concepts A, B, C, and D. Here, however, they will
serve as “grid point interfaces.” (The actual grid points will eventually align with
values of their attributes.)

A ( B " ⊥ A ( C " ⊥ A ( D " ⊥ B ( C " ⊥ B ( D " ⊥ C ( D " ⊥
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Fig. 3 Defining a grid (final third case)

2. To (eventually) establish a grid, create an infinitely branching tree of squares in
a fashion analogous to the previous cases. Again, such a tree can be rooted at a
hypothetical top-left with an A object.

A " ¬(B : g, k → z) ( ¬(C : f, g → z)

B " ¬(A : f, h → z) ( ¬(D : f, g → z)

C " ¬(A : h, k → z) ( ¬(D : g, k → z)

D " ¬(B : h, k → z) ( ¬(C : f, h → z)

In this construction, the attribute z is arbitrary and is employed simply to satisfy
our requirement that PFDs are simple and nonkey. Note that, for example, any
given A object must continue to have a distinct B object to its right and a distinct
C object below (according to the first of these inclusion dependencies).

3. Flatten the following equivalent to (unary) relational FDs, and align the tree into
the desired integer grid.

A " A : h → g B " B : k → f C " C : f → k D " D : g → h

The accumulated effect of these inclusion dependencies on an interpretation is
illustrated in Fig. 3. In this case, the grid points correspond to the small circles, which
in turn correspond to attribute values of grid point interface objects with labels A,
B, C, and D. Note that a harmless consequence of the above is that such interface
objects come in pairs (“top” and “left” boundary cases excepted).
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Again, we model the tiling problem U using primitive concepts Ti for each tile
type ti ∈ T, asserting that Ti ( T j " ⊥ for all i < j. The tiles are now placed on the
grid points with the following inclusion dependency.

(A # B # C # D) " ∀ f.
( ⊔

ti∈T

Ti

)
( ∀g.

( ⊔

ti∈T

Ti

)
( ∀h.

( ⊔

ti∈T

Ti

)
( ∀k.

( ⊔

ti∈T

Ti

)
.

As before, a final collection of inclusion dependencies is needed to capture the
adjacency rules for the instance U of the tiling problem:

– for (ti, t j) *∈ H:

(A ( ∀ f.Ti ( ∀g.T j) " ⊥ (B ( ∀g.Ti ( ∀ f.T j) " ⊥
(C ( ∀h.Ti ( ∀k.T j) " ⊥ (D ( ∀k.Ti ( ∀h.T j) " ⊥

– for (ti, t j) *∈ V:

(A ( ∀h.Ti ( ∀ f.T j) " ⊥ (B ( ∀k.Ti ( ∀g.T j) " ⊥
(C ( ∀ f.Ti ( ∀h.T j) " ⊥ (D ( ∀g.Ti ( ∀k.T j) " ⊥

where Ti corresponds to tile type ti ∈ T. The above inclusion dependencies form a
terminology T 3

U associated with an unrestricted tiling problem U that immediately
yields the following for our final boundary case.

Theorem 6 An instance U = (T, H, V) of the infinite tiling problem admits a solution
if and only if

T 3
U *|= A " ⊥.

Corollary 7 The logical implication problem for DLFD with PFDs that are simple
and nonkey is undecidable.

4 On Regaining Decidability

We now show that undecidability is a consequence of allowing PFDs to occur within
the scope of negation. In particular, and for the remainder of the paper, we shall
assume a limited DLFD in which inclusion dependencies, D " E, are presumed to
adhere to the following less general grammar.

D ::= C | D1 ( D2 | D1 # D2 | ∀ f.D | ¬D
E ::= D | E1 ( E2 | E1 # E2 | ∀ f.E | D : Pf1, ...,Pfk → Pf

Observe that PFDs must now occur on right-hand sides of inclusion dependencies
either at the top level or within the scope of monotone concept constructors; this
condition implies that limited DLFD is a strict generalization of earlier dialects.
Note that allowing PFDs on left-hand sides is equivalent to allowing PFDs in the
scope of negation.

Example 8 D1 " ¬(D2 : f → g) is equivalent to D1 ( (D2 : f → g) " ⊥.

In the following, we reduce logical implication problems in limited DLFD to
simpler formulations for which existing decisions procedures can be applied [17, 19].
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4.1 Transformation of Terminologies

We start by showing that allowing PFDs in monotone concept constructors within
terminologies can be avoided by a syntactic transformation.

Definition 9 (Simple Constraints and Terminologies) An inclusion dependency D "
E ∈ T is called simple if it conforms to limited DLFD and if the right-hand side can
be parsed by the following grammar.

