
Fine Grained Information Integration
with Description Logics

Information Integration, Description Logics, Query Optimization

Abstract

We outline an approach to query optimization in
which a description logic (DL) reasoner serves a
crucial strategic role, and present an example appli-
cation of our approach in fine grained information
integration. In particular, the application demon-
strates how the internal structure of an unfolded B-
tree can be captured as a terminology, and how an
access plan that navigates this internal structure can
be found with the aid of a DL reasoner.

1 Introduction
An embedded control program (ECP) is a new application
area for database technology [Toman and Weddell, 2001b].
An ECP that is a legacy system presents an additional chal-
lenge. In particular, the ECP will already have code (some-
times a great deal of code) that specifies the internal encoding
for a database of control data. To enable high-level access to
this data using SQL-like languages, it becomes necessary to
optimize queries over conceptual views. A query optimizer
must therefore be capable of fine grained information inte-
gration; that is, it must be possible to supply descriptions of
the internal encoding of control data as part of the input to the
optimizer.

We have developed a novel resource bounded query opti-
mizer in which integrity constraints that abstract the internal
encoding of control data are used to extend the search space
of possible query plans for a given source query. This pa-
per links the optimizer with a powerful DL reasoner that en-
ables complex query rewrites. In particular, we show how
the data structures that constitute an internal control data en-
coding can be captured by a terminology in

���������
, a re-

finement of an earlier DL dialect called CFD [Khizder et al.,
2000]. We then show how this optimizer uses a DL reasoner
for

���������
to help find access plans that navigate the data

structures for queries over conceptual views. The process re-
lies on dynamic construction of descriptions that characterize
properties of subqueries generated during query optimization.
A complicating factor, due to the nature of the application it-
self, is the presumption of a bag semantics for an underlying
query algebra.

An unfolded B-tree data structure will be used as a run-
ning example. A schema for the B-tree is given in Figure 1;

squares and circles represent primitive classes in this schema,
while unlabeled wide arcs denote sub-classing and labeled
narrow arcs denote attributes. The P � classes on the right cor-
respond to data pages of the B-tree at level � , while the E 	
classes in the middle correspond to employee records within
the data pages. Classes E 	 P denote all employee records in
a data page at level � for ��
�	 . The records are presumed
to have a ��
���� field. A conceptual view of the data is rep-
resented by the EMP and STR classes. Also illustrated is a
primitive concept on the left that abstracts a sample query
over EMP and STR.

Squares have the added significance of denoting low-level
indexes for which dotted outgoing arcs represent search pa-
rameters. For example, since no parameters for the root page
P0 are required, a global variable provides access to P0; and
because of their respective parameters
�� and � , access to em-
ployee record addresses in E0 and the level one pages P1 can
be obtained by scanning an array within P0.

Based on a terminological abstraction � of the B-tree that
is expressed in terms of

���������
, we show how the opti-

mizer uses a DL reasoner to translate a request for all distinct
employee names,

select distinct ����������� as from !#"�$ as � ,
to the following equivalent formulation:
select
from P0 as %'& , (

(select � , %'& from E0 as � , ��� ()& = %'&)
union all

(select � , % & from P1 as %+* , %+*'� , = % & , (

(select � , %+* from E1 as � , �)� (-* = %.*)
union all
(select � , % * from P2 as %'/ , %'/+� , = % * ,

E2 as � , ��� ()/ = %0/)))),
 = ����������� .

To interpret the latter as an access plan, the subexpressions
enclosed in all but the last box should be understood as index
scans (note that some of the indices are supplied with param-
eters), and the last box as an assignment. The union all,
select, and from operations should be understood as con-
catenations, as duplicate-preserving projections, and as (iter-
ated) nested loop joins, respectively. With these assumptions,
the second formulation obtains all employee names by per-

WVUTPQRSEMP ks +3WVUTPQRSE0P
?G

��
��

��

��
��

��
V^

44
44

44

44
44

44

WVUTPQRSSTR
}}

name

WVUTPQRSE1P
?G

��
��

��

��
��

��
W_

66
66

66

66
66

66
E0

WVUTPQRSE2P
?G

��
��

��

��
��

��
W_

66
66

66

66
66

66
E1

WVUTPQRSE3P E2

_

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
�

M
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

M _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __

P0
**

���

77���
�

P1

�
�

OO

..

