On Order Dependencies for the Semantic Web

David Toman'f and Grant Weddellt

"David R. Cheriton School of Computer Science
University of Waterloo, Canada
Email: {david,gweddell}@uwaterloo.ca

tFaculty of Computer Science
Free University of Bozen-Bolzano, Italy
Email: david@inf.unibz.it

Abstract. We consider the problem of adding both equality and order
generating dependencies to Web ontology languages such as OWL DL
that are based on description logics. Such dependencies underlie a num-
ber of problems that relate, for example, to web service composition, to
document ordering, and to lower level algorithmic issues in service plan
generation and evaluation.

1 Introduction

RDF underlies a vision of the Semantic Web in which both data and metadata
are viewed as a set of subject/property/object triples that can be associated with
web resources denoted by Universal Resource Identifiers (URIs) [13]. To support
reasoning, there has been a progression of further standards for inferring the
existence of additional triples. This is accomplished by adding interpretations
for particular RDF properties. For example, in the case of property subClassOf,
the RDF Schema standard mandates inferring the triple

x/subClassOf /ITEM
from the pair of triples
x/subClassOf /SALEITEM

and
SALEITEM/ subClassOf /ITEM, (1)

where ITEM and SALEITEM are now viewed as concepts.

The current best practices for these standards, measured in terms of estab-
lished reasoning technology, are the description logic (DL) based fragments of
the OWL web ontology language, called OWL Lite and OWL DL [22]. Building
on RDF Schema, they enable a collection of triples to encode more general con-
cepts such as anything not on sale or an item with a reliable supplier. In this

paper, we use a more abstract and compact syntax developed for description log-
ics in which collections of triples encoding such concepts can be specified more
succinctly as

-SALEITEM

and as
ITEM 1 VSupplier RELIABLE,

respectively. We do this also for subClassOf RDF triples, such as (1) above,
which we now refer to as inclusion dependencies, and write instead as

CONCEPT; C CONCEPTS. (2)

For example, (1) above is now written SALEITEM C ITEM.

A collection of inclusion dependencies of the form (2) defines an OWL DL
ontology that can be used by other protocols for the semantic web, such as the
RDF query language SPARQL [15]. In this setting, XML can be used as a trans-
port language for RDF in the sense that an XML document is an ordered forest
of RDF triples that in turn encode OWL DL concepts and inclusion dependen-
cies. However, the significance of ordering in XML is currently beyond any real
capacity of OWL DL, or even full OWL, to account for any consequent logical
significance, e.g., to inform a SPARQL query engine by way of an ontology that
the order in which various ITEM concepts occur in a document correlates in
some way with their Price.

An obvious approach to remedy this is to reconsider the underlying descrip-
tion logic for OWL DL, to consider in particular how concept descriptions can
be enriched to capture metadata relating to order. Knowledge of the relevance
of document order in XML would not only be useful to a SPARQL query en-
gine in helping to address lower level algorithmic and performance issues, e.g.,
avoiding sort costs when reporting on the supplier for a given item in order of
increasing cost, but also by other web services that reason in turn about web
service composition in which attributes are used to abstract temporal artifacts
such as events.

In this paper, we consider a new concept constructor for description logics
with the potential of endowing OWL DL with an ability to capture knowledge
about ordering. Instances of this constructor are called path order dependencies
(PODs). They are a generalization of path functional dependencies (PFDs) that
have been considered in the context of a DL dialect called DLF [19-21], which
we also use. This dialect is feature based and therefore more functional in style
as opposed to the more common role based derivatives of ALC such as OWL
DL. As a consequence, it is much easier to incorporate PODs.

Example 1 To illustrate using PODs, consider an ontology of ITEM concepts
of relevance, say, to an online supplier of photography equipment. The supplier
maintains an XML document of the ITEM concepts in such a way that sub-
trees defining the concepts satisfy a major sort on their ProductCode feature

and a minor sort on their Price feature. This knowledge can now be captured
by an inclusion dependency using two instances of the proposed POD concept
constructor as follows:

ITEM C (ITEM : {DocOrder<} — {ProductCode=})
M (ITEM : {DocOrder<, ProductCode~} — {Price=}).

As a second example, the supplier in question can capture an inherent ordering
for SALEITEM concepts in which their relative ordering by virtue of their Price
is preserved by their DiscountPrice by adding the following:

SALEITEM C ITEM
M (SALEITEM : { Price<} — {DiscountPrice<}.

