
Conjunctive Query Answering in the Description Logic EL
using a Relational Database System

Abstract

Conjunctive queries (CQ) are a fundamental mech-
anism for accessing description logic (DL) knowl-
edge bases. We study CQ answering in (extensions
of) the DL EL, a popular choice for the formulation
of large-scale ontologies that underlies the desig-
nated OWL2-EL profile of OWL2. Our main con-
tribution is a novel approach to CQ answering that
enables the use of conventional relational database
systems as the basis for query execution. We evalu-
ate our approach using the IBM DB2 system, with
encouraging results.

1 Introduction
One of the main applications of ontologies in computer sci-
ence is accessing data: an ontology formalizes conceptual in-
formation about data stored in one or multiple data sources.
This information is then used to derive answers to queries
over such sources. This general setup plays a central role
in, e.g., querying the Semantic Web, ontology-based infor-
mation integration, and peer-to-peer data management. In all
these applications Description Logics (DLs) are popular on-
tology languages and conjunctive queries (CQs) are used as
a fundamental querying tool. Hence, efficient and scalable
approaches to CQ answering over DL ontologies are of vital
importance.

Calvanese et al. have argued that, in the short run, true scal-
ability of conjunctive query answering over DL ontologies
can only be achieved by making use of standard relational
database management systems (RDBMSs) [Calvanese et al.,
2007b]. Alas, this is not a simple task as RDBMSs are un-
aware of TBoxes (the DL mechanism for storing conceptual
information) and adopt the closed-world semantics. In con-
trast ABoxes (the DL mechanism for storing data) and the
associated ontologies employ the open-world semantics. Ex-
isting approaches to overcome these differences have serious
limitations: The approach of [Calvanese et al., 2007b], for
example, applies only to DLs with data complexity of CQ an-
swering in LOGSPACE; for many DLs, however, this problem
is complete for PTIME or co-NP. In particular, the above ap-
proach cannot be directly used for DLs that include qualified
existential restrictions, which play an important role in many

ontologies. This limitation is also shared by the rule-based
approach presented in [Wu et al., 2008].

In this paper, we present a novel approach to using
RDBMSs for CQ answering over DL ontologies that, in
particular, accommodates qualified existential restrictions.
We apply it to the EL family of DLs, whose members
are widely used as ontology languages for large-scale bio-
medical ontologies such as SNOMED CT and (early versions
of) NCI [Spackman, 2000; Sioutos et al., 2006]. Our main re-
sult shows that CQ answering in ELHdr⊥ , the extension of ba-
sic EL with the bottom concept, role inclusions, and domain
and range restrictions, can be realized using an RDBMS. This
result is of particular relevance as ELHdr⊥ can be viewed as
the core of the designated OWL-EL profile of the upcom-
ing OWL Version 2 ontology language. We evaluate our ap-
proach using the IBM DB2 RDBMS and show that it scales to
TBoxes with more than 50.000 axioms yielding answer times
ranging from a fraction of a second to a few seconds.

The central idea of our approach is to incorporate the con-
sequences of the TBox T into the relational instance corre-
sponding to the given ABox A. Formally, we say that a DL
admits extended FO reducibility if it is possible to effectively
rewrite (i) A and T into an FO structure (independently of
q) and (ii) q and (possibly) T into an FO query q∗ (indepen-
dently of A) such that answers are preserved, i.e, the answer
to q∗ over the above FO structure under the closed-world se-
mantics is the same as the answer to q in K = (T ,A). The
connection to RDBMSs then relies on a well-known equiv-
alence between FO structures and relational databases, and
FO queries and SQL queries. The notion of extended FO re-
ducibility generalizes the notion of first-order (FO) reducibil-
ity [Calvanese et al., 2007b] where the TBox is incorporated
into the query q rather than into the ABox A while the ABox
itself is used as a relational instance without any modification.
Our approach has two major benefits:

1. It applies to DLs for which data complexity of CQ an-
swering is PTIME-complete, such as ELHdr⊥ .

2. For ELHdr⊥ , both rewriting steps can be carried out in
polynomial time and produce only a polynomial blowup.

Moreover, the query rewriting only depends on the input CQ
and the role inclusions in T (which are usually only few), but
not on T ’s concept inclusions (usually very many). In con-
trast and to the best of our knowledge all existing approaches

used to define non-extended FO reducibility incur a blowup
during query rewriting that is exponential in the number of
concept inclusions.