���
44���

�

P2

�
�

OO

..

���
22����

_

_ _
�

M
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

M _ __

WVUTPQRS�
	
�

%%

_

_ _ _
�

M
�

�

�

�

�

��
M _ _ __

Figure 1: SCHEMA FOR THREE-LEVEL B-TREE ON CLASS ��
�� .

forming a preorder traversal of the index pages that comprise
the B-tree.

Part of what is needed for this to work is an ability to in-
clude certain kinds of equational constraints in a terminology.
For example, there is a crucial logical relationship between
employee records not occurring in the root page, E1P, and the
data pages on the first level of the B-tree, P1. This depen-
dency can be captured by asserting that the
 � value of each
employee record in class E1P is equal to its
���� � value, i.e., by
adding the inclusion dependency ���������
����
 � � ��� to � .
Thus, another contribution is the incorporation of an equa-
tional concept constructor in

� � �����
in a way that retains

decidability of the logical implication problem for
������� �

,
and that remains sufficiently expressive for fine grained data
descriptions such as the unfolded B-tree case.

1.1 Related Work
A good survey of how DL reasoning can be useful in infor-
mation systems, circa 1995, can be found in [Borgida, 1995].
Of particular relevance to our own work is the use of DLs as
a lingua franca for various database schema languages [Call
et al., 2001; Calvanese et al., 1998b], and then as a means
for information integration [Calvanese et al., 2001a; 2001c;
1998a]. Recently, there has been some work on using DLs to
reason about set query containment [Calvanese et al., 2000;
Horrocks et al., 2000] and about bag query equivalence
[Khizder et al., 2000] in the presence of database schema
expressed in terms of DLs. Much of this more recent work
also depends on an ability to express functional constraints
[Calvanese et al., 2001b; Khizder et al., 2001].

The remainder of the paper is organized as follows. A DL
dialect called

� � �����
and a query language called � is

first introduced in Section 2. Section 3 then defines a number
of bidirectional rules for rewriting queries. Our focus is on
rules that involve reasoning with

��� �����
terminologies that

in turn abstract database schema and the structural properties
of the queries themselves. Section 3 also outlines a general

approach to query optimization based on these rules, and ef-
ficient ways to integrate reasoning in

� � �����
with query

rewriting. Section 4 gives a brief summary and outline of
further extensions of the approach.

2 Definitions
We begin with a description (or feature) logic that allows the
use of a concept constructor for equational constraints in pos-
sibly cyclic terminologies. This is only permitted in a way
that ensures decidability for the associated implication prob-
lem. The new DL generalizes an earlier description logic de-
fined in [Khizder et al., 2000].

Definition 1 (Syntax and Semantics of
������� �

) Let ! be
a set of attribute names. A path expression is defined by the
grammar “ "$#&%'%(�*)$+-, ./�0"$#214365 ” for)$+-, .879! . Also, the right
and left superscripts of consecutive attributes must match in
every well formed path description.
Let :;+=<0�
7�> be primitive concept description(s). We define
derived concept descriptions by the grammar in Figure 2.
An inclusion dependency is of the form ?@+��*A;+ .
The semantics of expressions is defined with respect to a
many-sorted structure �CBD+E<�F G�� , where B8+ are disjoint do-
mains of “objects” and �=�(�HG an interpretation function that
fixes the interpretations of primitive concepts :I+ to be sub-
sets of BD+ and primitive attributes)$+-, . to be total functions
�J)K+-, .L�HGM%NB8+POQB;. . The interpretation is extended to path
expressions, �=365K� G �SR�T��(T , �C) +-, . �0"K#6� G �U�E"K#6� G9V �J) +-, . � G
and derived concept descriptions ?D+ and A;+ as defined in
Figure 2.
An interpretation satisfies an inclusion dependency ?W+X�YA;+
if �J?8+Z�HG\[]�JA;+=�-G .
A terminology � consists of a finite set of inclusion depen-
dencies, and is stratified if:

1. For each description ^�)$+-, ./�(? , we have �`_ 	 ;
2. For each description ?baX"K#c�c<��c���d<0"$#deXfgOh"$# , each "K#Ei

SYNTAX SEMANTICS: DEFN OF “ � F(�HG ”

?8+ %'%(� : + �C:;+J�-G\[B8+
1U?8+� � ?8+� �C?8+� �HG��9�J?8+���-G
1U?8+��� ?8+� �C?8+� �HG��9�J?8+� �-G
1��
?8+ B8+
	;�C?8+d�-G
1 ^�)K+-, ./�(?;. a Tb% �J)K+-, .L�HG��CT��
7 �J?;.L�-G f

A;+ %'%(� ?8+
1UA +� � A +� �CA;+� �-G��\�CA;+���-G
1 ^�)K+-, ./�(A�. a Tb% �J)K+-, .L�HG��CT��
7 �JA�.L�HG`f
1 �E"$# � �\"K# � � a Tb% �E"$# � �-G��JT �
� �E"K# � �-G`�JT �4f
1U?8+Ea "$# � <c�'�'�'< "$# e f&OU"$# a Tb%0^��D7 �J?8+d�-G`�
 e

+�� � �E"$# + �HG��CT���� �E"K# + �HG`���L���U�E"K#6�HG��CT���� �d"$#6�-G
���L�4f

Figure 2: SYNTAX AND SEMANTICS OF
���������

.

consists only of primitive attributes) +-, . for which ��� 	 ;
and

3. For each description �E"$#�� �\"$# � � , each "$#di consists only
of primitive attributes) + , . for which �I_ 	 and has at
least one primitive attribute for which ��� 	 .

The logical implication problem asks if � 1 � ?@+
� A;+ holds;
that is, if all interpretations that satisfy all constraints in �
also satisfy �C?D+d�-G []�JA;+=�-G (the posed question).

Herein, we simplify the notation for path expressions by
omitting the superscripts for descriptions and primitive at-
tributes whenever clear from the context, and allow a syntac-
tic composition "$# � �0"$# � of path expressions that stands for
their concatenation. The following theorem is an extension of
an earlier result [Toman and Weddell, 2001a].

Proposition 2 Let � be a stratified
������� �

terminology.
Then the

���������
implication problem � 1 �S?D+ � A;+ is

decidable and complete for DEXPTIME.

Relaxing the restrictions on terminologies leads to undecid-
able implication problems. In particular, an absence of ei-
ther condition (1) or (3) will allow equations of the form
�C) ���() � �)�� � on a cyclic schema (which is well known to
be undecidable [Machtey and Young, 1978]). Perhaps sur-
prisingly, allowing path functional dependencies (and in turn
keys) to constrain the behavior of) +-, . -attributes for which
��� 	 also leads to undecidability, as illustrated by the fol-
lowing.

Example 3 Consider a general (undecidable) decision prob-
lem of the form

a : � � ^) � , �+-, . �(:
� f�� a : � �]�J) � , �+-, � �()

� , �+ , �;�)
� , �+-, � ��f

1 �M: � �]�J) � , �� �) � , �� �) � , �� �
where ��� �2_ � and ��� 	8_�� . The inclusion dependencies
enclosed in the box have the following equivalent formulation
(note the use of) � , � -attributes).

a0: � � �J) � , �+ , � �)
� , �+-, � �)

� , �+-, ���
� �C) � , �+-, �X�()

� , �+-, � �)
� , �+-, � �� �C) � , �+-, � �()

� , �+-, � �)
� , �+-, � �
� : � ac) � , �+-, � fPO 3�5 f

The reformulated terminology now satisfies conditions (1)
and (3), but fails to satisfy condition (2).