E ::= D | D : Pf1, ...,Pfk → Pf

A terminology T is called simple if all its inclusion dependencies are simple.

For a given terminology T , we construct a simple terminology T simp by rewriting
the right-hand sides of inclusion dependencies as follows:

(D " D′)simp = {D " D′}
(D " E1 ( E2)

simp = {D " C1 ( C2} ∪ (C1 " E1)
simp ∪ (C2 " E2)

simp

(D " E1 # E2)
simp = {D " C1 # C2} ∪ (C1 " E1)

simp ∪ (C2 " E2)
simp

(D " ∀ f.E1)
simp = {D " ∀ f.C1} ∪ (C1 " E1)

simp

for D " D′ a simple inclusion dependency and C1 and C2 fresh primitive concepts.
We define T simp = ⋃

D"E∈T (D " E)simp.

Lemma 10

1. Let I |= T simp. Then I |= T ;
2. Let I |= T . Then there is I ′ over the same domain such that I and I ′ agree on the

interpretation of all symbols in T and I ′ |= T simp.

Proof Follows by a straightforward induction on the definition of (·)simp. (#

Thus, in terminologies, the interaction of positive concept constructors with PFDs
poses little difficulty and we can use existing decision procedures for the implication
problem.

Theorem 11 Let T be a terminology conforming to limited DLFD and C a simple
inclusion dependency. Then T |= C is decidable and complete for EXPTIME.

Proof The theorem is a consequence of Lemma 10 and of reductions presented in
Toman and Weddell [17, 19]. (#

4.2 Transformation of Posed Questions

Now assuming, w.l.o.g., that a given terminology is simple, we exhibit a reduction
of a logical implication problem with a posed question expressed in limited DLFD.
Unfortunately, allowing other than simple inclusion dependencies as posed questions
leads to additional complications, as the following examples illustrate.
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Fig. 4 Counterexample for
Example 12

Example 12 A counterexample to D " (C : f, g → h) # (C : f, h → g) is depicted in
Fig. 4. Note that any such counterexample must also falsify C " C : f → Id because
distinct C objects that agree on f will be required. Thus,

{C " C : f → Id} |= D " (C : f, g → h) # (C : f, h → g).

Example 13 A counterexample to D " (C : f → g) # ∀ f.(C : f → g) is shown in
Fig. 5. Observe with this case that distinct C objects must occur at different levels
when compared to a D-rooted tree.

The examples suggest a need for multiple root objects in counterexample interpre-
tations, with the roots themselves occurring at different levels. The overall strategy
is to therefore reduce a logical implication problem to a negation of a consistency
problem in an alternative formulation in which objects in a satisfying counterexample
denote up to $ possible copies in a counterexample interpretation for the original
problem, where $ is the number of occurrences of PFDs in the posed question.

To encode this one-to-many mapping of objects, we require a general way to have
$ copies of concepts occurring in a given membership problem. We therefore write
Di to denote the concept description D in which all primitive concepts C are replaced
by Ci. For a simple terminology T we then define

T i = {Ndi ( Di " Ei | D " E ∈ T , E a non PFD}, and

T i, j = {Ndi ( Nd j ( Di ( E j ( ((1≤n≤k∀Pfn .Eqi, j) " ∀Pf .Eqi, j,

Ndi ( Nd j ( D j ( Ei ( ((1≤n≤k∀Pfn .Eqi, j) " ∀Pf .Eqi, j

| D " E : Pf1, . . . ,Pfk → Pf ∈ T }.

Fig. 5 Counterexample for
Example 13
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For a concept description E we define

Not(E) =






¬D0 if E (= D) is free of PFDs,
Not(E1) ( Not(E2) if E = E1 # E2,

Not(E1) # Not(E2) if E = E1 ( E2,

∀ f.Not(E1) if E = ∀ f.E1,

Ndi ( Di ( ((1≤i≤k∀Pfi .Eq0,i) ( ∀Pf .¬Eq0,i

otherwise, when E = D : Pf1, . . . ,Pfk → Pf .

In the last equation, i is the index of the PFD in the original posed question.
In the above, we have introduced primitive concepts Eqi, j, 0 ≤ i *= j ≤ $, to ex-

press that the ith and jth object copies coincide, and Ndi, 0 ≤ i ≤ $, to assert that the
ith copy exists. The following auxiliary sets of inclusion dependencies are therefore
defined to account for the axioms of equality and for the fact that attributes in DLFD
denote total functions.