Note that, in comparison to OWL DL, DLF is a worthwhile basis for study
since it is already sufficient to simulate the DL dialect ALCQZ in an intuitive
fashion using role reification [19]. In essentially the same way, ALCQZ can in
turn simulate SHZQ without transitive roles, a large subset of OWL DL that
includes OWL Lite. With regard to the above hypothetical metadata about item
ordering in a document, the examples are expressed in terms of the DL dialect
DLFD,ey, the extension of DLF considered in this paper.

Our contributions relate to DLFD,..4 and are as follows.

1. We define a guarded condition for PODs for which the associated implication
problem remains decidable and indeed unchanged from DLF; and

2. We show how a slight relaxation of this condition leads to undecidability.

1.1 Related Work

In addition to OWL DL, description logics have been used extensively as a for-
mal way of understanding a large variety of languages for specifying meta-data,
including ER diagrams, UML class and object diagrams, relational database
schemata, and so on [14].

The form of order dependencies introduced in this paper is a generalization
of a relational variant [17], and is also a generalization of regular PFDs intro-
duced in [19]. Less expressive first order PFDs were introduced and studied in
the context of object-oriented data models [8,23]. An FD concept constructor
was proposed and incorporated already in Classic [4], an early DL with a PTIME
reasoning procedure, without changing the complexity of its implication prob-
lem. The generalization of this constructor to PFDs alone leads to EXPTIME
completeness of the implication problem [10]; this complexity remains unchanged
in the presence of additional concept constructors common in rich DLs such as
roles, qualified number restrictions, and so on [17,18].

In [5], the authors consider a DL with functional dependencies and a general
form of keys added as additional varieties of dependencies, called a key box. They

show that their dialect is undecidable for DLs with inverse roles, but becomes
decidable when unary functional dependencies are disallowed. This line of inves-
tigation is continued in the context of PFDs and inverse features, with analogous
results [20]. We therefore disallow inverse features in this paper to exclude an
already known cause for undecidability.

PFDs have also been used in a number of applications in object-oriented
schema diagnosis and synthesis [2,3], in query optimization [6,9] and in the
selection of indexing for a database [16].

Order dependencies have been considered in the context of the relational
model [7], and as a special case of constraint-generating dependencies for the
relational model [1]. A form of key dependency with left hand side feature paths
has been considered for a DL coupled with various concrete domains [12,11]. In
this case, the authors explore how the complexity of satisfaction is influenced
by the selection of a particular concrete domain together with various syntactic
restrictions on the key dependencies themselves. Note that this earlier work
strictly separates objects that serve as “domain values,” and can therefore be
ordered, from abstract objects such as tuples. This makes such approaches less
applicable in the RDF setting in which no such distinction exists, where both
objects and values can in turn be object-attribute-value triples.

The remainder of the paper is organized as follows. Section 2 that follows
defines the syntax and semantics for DLFDreg. Our main results are then pre-
sented in Section 3. We conclude with a summary and a discussion of remaining
issues and open problems in Section 4.

2 Definitions

The syntax and semantics of the DLFDreg dialect of description (or feature)
logics are given by the following.

Definition 2 (Syntax and Semantics of DLFDreg) Let F' be an arbitrary
finite set of attribute names. We define a path language L to be a regular language
over the alphabet F'. We use reqular expressions as the surface syntax for such
languages with Id standing for the empty word in L. We use L= to denote a
regular language in which every word Pf™ € L¥ is a concatenation of a word
from Pf € L with a symbol ~€ {<,<,=,>,>}. We denote by L™ the regular
sublanguage {Pf~ | Pf~ € L¥} in which all words end with the same symbol ~.

Let C be primitive concept description(s). We define derived concept descriptions
using the grammar in Figure 2. A concept formed by an application of the final
production in the grammar is called a regular path order dependency (POD).

An inclusion dependency C is an expression of the form D C F.

The semantics of expressions is given with respect to a structure (4, <, -Z), where
A is a domain of “objects”; < is a linear order on A; and (.)% an interpretation

SYNTAX: SEMANTICS: DEFN OF “(-)%”

D == C CcYfca
| DinDs (D) N (D2)*
| VLD Nerepfa : (PHZ (@) € (D)7}
| D A\ (D)*
E u:= D
| FE1ME> (El)I N (EQ)I
| EiUE, (BT U (E2)*
| VL.E Nerer iz s (PHF(2) € ()T}
| D:LY — L% {z:Vye (D). /\pf~eL§(Pf)I(w)~(Pf)I(y)

= Motz (PO (@)~ (P (1)}
Fig. 1. SYNTAX AND SEMANTICS OF DLF Dreg.

function that fixes the interpretations of primitive concepts to be subsets of A
and of primitive attributes in F' to be total functions over A. The interpretation
is extended to words over F' as follows: (Id)? = A\z.x and (f. Pf)? = (Pf)Zo(f)%,
and to derived concept descriptions, cf. Figure 2.