In addition, we analyze the limitations of our approach and
show that DLs with data complexity exceeding PTIME can-
not enjoy polynomial extended FO reducibility, where the ex-
pansion of the ABox due to rewriting (but not necessarily of
query rewriting) is bounded by a polynomial. We believe that
this is a significant result as extended FO reducibility involv-
ing an exponential blowup of the data does not seem to be
practical. In particular, the result implies that expressive DLs
such as ALC cannot enjoy polynomial FO reducibility. The
same holds even for EL enriched with negated ABox asser-
tions and negated query atoms. For the latter case, we sketch
an approach to query answering that involves only a polyno-
mial blowup of the ABox, but is incomplete (in a way pre-
cisely characterized by an alternative semantics).

Due to space limitations, detailed proofs are given in the
technical report [Anonymous, 2009].

2 Preliminaries
In ELHdr⊥ , concepts are built according to the syntax rule

C ::= A | > | ⊥ | C uD | ∃r.C

where, here and in the remaining paper, A ranges over con-
cept names taken from a countably infinite set NC, r ranges
over role names taken from a countably infinite set NR, and
C,D range over concepts. A TBox is a finite set of concept
inclusions C v D, role inclusions r v s, domain restrictions
dom(r) v C, and range restrictions dom(r) v C. An ABox
is a finite set of concept assertions A(a) and role assertions
r(a, b), where a, b range over a countably infinite set NI of
individual names. A knowledge base is a pair (T ,A) with T
a TBox and A an ABox.

The semantics of concepts, inclusions, restrictions, and as-
sertions is as given as usual in terms of an interpretation
I = (∆I , ·I), we refer to [Baader et al., 2008] for details.
An interpretation I is a model of a TBox T (ABox A) if it
satisfies all inclusions and restrictions in T (assertions in A).
It is a model of a knowledge base K = (T ,A) if it is a model
of T andA. A knowledge base that has a model is called con-
sistent. For a concept inclusion, role inclusion, or assertion α,
we write K |= α if α is satisfied in all models of K.

Let NV be a countably infinite set of variables. Together,
the sets NV (of variables) and NI (of individual names) form
the set NT of terms. A first-order query is a first-order for-
mula ϕ(~v) built from NT and the unary and binary predicates
from NC and NR with ~v = v1, . . . , vk a vector of variables in
NV containing all free variables of ϕ. Variables in ~v are called
the answer variables of q. We call q k-ary if there are k an-
swer variables. A conjunctive query is a first-order query q
of the form ∃~u.ψ(~u,~v), where ψ is a conjunction of concept
atoms A(t) and role atoms r(t, t′). The variables in ~u are
called quantified variables of q. We use var(q) to denote the
set of all variables in ~u and ~v, qvar(q) for the set of quantified
variables, avar(q) for the set of answer variables, and term(q)
for the terms in q. Slightly abusing notation, we write α ∈ q
if the concept or role atom α occurs in q.

For I an interpretation, q = ϕ(~v) a k-ary first-order query,
and a1, . . . , ak ∈ NI, we write I |= q[a1, . . . , ak] if I sat-
isfies q with vi assigned to aIi , 1 ≤ i ≤ k. A certain an-
swer for a k-ary conjunctive query q and a knowledge base
K is a tuple (a1, . . . , ak) such that a1, . . . , ak occur in K and
I |= q[a1, . . . , ak] for each model I of K. We use cert(q,K)
to denote the set of all certain answers for q and K. This de-
fines the querying problem studied in this paper: to compute
cert(q,K) given an ELHdr⊥ knowledge base K and a CQ q.

Note that CQ answering generalizes instance checking, the
problem of deciding whether K |= C(a), for C a ELHdr⊥ -
concept: any suchC can be easily unfolded into a conjunctive
query qC such that a ∈ cert(qC ,K) iff K |= C(a).

In the remainder of this paper we use the unique name as-
sumption: aI 6= bI for all interpretations I and all a, b ∈ NI

with a 6= b. It is not hard to see that this has no impact on cer-
tain answers. We also assume, w.l.o.g., that (i) queries con-
tain only individual names that occur in the KB against which
they are asked, (ii) TBoxes do not contain domain restric-
tions, (iii) TBoxes contain exactly one range restriction per
role name, (iv) if K |= r v s and ran(r) v C, ran(s) v D
are in T , then C vT D, and (v) there are no r, s ∈ NR with
r 6= s, K |= r v s, and K |= s v r. Justifications for these
assumptions are given in [Anonymous, 2009].

3 ABox Rewriting / Canonical Models
The rewriting of the ABox consists of an extension of the
ABox to a canonical model of the knowledge base. For the
remainder of this section we fix an ELHdr⊥ -KB K = (T ,A).
We use sub(T) to denote the set of all subconcepts of con-
cepts that occur in T , rol(T) for the set of role names that
occur in T , and Ind(A) for the set of individual names that
occur in A. We also use ranT (r) to denote the (unique) con-
cept C with ran(r) v C ∈ T , and set

ran(T) := {ranT (r) | r ∈ rol(T)}
NIaux := {xC,D | C ∈ ran(T) and D ∈ sub(T)},

assuming NI∩NIaux = ∅. The canonical model IK ofK is de-
fined in Figure 1. It is standard to show the following (similar
to proofs in [Baader et al., 2005b; Lutz and Wolter, 2007]):

Proposition 1. If K is consistent, then IK is a model of K.