��� ! "�$ �"! ����� �+�$#&%(')*� ! "�$ � !#"�$�+ ����� �-,/.103245� $768� $96&+�,/.:032;5� $ � �<!.,�� =�6>*� $) �<!.,�� = �?5� ! "�$ � !96+$@*� !76.$A� ! "�$CB�DE!�(& � $76GFHB�D !76�I�! � $(FJ5� !768� !96+$K5� ! � $A� !76.$CBLDE! (* � $ � F
BLD ! � I�!) $(F
BLD (*+� ,�M�(& F� 6 � !76�B�! � $A�ON�P��� ! � � ! � $�Q)*� !) $A� ! � $CBLDE! (�/)� $) F
BLD !) I�! 4 $(F
BLD (�/�� ,�M�(* F�R45� ! � B�!) $A�ON�R;5� !) � !) $�Q>*� ! 4 $A�SN
Figure 3: AN UNFOLDED B-TREE SCHEMA IN

������� �
.

For the unfolded B-tree, however, the restriction to stratified
terminologies does not cause any problems. In particular, a
terminology that corresponds to the graphical representation
of this data structure given earlier in Figure 1 is listed in Fig-
ure 3. An interpretation � �(�HG induces a (class of) database
instances over which we can formulate queries. The query
language we use for this purpose is a positive fragment of an
object-relational first-order language with duplicate seman-
tics:

Definition 4 (Object Relational Queries) Figure 4 defines
the syntax (left) and semantics (right) of the query language
 � . In the syntax, the symbols
 ,
 + , and T stand for query
variables (identifiers). The semantics is given with respect to
an interpretation � �(�HG . In addition we assume standard syn-
tactic safety conditions to be satisfied by the queries.

For the remainder of the paper, we use parentheses and com-
mon abbreviations to make queries more readable; e.g., fromU ��<c���c��< U e stands for iterated binary joins.

3 Query Optimization
We first present a collection of bidirectional rules for rewrit-
ing queries expressed in � , with a particular focus on the
rules that depend critically on an ability to reason about

U %'% � ? as
 � � U�� ��� % � a 1��
@%��
	X%��W7 �C?@�-GX1f
1
 �0"$#6� � T��0"$# � a 1��
@%��/<-T�%
��	
% �E"K#����-G
���L�
� �E"K# � �-G
���&��1f
1 select
���<��c����<
�� U a 1��
���%����
���<c�����6<
��@%����
���	X%��87 � � U�� ��� 1 f
1 elim
���<��c����<
�� U a
�
���%
�
��
��c<����c��<
��W%��
��
���	
%
�87 � � U�� ��� f
1 true a���	�f
1 from

U � < U � � � U � � ����� � � U � � ���
1 empty
 � <��c����<
 � �
1 U � union all

U � � � U � � ����� � � U � � ���
Figure 4: SYNTAX AND SEMANTICS OF � .

������� �
terminologies. We then outline an optimization pro-

cess that uses these rules, primarily by illustrating their be-
havior on the B-tree case.

3.1 Transformation Rules
Typically, rule-based query optimizers use rules that are de-
signed to apply universally to all subqueries, possibly with
respect to integrity constraints that hold in a database schema.
Often, however, a subquery nested within another fixed query,
what we shall call a query context, can be rewritten to another
subquery that preserves equivalence only with respect to the
enclosing query context. Our formulation of query rules ap-
ply in this more general circumstance, and therefore depend
on the following definition.

Definition 5 (Context) An expression
U � �

in the language
 � enriched by an additional terminal symbol

� �
is called

a query context. For a query
U 7 � , the expression

U � U����
,

denotes the syntactical substitution of
U��

for
� �

. We also say
that
U �

is compatible with
U � �

if
U � U!��� 7 � .