An interpretation satisfies an inclusion dependency C of the form D C FE if
(D)* C (BE)*.

A terminology T consists of a finite set of inclusion dependencies. The logical
implication problem asks if T |= C holds; that is, if all interpretations that satisfy
each constraint in 7 must also satisfy C (the posed question).

Note that the notation Pf~ € L” stands for the fact that the path (string) Pf™
belongs to the language L™. The paths are in turn interpreted as (compositions
of) total functions over the domain A. Hence the conjunctions in the semantic
definition of a POD range over all words in an appropriate regular language and
define order among objects in the range of their interpretations.

The two-level syntax is needed to prevent any occurrence of a POD on the
left-hand side of an inclusion dependency or within the scope of negation. Re-
moving this restriction leads to undecidability [21].

Example 3 Recall our introductory example relating to ITEM concepts main-
tained by a hypothetical online supplier. Now suppose the supplier has a second
XML document containing a sequence of subtrees encoding SUPPLIES concepts,
and that this document satisfies the following property:

a traversal of the root nodes for the SUPPLIES elements correlates with
a magjor sort of the ITEM component of each element, and a minor sort
of the wholesale price.

When added to a terminology, the following inclusion dependency formally cap-
tures this property:

SUPPLIES C VlIref ITEM
M (SUPPLIES : {DocOrder<} — {Iref<})
M (SUPPLIES : { DocOrder<, Iref =} — WholesalePrice=).

To paraphrase the final line: if the first of a pair of arbitrary SUPPLIES concepts
precedes the second in a given document and if both refer to the same items, then
the wholesale price of the first will not exceed the wholesale price of the second.

3 Reasoning in DLF Dreg

The question of logical implication is central to the use of logic-based approaches
to conceptual modeling of the artifacts in the semantic Web. This section shows
the main results relating to the logical implication problem with respect to
PODs.

3.1 Undecidability for General Order Dependencies

The general implication problem for DLFDreg is, unfortunately, undecidable:

Proposition 4 ([21]) The implication problem for DLFDreg becomes unde-
cidable when dependencies of the form D : {} — {f=} are allowed. This is
the case even when all dependencies are restricted to finite languages and are
equality-generating.

Path-functional dependencies with empty left-hand sides allow one to simulate
nominals—concept descriptions whose interpretation must correspond to a sin-
gleton set; this can be enforced, e.g., for a concept C, by the inclusion dependency
CCC:{}—-{Id}.

Decidability can be reobtained by requiring any regular languages occurring
in PFDs to be non-empty [19]. However, this restriction does not suffice for the
more general case of PODs.

Theorem 5 The implication problem for DLF Dreg is undecidable. This remain
true when all regular languages occurring in PODs are non-empty.

Proof: (sketch) The above dependency with an empty left-hand side can be
simulated by the order dependency C : IdS — {Id~}. The remainder follows
from a reduction of a tiling problem to the implication problem, expanding on
the reduction proposed in [21]. m|

3.2 Decidability for Guarded Order Dependencies

To regain decidability, we define a subset of PODs called guarded PODs. In-
tuitively, we require all the PODs appearing in the terminology to be satisfied
by trees whose nodes are ordered by the < relation top-down and left-to-right
(breadth-first).

Definition 6 (Guarded Order Dependency)
An order dependency D1 T Do : LT — L5 is guarded if it satisfies the following
conditions:

1. if =C~ for all Pf™ € LT then also =C ~ for all P~ € LT,
2. if <C~ for all Pf™ € LY then also < C~ for all Pf™ € LY, and
3. if > C~ for all Pf™ € LT then also > C ~ for all Pf™ € LY,

where C denotes set inclusion among the interpretations of the binary relations
denoted by {<,<,=,>,>}.

For the remainder of the paper, we assume all PODs are guarded. The ramifi-
cation of definition is that guarded order dependencies in a terminology cannot,
on their own, lead to inconsistency. This is in contrast to the general case where,
e.g, TCT:{f<}—{f”} is not satisfiable.