Note that the cardinality of ∆IK is only quadratic in the size
of K, and linear if T does not contain range restrictions. The
model IK can be computed in polynomial time since sub-
sumption and instance checking in ELHdr⊥ can be decided in
poly-time [Baader et al., 2005b]. In fact, there is an easy
rule-based procedure for computing the canonical model and
the rules can be implemented as standard database operations.
Consistency ofK can also be checked in polynomial time. IK
can be used for instance checking: K |= C(a) iff IK |= C(a),
for K consistent, C an ELHdr⊥ -concept, and a ∈ Ind(A)
(this can be shown by modifying similar proofs in [Baader
et al., 2005b]). Unfortunately, an analogous statement for
conjunctive queries, namely (a1, . . . , ak) ∈ cert(q,K) iff
IK |= q[a1, . . . , qk], does not hold for two reasons. The first
reason is that IK may contain unnecessary elements:

∆IK := Ind(A)] NIaux and aIK := a for all a ∈ Ind(K)
AIK := {a ∈ ind(A) | K |= A(a)} ∪ {xC,D ∈ NIaux | K |= C uD v A}
rIK := {(a, b) ∈ ind(A)× ind(A) | s(a, b) ∈ A and K |= s v r} ∪

{(a, xC,D) ∈ ind(A)× NIaux | K |= ∃s.D(a), ranT (s) = C, and K |= s v r} ∪
{(xC,D, xC′,D′) ∈ NIaux × NIaux | K |= C uD v ∃r.D′, ranT (s) = C ′, and K |= s v r}

Figure 1: The canonical model IK.

Example 2. Take K1 = (T1,A1) with T1 = {A v A} and
A1 = {B(a)}, and q1 = ∃u.(B(v) ∧ A(u)) . Then x>,A ∈
AIK1 and so IK1 |= q1[a], but clearly a 6∈ cert(q1,K1).
This deficiency of IK is easily repaired by restricting it to ele-
ments reachable from some aIK with a ∈ Ind(A). Formally,
we define Ind(A)I = {aI | a ∈ Ind(A)} for an interpre-
tation I. A path in I is a finite sequence d0r1d1 · · · rndn,
n ≥ 0, where d0 ∈ Ind(A)I and (di, di+1) ∈ rIi+1 for
all i < n (note that the paths depend on the interpretation
of Ind(A) in I). We denote by pathsA(I) the set of all
paths in I and by tail(p) the last element dn in p whenever
p ∈ pathsA(I).

Now let IrK denote the restriction of IK to those d ∈ ∆IK
for which there exists a p ∈ pathsA(IK) such that d =
tail(p). Then IrK provides the correct certain answers to the
query q1 from Example 2. A much more severe deficiency of
IK (and IrK) is exemplified by the following:
Example 3. Take K2 = (T2,A2) with T2 = {A v ∃r.B u
∃s.B} and A2 = {A(a)}, and q2 = ∃u.(r(v, u) ∧ s(v, u)).
Then (a, x>,B) ∈ rIK2 and (a, x>,B) ∈ sIK2 and therefore
IK2 |= q2[a], but clearly a /∈ cert(q2,K2).
In principle, this problem can be overcome by replacing IrK
with its unraveling into a less constrained, tree-like model. In
the following, we introduce unraveling as a general operation
on models. Let R be the set of role inclusions in K. The
(A,R)-unraveling J of I is defined as follows:

∆J := pathsA(I) and aJ := aI for all a ∈ Ind(K)
AJ := {p | tail(p) ∈ AI}
rJ := {(d, e) | d, e ∈ IndI ∧ (d, e) ∈ rI} ∪

{(p, p · se) | p, p · se ∈ ∆J andR |= s v r}
where “·” denotes concatenation. Denote by UK the (A,R)-
unraveling of IrK. Notice that the construction of UK from
IrK does not depend on the concept inclusions in T , but only
on R. The following result is proved similarly to the analo-
gous result for the DL ELIf in [Krisnadhi and Lutz, 2007].
Proposition 4. If K is consistent, then for all k-ary con-
junctive queries q and all a1, . . . , ak ∈ Ind(A), we have
(a1, . . . , ak) ∈ cert(q,K) iff UK |= q[a1, . . . , ak].
By Proposition 4, UK gives the correct answers to conjunctive
queries, but in contrast to IrK, it is typically infinite. Thus, we
do not use it as a target for ABox rewriting and work with
IrK. To overcome the problem indicated in Example 3, we
use query rewriting.