To benefit from terminological reasoning, the rules refer
to descriptions that abstract both subqueries

U
and enclos-

ing query contexts
U � �

, denoted A�" and A "$#&% , respectively.
These descriptions capture important structural information
about subquery results and considerably enhance the power
of the rules. In particular, by adding inclusion dependencies
of the form : " � A " and : " � A "'#&% to a given terminol-
ogy (: " denotes a primitive concept anchor for the descrip-
tions), a

��� �����
reasoner can deduce additional informa-

tion needed by the rules. Definitions of A�" and A "$#&% are as
follows.

(M
)*****+ *****,

! (���-/. if 0 M1- as (�2
D (* �43�5 * M�(�/+�63�5 /PF7. if 0 M D (* �43�5 * M�(�/��43�5 /QF72(
8 . if 0 M select 9:01; or elim 9<0=;>2? . if 0 M true 2(� B (� . if 0 M from 0 * .@0�/A2
N . if 0 M empty 9 2 or(� I (� . if 0 M10 * union all 0�/ .

(
B>C M
)**+ **,
? . if 0�DFE
MGDHE�2(
B&C B (
8 . if 0�DFE
MI0�D from 0 ; .4DHE�E or 0�D from DHE�.J0 ; EH2(
B&C . if 0�DFE
MI0�D elim 9 DHEKE�.J0�D select 9 DHE�EH.0�D�01; union all DHE�E�. or0�DKDHE union all 01; E .

For every query
U

and query context
U � �

, we also define the
set L " of free variables of

U
and the set L "'#&% of variables

captured by the context
U � �

. These two sets are defined in-
ductively on the structure of

U
and
U � �

, respectively.
The rules are listed in Figure 5, and operate as follows.

�
-intro: Given a existing query variable
 , the DL reasoner

infers that the hypothetical query object : " satisfies the
constraint : " � ^�
 �(? . This means that all valuations of

 in
U � �

must also belong to �C?@�HG and thus we can add
or remove a conjunct “ ? as
 ” to or from the query.
Also note that the terminal true can be introduced or
removed anywhere in

U
using a standard rule for join.

� -intro: As above, an equational constraint on query vari-
ables that is implied in the context

U � �
by the terminol-

ogy and the abstraction :=" �*A "'#&% can be freely added
or removed.

var-intro: Existing equational constraints in queries can be
split by introducing a new query variable with a unique
name. Although this rule does not depend on DL rea-
soning, it enables the introduction of further information
from the database schema into the query by subsequent
use of rules

�
-intro and � -intro.�

-intro: Query variables labeled with disjunctive descrip-
tions can be translated to the union all operation.
Note the use of the duplicate elimination operator elim
to account for the discrepancy between the set seman-
tics of the description and the bag semantics of the
union all operation.M -elim: The (usually expensive) elim operation can be re-
moved from queries when its input is duplicate free.
This is guaranteed by the semantics of the atomic queries
“ ? as
 ” and “
�� "$#�� � T��0"$# � ”.�

- M -dist: An elim operator can be distributed over a join to
subqueries. However, this is only possible if the DL rea-
soner can deduce that the query variables of one of the
subqueries are functionally determined by the “remain-
ing” variables. This rule generalizes an earlier version
[Khizder et al., 2000].�

- M -dist: An elim operator can also be distributed over a
union all if the DL reasoner can deduce that the two
subqueries must be disjoint by virtue of their abstrac-
tions.

The above observations, together with an induction on query
contexts, yield the following result.

Proposition 6 The rules in Figure 5 are sound.

In the running example (and to achieve completeness for the
conjunctive case) we also use several administrative rules,
e.g., commutativity and associativity of joins, distributivityof
unions over joins, absorption of nested duplicate elimination
operators, etc.