To aid the decision procedure for the guarded case, we simplify terminologies
of DLF Dyeg implication problems as follows:

Definition 7 A DLFDreg implication problem T |= C is simple if each inclu-
sion dependency in T is of the form D1 T Dy or the form D1 € Dy : LT — L5
In the former case, the dependency is described as pure; in the latter case, the
dependency is called an order dependency.

It is easy to see that unrestricted implication problems can be always reduced to
reasoning w.r.t. simple terminologies only—called simple implication problems:

Lemma 8 Let T be an arbitrary DLFDreg terminology and C an arbitrary
subsumption constraint. Then there is a simple terminology T' such that T = C
if and only if T' =C.

Proof: (sketch) 77 introduces additional primitive concept descriptions to
name subconcepts on the right-hand sides of concept descriptions in 7. O

For each simple DLF Dreg implication problem 7 |= C, we define a correspond-
ing DLFreg satisfiability problem. There are two cases to consider depending
on C.

Pure Posed Questions. For simple terminologies that use guarded ordered
dependencies only and for a pure constraint C, the logical implication problem
can be reduced to the implication problem that does not involve ordered depen-
dencies:

Lemma 9 Let T be a simple DLFDreg terminology and C a pure inclusion
dependency. Also let T' be the set of all pure inclusion dependencies in T. Then
T EC ifand only if T' =C.

Proof: Consider a tree model of 7"U{—C} with nodes ordered by their breadth-
first traversal number. This model satisfies all (possible) guarded order depen-

dencies, hence it is a model of 7 U {—C}. The other direction is immediate as
T CT.]

The decidability of this problem is then an immediate consequence of the fol-
lowing proposition, since 7" is a DLFreg terminology.

Proposition 10 ([19]) The implication problem for DLFreg is decidable and
complete for EXPTIME.

In addition, whenever 7 (£ D C D', there is a F-tree with nodes labeled by
sets of concept descriptions that serves as a model of 7 and whose root label
contains the concepts D and —D’.

General Posed Questions. Due to the undecidability issues connected with
allowing order dependencies in the scope of negation, it is not possible to ex-
press a negation of a posed question as a concept description. We develop an
alternative solution, based on construction in [8,24]. We introduce the solution
by an example.

Example 11 Consider a terminology 7 and a posed question of the form D C
D' : LY — L. To falsify such an order dependency, two objects are needed,
one in the interpretation of D and another in the interpretation of D’. Hence,
by Lemma 9, both D and D’ must be satisfiable with respect to 7", the pure
part of T. Note that the two models witnessing the satisfiability of D and D’,
if they exist, are F-trees that differ only in the labeling of nodes by concept
descriptions.

To simulate the two models and the effects of the posed question using only
a single F-tree, we define a DLFreg terminology consisting of the following
components that simulate the effects of the original assertions in this new inter-
pretation:

— 7/ and 7, that are two copies of 7’ in which all primitive concept descrip-
tions C have been renamed to C7 and Cj, respectively;

— 71,2, that captures the effects of order dependencies in 7 on the two inter-
pretations. These effects are captured by auxiliary primitive concept descrip-
tions Auxj’y and DLFreg constraints of the form

((D1 M Dy) U (D] M Dy)) M (VLT . Auxiy) M... M (VLT Auxyy) E
(VL5 Auxiy) M... M (VL3 Auxg)

created for each D C D' : LY — LY € T where L7 = LFU...UL; is a
partition of L7 according to the order predicate associated with the indi-
vidual words (and for ¢ = 1,2). Intuitively, membership in Auxj’, concepts
stands for the ~ relationship between corresponding objects in the two tree
interpretations that are encoded by this model.

— A terminology A of auxiliary assertions that govern the interactions of the
Aux]’y concepts in accordance with the axioms of linear order. In addition,
assertions governing the existence of nodes in the copies of the tree are also
included here (e.g., the fact that in an actual counterexample, such as the
one in Figure 2, the rightmost root node is not necessarily present).

Counterexamples to the posed question D T D' : LT — L% are then captured
as objects satisfying the concept

DimDyTI(VLT Aux o). M(VLT Auxy o) N=((VLs Auxt o). . .T1(VLy Auxg).

Hence the logical implication is reduced to concept satisfiability w.r.t. a modified
terminology.