4 Query Rewriting
Our aim is to rewrite the original CQ q into an FO query q∗R
such that UK |= q[a1, . . . , ak] iff IrK |= q∗R[a1, . . . , ak] for all

a1, . . . , ak ∈ Ind(A). By Proposition 4, we obtain the cor-
rect answers by using IrK (the rewriting of A) as a relational
database instance and replacing q with q∗R. We now formulate
the main result of this paper.

Theorem 5. For every finite set of role inclusions R and k-
ary CQ q, one can construct in polynomial time a k-ary FO
query q∗R such that for all ELHdr⊥ -KBs K = (T ,A) with R
the set of role inclusions in T and all a1, . . . , ak ∈ Ind(A),
the following holds:

IrK |= q∗R[a1, . . . , ak] iff UK |= q[a1, . . . , ak].

In the remainder of this section, we show how to construct
q∗R. The query q∗R contains one additional unary predicate
Aux(x); we assume that Aux is always interpreted as ∆I

r
K \

Ind(A)I
r
K in IrK. Fix a finite set R of role inclusions and a

k-ary conjunctive query q. To construct q∗R, we use several
auxiliary definitions. Let ∼q denote the smallest relation on
term(q) that includes the identity relation, is transitive, and
satisfies the following closure condition:

(∗) if r1(s, t), r2(s′, t′) ∈ q with t ∼q t′, then s ∼q s′.
The relation ∼q is central to our rewriting procedure. To see
this, let K = (T ,A) such that the role inclusions of T coin-
cide withR. Intuitively, UK is produced from IrK by keeping
the Ind(A)-part intact and relaxing the Aux-part into a col-
lection of trees. To understand (∗), first assume t = t′. Then
(∗) describes a non-tree situation in the query since t = t′

has two predecessors s and s′. Therefore, any match of the
query in IrK that maps t to the Aux-part should map s and s′
to the same element; otherwise such a match cannot be repro-
duced in UK. The case where t ∼q t′ instead of t = t′ can be
understood inductively.

It is not hard to verify that ∼q is an equivalence relation
and can be computed in time polynomial in the size of q. For
t ∈ term(q), we use [t] to denote the equivalence class of t
w.r.t. ∼q and define, for any equivalence class ζ of ∼q , the
sets:

pre(ζ) := {t | r(t, t′) ∈ q for some r ∈ NR and t′ ∈ ζ}, and
in(ζ) := {r | r(t, t′) ∈ q for some t ∈ term(q) and t′ ∈ ζ}.

For R ⊆ NR and r ∈ NR, r is called an implicant of R if
R |= r v s for all s ∈ R. It is called a prime implicant
if, additionally, R 6|= r v r′ for all implicants r′ of R with
r 6= r′. By assumption (v) in Section 2, there is a prime
implicant for any set R ⊆ NR for which there is an implicant.
We define:

• Fork= is the set of pairs (pre(ζ), ζ) with pre(ζ) of cardi-
nality at least two;

• Fork 6= is the set of variables v ∈ qvar(q) such that there
is no implicant of in([v]);
• ForkH is the set of of pairs (I, ζ) such that pre(ζ) 6= ∅,

there is a prime implicant of in(ζ) that is not contained
in in(ζ), and I is the set of all prime implicants of in(ζ);
• Cyc is the set of variables v ∈ qvar(q) such that there are
r0(t0, t′0), . . . , rm(tm, t′m), . . . , rn(tn, t′n) ∈ q, n,m ≥
0, with v ∼q ti for some i ≤ n, t′i ∼q ti+1 for all i < n,
and t′n ∼q tm.

It is not hard to see that Fork=, Fork 6=, ForkH, and Cyc can
be computed in time polynomial in the size of q. For each
equivalence class ζ of ∼q , choose a representative tζ ∈ ζ and
if pre(ζ) 6= ∅, choose a tpreζ ∈ pre(ζ). For q = ∃~u.ψ, the
rewritten query q∗R is now defined as ∃~u.(ψ ∧ϕ1 ∧ϕ2 ∧ϕ3),
where ϕ1, ϕ2, and ϕ3 are as follows:

ϕ1 :=
∧

v∈avar(q)∪Fork6=∪Cyc

¬Aux(v)

ϕ2 :=
∧

({t1,...,tk},ζ)∈Fork=

(Aux(tζ)→
∧

1≤i<k

ti = ti+1)

ϕ3 :=
∧

(I,ζ)∈ForkH

(Aux(tζ)→
∨
r∈I

r(tpreζ , tζ))