�
-intro:

U �
true

�
U � ? as
 � ���������
	�� ��
������ � ����	������ � and

��� � ��
!�

� -intro:
U �
true

�
U �
��0"$#6� � T��0"K# � � ���������
	�� ��
�� ��� � ���
	�"��#��$�% � �'& �($�% �*) and

� ,+& � � ��
,�

var-intro:
U �
����0"$#6� �
 � �0"$# � � "$# � �U �

from
���� "$#���� T � "$#3�0<-T �
 � �0"$# � � &.-� � ��
/� ����� � , � � �
�

-intro:
U � �JA � � A � � as
 �U �

elim
 �d�JA;� as
 � union all �CA � as
K�d� �
M -elim:

U �
elim
@? as
 �U � ? as
 � M -elim:

U �
elim
�<QT
��0"$# � � T��0"$# � �U �
��0"K#�� � T�� "$# � �

�
- M -dist:

U �
elim 0 from

U � < U � �U �
select 0 from � elim L " � U ����<0� elim 1 U � � �

�2��������	�� ��
,�43 �5� � 3 �5� � �� � ���
	6������7���� ��
/�/�98 ��� �
where : � "�7;����� �)=< ��� ��

- M -dist:
U �
elim 0 � U � union all

U � � �U � � elim 0 U ��� union all � elim 0 U � � � �2����� � 	;� ��
�� 3 � � � 3 � � � �'� � � � 	6>
Figure 5: QUERY TRANSFORMATION RULES.

3.2 Implementation
Figure 6 illustrates a sequence of applications of rules in Fig-
ure 5 that progressively transforms the “names of employees”
query to the query plan given in the introduction. The order of
application of these rewrites generally follows the approach
outlined in [Toman and Weddell, 2001b] for a query language
with set semantics. In particular, there are three phases that
altogether find query plans for conjunctive fragments.

1. An initial query expansion phase is applied for conjunc-
tive subexpressions (e.g., Steps 1-7 in Figure 6). The
phase introduces additional existentially quantified vari-
ables and conditions whose existence is implied by the
terminology. Observe the use of rules

�
-intro, � -intro

and var-intro.
2. The second phase essentially relates to so-called join or-

der selection. A “choice-point” during join order selec-
tion is to select from among the variables and conditions
that relate to index use. For example, index P0 is se-
lected (Step 8) and, if possible, removed from the scope
of an elim operator (Step 9). An important detraction
from normal practice, however, is an option to explore
disjunctive descriptions using rule

�
-intro in lieu of “se-

lecting next index” (Step 12). In this latter case, admin-
istrative rules (Step 13) and (if applicable) rule

�
- M -dist

(Step 14) are then used to “prepare” each disjunct for
a recursive application of the three phases (Steps 15-16
for the first disjunct; the remaining steps for the second
disjunct).

3. The third and final query contraction phase then re-
moves redundant variables and conditions not used in
the actual query plan. Observe the use of rules

�
-intro,

� -intro and var-intro in reverse (Steps 16 and 19).
Another feature of our implementation of this process is the
use of a graph encoding of queries that is also used directly by
the

���������
model building procedure. Also, query contrac-

tion is instead accomplished by applying query expansion on
a separate plan graph constructed during join order selection.

4 Summary
We have outlined an approach to query optimization for a pos-
itive fragment of a query language with duplicate semantics
for which a DL reasoner is used to search for possible index
use, including cases that require exploring horizontally par-
titioned data, and to reason about duplicate elimination and
its interaction with the join and union operations. We have
also presented

������� �
, a boolean-complete DL dialect with

a DEXPTIME-complete implication problem that includes
concept constructors for both functional and equational con-
straints, and allows a stratified use of these constructors to
occur in possibly cyclic terminologies.

There are many opportunities for future work. For ex-
ample, we are currently exploring alternative restrictions on���������

terminologies that continue to guarantee decidabil-
ity. Completeness results that relate to query equivalence de-
fined in terms of our rules are another ongoing avenue of re-
search. Another direction is the incorporation of order de-
pendencies [Toman and Weddell, 2001a] for reasoning about
order and aggregate optimizations and their interaction with
the current rules. Finally, we are continuing our efforts on
evaluating an experimental implementation of our query op-
timizer on a number of real-world test cases such as the Linux
kernel data structures.

References
[Borgida, 1995] Alexander Borgida. Description logics in data

management. IEEE Transactions on Knowledge and Data En-
gineering, 7(5):671–682, 1995.