However, allowing arbitrary DLF Dreg inclusion dependencies as posed ques-
tions, e.g., in which order dependencies occur within other positive concept con-
structors, involves an additional construction which extends an earlier form used
in the simpler case of path-functional dependencies [21]:

Example 12 A counterexample to the constraint

ACB:ASf7 = {fmHuH(C: {7} = {g7})

is shown in Figure 2. Observe with this case that the distinct C' object must
occur at different levels when compared to an A-rooted forest. Such a coun-
terexample, however, cannot be constructed in the presence of a terminology
{BCY{f}.C,CC C:{f”} — {g”}} Hence the example posed question is a
logical consequence of this terminology.

The examples suggest a need for multiple root objects in counterexample inter-
pretations, with the roots themselves occurring at different levels. Our overall
strategy is to therefore reduce a logical implication problem to a negation of a
consistency problem in an alternative formulation in which objects in a satisfying
counterexample denote up to £ possible copies in a counterexample interpretation

Fig. 2. COUNTEREXAMPLE FOR EXAMPLE 12.

for the original problem, where ¢ is the number of occurrences of PODs in the
posed question.

To encode this one-to-many mapping of objects, we require a general way to
have £ copies of concepts occurring in a given membership problem. We therefore
write D; to denote the concept description D in which all primitive concepts C
are replaced by C;. For a simple terminology 7 we then define

T = {Ndl|_|DZ CFE; | DEEETPUI‘G}7 and
Th = {Nd;INd; 1 D; DA ([] vivAwg)C([] vIsAug,),

LyCLy LyCLy
Nd; INd; 1D, D ([| virAwg)c([] vizAwg,)
LyCLY LyCLy
\DCD Ly —I5eT)

For a concept description E we define

Dy if E (= D) is POD free,
ToCon(E;) M ToCon(Es) if E = FEy M Es,
ToCon (E1) L TOCOH(EQ) if £ = E1 L EQ,

ToCon(E) = 4 VL ToCon(E;) if E=VL.Ey, and
~(Nd; D (] i Aug) u([] iz .Auxg)
Ly CL? LyCLy

otherwise, when £ =D : LT — L%

where i in the last equation is the index of the POD in the original posed
question.

In the above, we have introduced primitive concepts Aux;;,0 < i # j </, to
express that the ith and jth object copies are related by ~, and Nd;,0 < </,
to assert that the ith copy exists. The following auxiliary sets of constraints are
therefore defined to account for the axioms of equality and of linear orders, and
for the fact that features in DLFDreg denote total functions.

A(l) = {Aux;; MAux, CAuxg, [0<i<j<k</(}
U {Aux; MAux;; C L, Aux; FlAux S EL,
Aux I_IAux SEL|0<i#j<0}
U{TEAUX L Aux;_ I_IAux>|O<z7é]<€}
U {Aux;; EAux”,Aux CAux, |[0<iz#j<(}
U {Aux C Aux; I_IAuxU,
Aux EAux”7Aux EAux S 10<i#j<l}
u {Aux I:Aux LJAux
Aux EAux”,Aux EAux—|O<z7$j<€}
U {(Aux;; I‘IC’)EC“|0<z7é]<€andCapr1m1tweconcept}

U {Aux;; CVfAux;; |0<i# j</land f € F a primitive feature}
U {Nd; CVfNd; | 0<i</¢and f € F a primitive feature}

Theorem 13 Let T be a simple terminology and D & E an inclusion depen-
dency containing £ occurrences of the POD concept constructor. Then T = D C
FE if and only if

(U u | Tj)UA® E (Ndo 1 Do M —=ToCon(E)) C L.

0<i<t 0<i<j<t

Proof: (sketch) Given an interpretation Z such that Z =7 andZ £ DC E
we construct an interpretation J as follows. First, in the construction, we use a
many-to-one map § : AT — A7 to associate objects in Z with those in 7. The
range of § serves as the domain of the interpretation 7. For the counterexample
object 0 € (DM=E)% we set do € (Ndg)?. Then, for allo € Aand 0 <i #j </
we define the map § and the interpretation Z as follows:

— 60 € (Nd;)7 A (f)*(0) = 0’ = d0' € (Nd;)7 A (f)7 (d0) = 50,

— 6o € (Nd;)7 Ao € (D) = do € (D)7 for D a POD free concept,

— 60 = 80 Ao € (Ndy)7 A do' € (Nd)T A (PFE(0) ~ (PHZ(0) = do €
(Aux7;)7, and

—do € (Nd;))7 Ao & (D : LY — L5)T where D : LT — L5 is the i-th POD
constructor in E. Thus there must be o’ € A such that o/ € (D)? and

the pair 0,0’ falsifies the POD; we set do = §o’ and do’ € (=(Nd; M D; M
(megLTVLN.AUXON’i)) (] (ﬂngL2~VLN.AUX&i))‘7

Note that, due to the syntactic restrictions imposed on the uses of POD con-
structors, a complement of an POD can be enforced only in the counterexample
of the description E. Spurious occurrences of negated PODs in the interpretation
7 are therefore ignored as the interpretation itself satisfies all PODs in 7.