We can show that q∗R is as required [Anonymous, 2009]. The
following examples illustrate the definition of q∗R. Note that
ϕ3 is trivial forR = ∅.
(1) Let R = ∅ and consider q = ∃u.ψ with ψ = r(v, u) ∧
r(v′, u). This query illustrates the role of Fork=. ∼q con-
sists of the equivalence classes {v, v′} and {u}. We have
pre({u}) = {v, v′} and in({u}) = {r}. Hence Fork= =
{({v, v′}, {u})} and Fork 6= = ForkH = Cyc = ∅. We obtain

q∗R = ∃u.(ψ ∧ ¬Aux(v) ∧ ¬Aux(v′) ∧ (Aux(u)→ v = v′)).

(2) LetR = ∅ and consider q = ∃u.(r(v, u) ∧ s(u, u)). This
query illustrates the role of Cyc. We have u ∈ Cyc and so

q∗R = ∃u.(r(v, u) ∧ s(u, u) ∧ ¬Aux(v) ∧ ¬Aux(u)).

(3) Let R = ∅ and consider q = ∃u.(r(v, u) ∧ s(v, u)) from
Example 3. This query illustrates the role of Fork 6=. We have
in({u}) = {r, s}. There is no implicant of in({u}) in in({u})
and thus u ∈ Fork6=. We obtain

q∗R = ∃u.(r(v, u) ∧ s(v, u) ∧ ¬Aux(v) ∧ ¬Aux(u)).

For R = {s v r} and the same query q, s is an implicant of
in({u}) in in({u}). Thus u 6∈ Fork 6=. Observe that ForkH =
∅ as the prime implicant s of in({u}) is contained in in({u}).
We obtain

q∗R = ∃u.(r(v, u) ∧ s(v, u) ∧ ¬Aux(v)).

Finally, assume R = {r0 v r, r0 v s}. Again u 6∈ Fork 6=,
but now the prime implicant r0 of in({u}) is not contained in
in({u}). Thus, ForkH = {({r0}, {u})} and we obtain

q∗R = ∃u.(r(v, u)∧s(v, u)∧¬Aux(v)∧(Aux(u)→ r0(v, u))).

(4) For queries qC = ∃~v.ψ that result from the unfolding of
an EL-concept C or have no quantified variables almost no
query rewriting is needed: in both cases we have

q∗R = ∃~v.(ψ ∧
∧
v∈avar(q) ¬Aux(v)).

v0

r
��

v1

r
��

v2

r
��

v3
r

 B
BB

BB
BB

v4
r

~~||
||

||
|

r

 B
BB

BB
BB

v5
r

~~||
||

||
|

v6 v7

Figure 2: Query for Example (5).

(5) LetR = ∅ and let q = ∃v0, . . . , v7.ψ be the query shown
in Figure 2, where all variables are quantified. Then ∼q
consists of the equivalence classes {v0, v1, v2}, {v3, v4, v5},
{v6}, and {v7}. Assume that the chosen representative for
{v3, v4, v5} is v3. Then, we have

q∗R = ∃v0, . . . , v7.(ψ ∧
Aux(v6)→ (v3 = v4) ∧
Aux(v7)→ (v4 = v5) ∧
Aux(v3)→ ((v0 = v1) ∧ (v1 = v2))

In the following we comment on properties of q∗R and on con-
sequences of our approach regarding the computational com-
plexity of query answering in ELHdr⊥ . Firstly, the size of q∗R
is bounded by O(nm), where n is the size of q and m the
size of R. To see this, note that the number of conjuncts in
of ϕ1 is bounded by the number of variables in q. For ϕ2,
let Fork= = {(T1, ζ1), . . . , (T`, ζ`)}. Then |T1| + · · · + |T`|
is bounded by the number of role atoms in q, and thus the
size of ϕ2 is O(n). Finally, the number of conjuncts in ϕ3 is
bounded by the number of quantified variables in q and each
conjunct has at most m disjuncts.

Secondly, since ψ is a conjunct of the body of q∗R it is read-
ily checked that q∗R is domain independent, and thus can be
expressed as an SQL query. Moreover it is of the form ∃~u.ψ
with ψ quantifier-free. Thus, we obtain that the combined
complexity of deciding whether K |= q[a1, . . . , ak] is in NP
as it is sufficient to construct (in polynomial time) IrK, con-
struct (in polynomial time) q∗R = ∃~u.ψ and, finally, check
whether IrK |= ∃~u.ψ[a1, . . . , ak] using the obvious NP al-
gorithm for model checking this class of formulas. Since an
NP lower bound is trivial, we obtain NP-completeness. See
[Krötzsch et al., 2007; Rosati, 2007] for similar results re-
garding other variants of EL.