[Call et al., 2001] Andrea Call, Diego Calvanese, Giuseppe De Gi-
acomo, and Maurizio Lenzerini. Reasoning on UML Class Di-
agrams in Description Logics. In Proc. of IJCAR Workshop on
Precise Modelling and Deduction for Object-oriented Software
Development (PMD 2001), 2001.

[Calvanese et al., 1998a] Diego Calvanese, Giuseppe De Giacomo,
Maurizio Lenzerini, Daniele Nardi, and Riccardo Rosati. De-
scription Logic Framework for Information Integration. In Prin-

1. elim � from ����� as � , � � � ���	��

�
2. elim � from ����� as � , � � � ���	��

� , � � � as � � -intro and 6
3. elim � from ����� as � , � � � ���	��

� , � � � as � , " � ��� � � �) as � � -intro and 7
4. elim � from ����� as � , � � � ���	��

� , � � � as � , " � ��� � � �) as � , � � � � � � � � � � -intro
5. elim � from ����� as � , � � � ���	��

� , � � � as � , " � ��� � � �) as � , � � � � � � � , � � � � � � � var-intro
6. elim � from ����� as � , � � � ���	��

� , � � � as � , " � ��� � � �) as � , � � � � � � � rev- � -intro
7. elim � from ����� as � , � � � ���	��

� , � � � as � , " � ��� � � �) as � , � � � � � � � , � � as � � � -intro and 7
8. select � from elim � � � � as � � , elim � , � � from ����� as � , � � � ������
�� , � � � as � , " � ��� � � �) as � , � � � � � � � � - � -dist
9. select � from � � as � � , elim � , � � from ����� as � , � � � ���	��

� , � � � as � , " � ��� � � �) as � , � � � � � � � � -elim

10. select � from � � as � � ,
select � , � � from elim � , � � from ����� as � , � � � as � , " � ��� � � �) as � , � � � � � � � , elim � , � � � � ������
�� � - � -dist

11. select � from � � as � � , � � � ������
�� ,
elim � , � � from ����� as � , � � � as � , " � ��� � � �) as � , � � � � � � � � -elim+administrative rules

12. select � from � � as � � ,
elim � , � � from ����� as � , � � � as � , � � � � � � � , elim � " � � as �) union all

" � � � as �) � -intro
13. select � from � � as � � , � � � ������
�� ,

elim � , � � " from ����� as � , � � � as � , � � � � � � � , � � as �) union all"
from

�����
as � , � � � as � , � � � � � � � , � � � as �) administrative rules

14. select � from � � as � � , � � � ������
�� ,"
elim � , � � from ����� as � , � � � as � , � � � � � � � , � � as �) union all"
elim � , � � from ����� as � , � � � as � , � � � � � � � , � � � as �) � - � -dist

15. select � from � � as � � , � � � ������
�� ,"
select � , � � from ����� as � , � � � as � , � � � � � � � , � � as �) union all"
elim � , � � from ����� as � , � � � as � , � � � � � � � , � � � as �) �	� � - � -dist+4 � � -elim

16. select � from � � as � � , � � � ������
�� ,"
select � , � � from � � as � , � � � � � � �) union all"
elim � , � � from ����� as � , � � � as � , � � � � � � � , � � � as �) � � rev- � -intro and 7, 8

17. select � from � � as � � , � � � ������
�� ,"
select � , � � from � � as � , � � � � � � �*) union all"
elim � , � � from ����� as � , � � � as � , � � � � � � � ,� � � as � , " � � � � � �) as � , � � � � � � � , � � as � �) analogous to steps 3-7

18. select � from � � as � � , � � � ������
�� ,"
select � , � � from � � as � , � � � � � � �*) union all"
elim � , � � from ����� as � , � � � as � , � � � � � � � ,� � � as � , " � � � � � �) as � , � � � � � � � , � � as � � , � � � � � � �*) � -intro