E(l) = {Eqi, j ( Eq j,k " Eqi,k | 0 ≤ i < j < k ≤ $}
∪ {Eqi, j " Eq j,i | 0 ≤ i < j ≤ $}
∪ {(Eqi, j ( Ci) " C j | 0 ≤ i *= j ≤ $ and C a primitive concept}
∪ {Eqi, j " ∀ f.Eqi, j | 0 ≤ i *= j ≤ $ and f a primitive feature}

N (l) = {Ndi " ∀ f.Ndi | 0 ≤ i ≤ $ and f a primitive feature}

Theorem 14 Let T be a simple terminology and D " E an inclusion dependency
containing $ occurrences of the PFD concept constructor. Then T |= D " E if and
only if

(
⋃

0≤i≤$

T i

)

∪




⋃

0≤i< j≤$

T i, j



 ∪ E($) ∪ N ($) |= (Nd0 ( D0 ( Not(E)) " ⊥.

Proof (sketch) Given an interpretation I such that I |= T and I *|= D " E we
construct an interpretation J as follows. First, in the construction, we use a many-to-
one map δ : ! → !J to associate objects in I with those in J . The range of δ serves
as the domain of the interpretationJ . For the counterexample object o ∈ (D ( ¬E)I ,
we set δo ∈ (Nd0)J . Then, for all o ∈ ! and 0 ≤ i *= j ≤ $ we define the map δ and
the interpretation I as follows:

– δo ∈ (Ndi)J ∧ ( f )I(o) = o′ ⇒ δo′ ∈ (Ndi)J ∧ ( f )J (δo) = δo′,
– δo ∈ (Ndi)J ∧ o ∈ (D)I ⇒ δo ∈ (D)J for D a PFD-free concept,
– δo = δo′ ∧ δo ∈ (Ndi)J ∧ δo′ ∈ (Nd j)J ∧ (Pf)I(o) = (Pf)I(o′) ⇒ δo ∈ (Eqi, j)J ,

and
– δo ∈ (Ndi)J ∧ o ∈ (¬D : Pf1, . . . ,Pfk → Pf)I where D : Pf1, . . . ,Pfk → Pf is the

i-th PFD constructor in E. Thus, there must be o′ ∈ ! such that o′ ∈ (D)I and
the pair o and o′ agree on all Pfi but disagree on Pf; we set δo = δo′ and δo′ ∈
(Ndi ( Di ( ((1≤i≤k∀Pfi .Eq0,i) ( ∀Pf .¬Eq0,i)J .

Note that the syntactic restrictions imposed on the uses of PFD constructors imply
that a negation of a PFD can be enforced only in the counterexample of the
description E. Spurious occurrences of negated PFDs in the interpretation I are
therefore ignored, since the interpretation itself satisfies all PFDs in T .
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One can easily verify that δo ∈ (Nd0 ( D0 ( Not(E))J for o ∈ (D ( ¬E)I . By
inspecting all inclusion dependencies in T we have J |= T i as I |= T . Furthermore,
the construction of J enforces J |= E($) ∪ N ($).

Conversely, given an interpretation J of (Nd0 ( D0 ( Not(E)) that satisfies all
inclusion dependencies in

(
⋃

0≤i≤$

T i

)

∪




⋃

0≤i< j≤$

T i, j



 ∪ E($) ∪ N ($),

we construct an interpretation I of T that falsifies D " E as follows:

– !I = {(o, i) : o ∈ (Ndi)J , 0 ≤ i ≤ $ and o *∈ (Eq j,i)J for any 0 ≤ j < i},
– ( f )I((o, i)) = (o′, j) whenever ( f )J (o) = o′ where j is the smallest integer such

that o ∈ (Eq j,i)J if such value exists and i otherwise; and
– (o, i) ∈ (D)I whenever (o, i) ∈ !J and o ∈ (Di)J .

One can easily verify that (o, 0) falsifies D " E whenever o belongs to (Nd0 (
D0 ( Not(E)), and such an object must exist by our assumptions. Also, I |= T ,
since, by case analysis otherwise, there is a contradiction with J |=

( ⋃
0≤i≤$ T i

)
∪(⋃

0≤i< j≤$ T i, j
)
∪ E($) ∪ N ($).

Corollary 15 The implication problem for limited DLFD is decidable and
EXPTIME-complete.

Proof Follows immediately from Theorems 11 and 14 above. (#

5 On PFDs, Nominals, and ABoxes

In this section, we explore the possibility of relaxing the nonemptiness condition for
left-hand sides of PFDs in limited DLFD. Doing so is highly desirable because, as
we have hinted in the introductory comments, this would effectively endow limited
DLFD with a capability for nominals. To see this, consider that our introductory
single site for client information example can be elaborated as follows.

Site3 " Site3 : → Id 1 " ∀Site3Ref.Site3 Client " ∀LocationOfData.Site3

The first pair of inclusion dependencies define an individual called Site3 in two steps:
(1) establish that at most one such individual exists, and (2) establish that at least one
exists if anything exists. The final inclusion dependency then asserts that the location
of data for any given client is this individual, thus accomplishing the objectives.