5 Implementation and Experiments
To validate the value of the proposed approach we have con-
ducted a series of experiments based on the NCI thesaurus
(version 08.08d), which is a well-known ontology from the
bio-medical domain. We have extracted an EL-TBox that
contains approximately 65 thousand (65K) primitive concept
names, 70 primitive roles, and over 70K concept inclusions
and concept definitions. The auxiliary part of canonical mod-
els, which is independent of the ABox, consists of 702K con-
cept assertions and 171K role assertions (tuples). It was com-
puted using the CEL system [Baader et al., 2006] and loaded
into the database. To add the tuples required to (a) complete
A to the ABox part of IrK and (b) link the ABox part of IrK
with its auxiliary part, we have used iterated querying.

Number of assertions in ABox of K
Concept 100K 100K 100K 200K 200K 200K 400K 800K 1.6M
Role 25K 50K 75K 40K 65K 90K 360K 1.5M 5.8M

Number of assertions in Ir
K

Concept 440K 440K 441K 683K 683K 684K 1.3M 2.6M 5.1M
Role 197K 237K 273K 323K 371K 414K 986K 2.7M 8.2M

Query Execution Time in seconds
Q1 (2c1r) 0.19 0.19 0.20 0.23 0.25 0.24 0.27 0.46 0.59
Q2 (3c2r) 0.23 0.22 0.23 0.52 0.25 0.56 0.33 0.42 0.69
Q3 (3c2r) 0.25 0.27 0.26 0.31 0.31 0.31 0.42 0.86 1.13
Q4 (4c3r) 0.24 0.23 0.23 0.25 0.26 0.25 0.31 0.42 1.44
Q5 (5c5r) 0.36 0.36 0.30 0.60 0.34 0.45 2.24 7.93 1281

Figure 3: Summary of Experimental Results.

As relational systems are not optimized to handle tens of
thousands of relatively small relations, one for each concept
and role name in the ontology, we have used only two rela-
tions to represent IrK:

acbox(conceptid,indid)and
arbox(roleid,domain-indid,range-indid),

where conceptid and roleid are numerical iden-
tifiers for concept names and roles names, indid,
domain-indid, and range-indid are numerical iden-
tifiers for individuals from NI ∪ NIaux, acbox rep-
resents concept memberships, and arbox role mem-
berships. Indexes were generated on the attributes
conceptid,indid and on roleid,domain-indid
and roleid,range-indid, using B+trees. We distin-
guish individuals from NI and NIaux by positive and negative
ids, and thus need not store Aux as a relation. As an exam-
ple for this representation take the query q = Nerve(x) ∧
¬Aux(x), which translates into the SQL statement

select indid from acbox
where conceptid=141723 and indid > 0

Data sets (ABox instances) for our experiments were gener-
ated randomly. When generating concept assertions, we have
focused on most specific concept names, i.e., concept names
without any subsumees in the TBox. The generation of role
assertions was guided by the domain and range restrictions in
NCI. The numbers of concept and role assertions in the initial
and rewritten ABoxes used in our experiments are reported
in Figure 3 in thousands/millions. The data was stored and
the test queries were executed using IBM DB2 DBMS (ver-
sion 9.5.0 running on SUN Fire-280R server with two Ultra-
SPARC III 1.2GHz CPUs, 4GB memory, and 1TB storage
under Solaris 5.10). Figure 3 summarizes the running times
(in seconds) for each of the test queries for varying sizes of
data; for each query we list the number of concept and role
atoms in parentheses; the structure of the queries ranges from
simple chains and star queries to queries with cycles in their
bodies (we show only a few representative samples here).

The experimental results can be interpreted as follows.
Firstly, the rewriting of moderately-sized ABoxes into the
canonical model IrK is well within the storage and query ca-
pabilities of existing relational technology. Secondly, query

1This time is solely due to a large size of the result (60M tuples).

performance scales well even when the naive physical de-
sign described above is used. Thirdly, query rewriting does
not increase the query processing times; the performance of
rewritten queries is almost identical to the performance of the
original queries over the completed ABox.

6 Limitations / Negation
Recall from Section 1 that a DL enjoys polynomial extended
FO reducibility if it has extended FO reducibility such that
the blowup of ABox rewriting (but not necessarily of query
rewriting) is at most polynomial. Since ABoxes in realistic
applications are large, extended FO reducibility that is not
polynomial in this sense does not seem to be of much use.
The following result gives a fundamental limitation of poly-
nomial extended FO reducibility. Note that ground CQ an-
swering, where a CQ may contain only individual names but
not variables, is the decisional variant of CQ answering.