19. select � from � � as � � , � � � ������
�� ,"
select � , � � from � � as � , � � � � � � �*) union all"
elim � , � � from ����� as � , � � � as � ,� � � as � , " � � � � � �) as � , � � � � � � � , � � as � � , � � � � � � �*) , rev- � -intro

20. select � from � � as � � ,"
select � , � � from � � as � , � � � � � � �*) union all"
select � , � � from � � as � � , � � � � � � � ,"

select � , � � from � � as � , � � � � � � �) union all"
select � , � � from � � as � � , � � � � � � � , � � as � , � � � � � � �*),) ,� � � ���	��
�� analogous to steps 8-19 applied two additional times

Figure 6: QUERY COMPILATION.

ciples of Knowledge Representation and Reasoning (KR’98),
pages 2–13, 1998.

[Calvanese et al., 1998b] Diego Calvanese, Maurizio Lenzerini,
and Daniele Nardi. Description Logics for Conceptual Data Mod-
elling. In Jan Chomicki and Gunter Saake, editors, Logics for
Databases and Information Systems, chapter 8. Kluwer, 1998.

[Calvanese et al., 2000] Diego Calvanese, Giuseppe De Giacomo,
and Maurizio Lenzerini. Answering Queries Using Views over
Description Logics Knowledge Bases. In Proc. of the 16th Nat.
Conf. on Artificial Intelligence (AAAI 2000), pages 386–391,
2000.

[Calvanese et al., 2001a] Diego Calvanese, Giuseppe De Giacomo,
and Maurizio Lenzerini. Description Logics for Information Inte-
gration. In A. Kakas and F. Sadri, editors, Computational Logic:
From Logic Programming into the Future (In honour of Bob
Kowalski), Lecture Notes in Computer Science. Springer-Verlag,
2001. To appear.

[Calvanese et al., 2001b] Diego Calvanese, Giuseppe De Giacomo,
and Maurizio Lenzerini. Identification Constraints and Func-
tional Dependencies in Description Logics. In Proc. of the 17th
Int. Joint Conf. on Artificial Intelligence (IJCAI 2001), pages
155–160, 2001.

[Calvanese et al., 2001c] Diego Calvanese, Giuseppe De Giacomo,
and Maurizio Lenzerini. Ontology of Integration and Integration
of Ontologies. In Proc. of the 2001 Description Logic Workshop
(DL 2001), pages 10–19. CEUR-WS Vol.49, 2001.

[Horrocks et al., 2000] Ian Horrocks, Ulrike Sattler, Sergio Tes-
saris, and Stephan Tobies. How to decide Query Containment un-
der Constraints using a Description Logic. In Proceedings of the
7th International Workshop on Knowledge Representation meets
Databases (KRDB 2000), CEUR-WS vol.29, pages 59–72, 2000.

[Khizder et al., 2000] Vitaliy L. Khizder, David Toman, and
Grant E. Weddell. Reasoning about Duplicate Elimination with
Description Logic. In Rules and Objects in Databases, DOOD
2000 (part of Computational Logic 2000), pages 1017–1032,
2000.

[Khizder et al., 2001] Vitaliy L. Khizder, David Toman, and
Grant E. Weddell. On Decidability and Complexity of Descrip-
tion Logics with Uniqueness Constraints. In International Con-
ference on Database Theory ICDT’01, pages 54–67, 2001.

[Machtey and Young, 1978] Michael Machtey and Paul Young. An
Introduction to the General Theory of Algorithms. North-Holland
Amsterdam, 1978.

[Toman and Weddell, 2001a] David Toman and Grant E. Weddell.
On Attributes, Roles, and Dependencies in Description Logics
and the Ackermann Case of the Decision Problem. In Description
Logics 2001, pages 76–85. CEUR-WS vol.49, 2001.

[Toman and Weddell, 2001b] David Toman and Grant E. Weddell.
Query Processing in Embedded Control Programs. In 2nd Int.
Workshop on Databases in Telecommunications, pages 68–87.
Springer LNCS 2209, 2001.