We show in the remainder of this section that allowing PFDs with empty left-hand
sides—although desirable—leads to undecidability of the logical implication problem
for limited DLFD. To do so, we digress to consider a weaker alternative in which
the problem is considered in the context of an ABox, showing for this case to begin
with that the problem already becomes undecidable by presenting a reduction of the
unrestricted tiling problem. However, it is possible with enough restrictions on the
use of other concept constructors to reobtain decidability [9].
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Fig. 6 Defining a grid using an ABox

An ABox consists of a finite collection of assertions A about individuals a1, a2,
and so forth that denote elements of the domain. An assertion establishes concept
membership for individuals with the form “D(ai)”, or attribute values for individuals
with the form “ f (ai, aj)”. The reduction of a given tiling problem U = (T, H, V) to a
logical implication problem for limited DLFD in the context of an ABox constructs
a terminology and ABox pair, denoted 〈TU ,AU 〉, by first establishing an integer grid
in steps.

1. Define a triangle seed pattern by including in AU the following assertions.

X(a1) Y(a2) Z(a3) f (a1, a2) g(a1, a3) g(a2, a3)

2. Use the triangle seed pattern to create a possibly infinite horizontal sequence of
objects that are instances of alternating concepts A0 and B0. The results of this
step are illustrated along the top of Fig. 6.

X " A0 Y " B0

A0 " A ( (∀ f.B0) ( (B0 : g → f . . .h) B0 " B ( (∀ f.A0) ( (A0 : h → f . . .g)

3. Extend this sequence in the vertical direction to form the integer grid. The results
of this step are also illustrated in Fig. 6.

A " (∀k.A) ( (B : g → k. . .g) B " (∀k.B) ( (A : h → k. . .h)

As before, the tiling problem U is modeled using primitive concepts Ti for each
tile ti ∈ T, asserting that Ti ( T j " ⊥ for all i < j. We place the tiles on the grid
points with the inclusion dependency (A # B) " ⊔

ti∈T Ti. The adjacency rules for
the instance U of the tiling problem are then captured as follows:

– for (ti, t j) *∈ H:

A ( Ti " (B ( T j) : g → Id B ( Ti " (A ( T j) : h → Id
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– for (ti, t j) *∈ V:

(A ( Ti) ( ∀k.(A ( T j) " ⊥ (B ( Ti) ( ∀k.(B ( T j) " ⊥

where Ti corresponds to a tile type ti ∈ T. The above inclusion dependencies form a
terminology TU and ABox AU associated with an unrestricted tiling problem U that
immediately yields the following result.

Theorem 16 An instance U = (T, H, V) of the infinite tiling problem admits a solu-
tion if and only if

〈TU ,AU 〉 *|= X " ⊥.

Corollary 17 The logical implication problem for limited DLFD in the context of an
ABox is undecidable.

The main result in this section now follows because PFDs with empty left-hand
sides can simulate the above triangle seed by instead adding the following to TU .

X ( Y " ⊥ X " (∀ f.Y) ( (∀g.Z) Y " ∀g.Z Z " Z :→ Id

Corollary 18 The logical implication problem for limited DLFD in which PFDs are
permitted empty left-hand sides is undecidable.

6 Conclusions

We have shown that allowing PFDs to occur in the scope of negation or on
the left-hand sides of inclusion dependencies in DLFD leads to undecidability of
its logical implication problem and therefore that a full integration of keys and
functional dependencies in expressive DLs is not, in general, possible. Conversely,
by virtue of reductions to simpler dialects, we have shown that the complexity of this
problem remains unchanged for limited DLFD in which PFDs are restricted to occur
within the scope of monotone concept constructors on right-hand sides of inclusion
dependencies.

Limited DLFD can be extended in several ways without changing the complexity
of its logical implication problem. For example, by using reductions introduced
in Toman and Weddell [19], it is straightforward to add roles, quantified number
restrictions on roles and even role inversion. (Feature inversion, however, is another
matter since its addition to simple DLFD already leads to undecidability [18, 20].)

There is also a possibility of extending limited DLFD with regular path functional
dependencies as defined in Toman and Weddell [17]. In this case, left- and right-
hand sides of PFDs are specified as regular languages that can define infinite sets of
path expressions. Such inclusion dependencies have applications in reasoning about
equality in semistructured databases [17] and in capturing inductive data types in
information integration, thus extending the work in [12].

Another direction of future research includes studying terminologies stratified
with respect to the interactions of the PFD constructor and negation in an attempt to
extend the applicability of the proposed approach.
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