Theorem 6. If the data complexity of ground CQ answering
in a DL L is not in PTIME, then L does not enjoy polynomial
extended FO reducibility.

Proof. We show the contrapositive. Assume that L en-
joys polynomial extended FO reducibility, i.e., there are ef-
fectively computable mappings δ that takes each EL-TBox
K = (T ,A) to a first-order structure δ(K) and γ that takes
each pair (q, T), with q a k-ary conjunctive query and T
an EL-TBox, to a first-order formula γ(q, T) with k free
variables such that δ can be computed in polynomial time,
the size of δ(K) is polynomial in the size of K for all K,
and the following condition holds: for all extended EL-KBs
K = (T ,A), all k-ary conjunctive queries q, and all tu-
ples (a1, . . . , ak) ∈ NI, K |= q[a1, . . . , ak] iff δ(K) |=
γ(q, T)[a1, . . . , ak].

Then the data complexity of ground CQ answering in L is
in PTIME: to check whether K |= q with q ground, we can
compute δ(K) in polynomial time and γ(q, T) in constant
time (as the size of q and T is constant), and then use FO
model checking to decide whether δ(K) |= γ(q, T). The
latter can be done in LOGSPACE. o

For expressive DLs such as ALC and SHIQ, the data com-
plexity of ground CQ answering is co-NP-hard, thus Theo-
rem 6 implies that these DLs do not enjoy polynomial ex-
tended FO reducibility unless PTIME = co-NP.

In many applications, it is natural to admit also negated
concept assertions in the ABox and to extend conjunctive
queries with negated concept atoms in order to query the
resulting ABoxes, see e.g. [Patel et al., 2007]. Let us call
ABoxes, queries, and KBs of this form literal. The result
stated in Theorem 6 also applies to literal KBs and literal
queries. Since the data complexity of literal CQ answering
over literal EL-KBs (where EL is ELHdr⊥ without ⊥, role hi-
erarchies, and domain and range restrictions) is co-NP-hard
[Schaerf, 1993], it follows that even this mild extension of EL
does not enjoy polynomial extended FO reducibility.

However, there is still a (pragmatic, yet formal) way to
add negation to our approach. In the following, we sketch
an incomplete approach to literal CQ answering over literal

ELHdr⊥ -KBs. Its incompleteness can be precisely character-
ized in terms of an epistemic semantics for negated concept
atoms in literal CQs, inspired by [Calvanese et al., 2007a].

As a preliminary, we assume standard names, i.e., inter-
pretation domains ∆I have to be a subset of the (countably
infinite) set NI of individual names and aI = a for all I and
all a ∈ NI. For a literal ELHdr⊥ -KB K, an interpretation I,
and a literal CQ q = ∃~u.ψ(~u,~v) with ~v = v1, . . . , vk, we set
I |=e q[a1, . . . , ak] iff there exists a variable assignment π
with π(vi) = ai for 1 ≤ i ≤ k and

• I |=π α for all positive atoms α in ψ,

• K |= ¬A(a) for all ¬A(a) in ψ with a ∈ NI, and

• K |= ¬A(π(v)) for all ¬A(v) in ψ with v ∈ NV.

Now set K |=e q[a1, . . . , ak] iff I |=e q[a1, . . . , ak] for
all models I of K with standard names. Thus, answers to
negated atoms do not depend on a concrete interpretation I,
but only on deducibility. Epistemic semantics is sound: every
answer is also an answer under the standard semantics (but
not vice versa); it is also conservative: it yields the same an-
swers as standard semantics when either the KB or the query
does not contain negation. An example for which this epis-
temic semantics is different from the standard semantics is
given by A = {A′(a),¬A(a)}, T = {A′ v ∃r.>,∃r.B v
A}, and q = ∃u.r(a, u) ∧ ¬B(u). Then K |= q but K 6|=e q.

We give a simple (and poly-time) reduction of epistemic
literal CQ answering over literal ELHdr⊥ -KBs to standard CQ
answering over ELHdr⊥ -KBs. Via the rewritings presented in
the main part of this paper, the reduction enables the use of
RDBMSs also for the case of ELHdr⊥ with negation (under the
epistemic semantics).

Given a consistent literal ELHdr⊥ -KB K = (T ,A) and a
literal query q, replace every literal ¬A in q with a fresh
concept name A. Additionally, add > v A to T whenever
T |= A v ⊥, and A(a) to A for all a ∈ Ind(A) with
K |= ¬A(a), and then remove all negated assertions from A.
Call the result K′ = (T ′,A′) and q′.

Theorem 7. Let K be a consistent literal ELHdr⊥ -KB.
Then K′ can be computed in polynomial time and K |=e

q[a1, . . . , ak] iff K′ |= q′[a1, . . . , ak] for all literal CQs q and
all a1, . . . , ak ∈ Ind(A).

7 Conclusion
We have proposed a novel approach to CQ answering in DLs
using RDBMSs. In particular, our approach paves the way
to using RDBMSs for CQ answering in the EL family of
DLs. Our experiments exhibit a promising performance even
without a sophisticated physical design. One drawback of
our approach is the blowup of the data, which is polynomial
but still considerable on large data sets. As future work, it
might be interesting to reduce this blowup by incorporating
the TBox partly into the data and partly into the query. We
will also develop effective approaches to update the canonical
model/auxiliary data when assertions are added to or deleted
from the ABox.

From a theoretical perspective, it would be interesting to
further investigate the capabilities of our approach. For ex-
ample, one could extend it to ELHdr⊥ with transitive roles and
try to adapt our technique to the DL-Lite family of DLs, thus
providing an alternative to the approach in [Calvanese et al.,
2007b].

References
[Anonymous, 2009] Anonymous. Conjunctive query answering in

the DL EL using an RDBMS Anonymized Technical Report,
2009. Available from http://ijcai09.001webs.com/

[Baader et al., 2005b] F. Baader, S. Brandt, and C. Lutz. Pushing
the EL envelope. In Proc. of IJCAI’05, pages 364–369. Profes-
sional Book Center, 2005.

[Baader et al., 2006] F. Baader, C. Lutz, and B. Suntisrivaraporn.
CEL—a polynomial time reasoner for life science ontologies.
In Proc. of IJCAR’06, volume 4130 of LNCS, pages 287–291.
Springer, 2006.

[Baader et al., 2008] F. Baader, S. Brandt, and C. Lutz. Pushing the
EL envelope further. In In Proc. of OWLED’08, 2008.

[Calvanese et al., 2007a] D. Calvanese, G. De Giacomo, D. Lembo,
M. Lenzerini, and R. Rosati. EQL-Lite: Effective first-order
query processing in DLs. In Proc. of IJCAI’07, pages 274–279.
AAAI press, 2007.

[Calvanese et al., 2007b] D. Calvanese, G. De Giacomo,
D. Lembo, M. Lenzerini, and R. Rosati. Tractable reason-
ing and efficient query answering in DLs: The DL-Lite family.
J. of Automated Reasoning, 39(3):385–429, 2007.

[Krisnadhi and Lutz, 2007] A. Krisnadhi and C. Lutz. Data com-
plexity in the EL family of DLs. In Proc. of LPAR’07, volume
4790 of LNCS, pages 333–347. Springer, 2007.

[Krötzsch et al., 2007] M. Krötzsch, S. Rudolph, and P. Hitzler.
Conjunctive queries for a tractable fragment of OWL 1.1. In
Proc. of ISWC2007, volume 4825 of LNCS, pages 310–323.
Springer, 2007.

[Lutz and Wolter, 2007] C. Lutz and F. Wolter. Conservative exten-
sions in the lightweight description logic EL. In Proc. of CADE-
21, volume 4603 of LNAI, pages 84–99. Springer, 2007.

[Patel et al., 2007] C. Patel, J. J. Cimino, J. Dolby, A. Fokoue,
A. Kalyanpur, A. Kershenbaum, L. Ma, E. Schonberg, and
K. Srinivas. Matching patient records to clinical trials using on-
tologies. In Proceedings of ISWC’07, volume 4825 of LNCS,
pages 816–829. Springer, 2007.

[Rosati, 2007] Riccardo Rosati. On conjunctive query answering in
EL. In Proc. of DL2007, volume 250 of CEUR-WS, 2007.

[Schaerf, 1993] A. Schaerf. On the complexity of the instance
checking problem in concept languages with existential quantifi-
cation. J. of Intelligent Information Systems, 2:265–278, 1993.

[Sioutos et al., 2006] N. Sioutos, S. de Coronado, M.W. Haber,
F.W. Hartel, W.L. Shaiu, and L.W. Wright. NCI thesaurus: a
semantic model integrating cancer-related clinical and molecular
information. J. of Biomedical Informatics, 40(1):30–43, 2006.

[Spackman, 2000] K.A. Spackman. Managing clinical terminology
hierarchies using algorithmic calculation of subsumption: Expe-
rience with SNOMED-RT. J. of the American Medical Informat-
ics Association, 2000.

[Wu et al., 2008] Z. Wu, G. Eadon, S. Das, E. Chong, V. Kolovski,
M. Annamalai, and J. Srinivasan. Implementing an inference en-
gine for RDFS/OWL constructs and user-defined rules in oracle.
In Proc. of ICDE’08, pages 1239–1248. IEEE, 2008.