It is easy to verify that do € (Ndo I Do M —=ToCon(E))? for o € (DM —E)%.
By inspecting all inclusion dependencies in 7 we have J = 7; as T | 7.
Furthermore, the construction of J enforces J = A(¥).

On the other hand, given a tree-shaped interpretation J of (NdgMDoMToCon(E))
that satisfies all assertions in

(U mu(U T)uAo,

0<i</t 0<i<j<t

we construct an interpretation Z of 7 that falsifies D C E as follows:

— AT ={(0,i) : 0 € (Nd;)7,0 <i < £ and o & (Auxj,;)Y for any 0 < j < i},

— ()% ((0,4)) = (0, j) whenever (f)7 (o) = o' where j is the smallest integer
such that o € (Auxj;)7 if such value exists and i otherwise; and

— (0,i) € (D)* whenever (0,i) € A7 and o € (D;)7.

The values (0,i) € A7 are ordered by the breadth-first number of o in Z and
then consistently with the interpretation of the Aux;’; descriptions in 7.

It is easy to verify that (o,0) falsifies D C E whenever o belongs to (Ndo M Dg 1
—ToCon(FE)), and such an object must exist by our assumptions. Also, 7 = 7,
as otherwise by cases analysis we get a contradiction with J = (Uy<;<,Zi) U

(Uo<icj<e Ti) YA(D). O

Corollary 14 The implication problem for guarded DLF Dreg is decidable and
EXPTIME-complete.

Proof: Follows immediately from Proposition 10 and Theorem 13 above. O

4 Summary

In this paper, we have explored the possibility of adding a very general form
of equality and order generating dependencies based on regular languages to
Web ontology languages deriving from description logics. In particular, we have
introduced a description logic dialect called DLFDreg that incorporates such
dependencies as a new concept constructor, and have explored the computational
properties of the associated implication problems.

4.1 Remaining Issues and Open Problems

The negative results that relate to the possibility of admitting nominals to
DLFDreg is unfortunate indeed [21], since OWL DL requires this ability. An
important open problem is to devise other restrictions on the PODs concept
constructor or on occurrences of this constructor in an implication problem that
allows effective reasoning in the presence of nominals.

Another direction of research leads towards tractable dialects. Again, prelim-
inary investigations suggest that there might be a polynomial time procedure
for the implication problem for a fragment of DLFDreg that excludes negation,
disallows defined concepts, and requires ordering concepts that occur in termi-
nologies to satisfy a syntactic condition similar to the regularity condition in
[10].

References

1. Marianne Baudinet, Jan Chomicki, and Pierre Wolper. Constraint-generating de-
pendencies. J. Comput. Syst. Sci., 59(1):94-115, 1999.

2. Joachim Biskup and Torsten Polle. Decomposition of Database Classes under Path
Functional Dependencies and Onto Constraints. In Foundations of Information and
Knowledge Systems, pages 31-49, 2000.

3. Joachim Biskup and Torsten Polle. Adding inclusion dependencies to an object-

oriented data model with uniqueness constraints. Acta Informatica, 39:391-449,
2003.

4. Alexander Borgida and Grant Weddell. Adding Uniqueness Constraints to De-
scription Logics (Preliminary Report). In International Conference on Deductive
and Object-Oriented Databases, pages 85102, 1997.

5. Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Identification
Constraints and Functional Dependencies in Description Logics. In Proc. of the
17th Int. Joint Conf. on Artificial Intelligence (IJCAI), pages 155-160, 2001.

6. David DeHaan, David Toman, and Grant Weddell. Rewriting Aggregate Queries
using Description Logics. In Description Logics 2003, pages 103-112. CEUR-WS
vol.81, 2003.

7. Seymour Ginsburg and Richard Hull. Order Dependency in the Relational Model.
TCS, 26:149-195, 1983.

8. Minoru Ito and Grant Weddell. Implication Problems for Functional Constraints
on Databases Supporting Complex Objects. Journal of Computer and System
Sciences, 49(3):726-768, 1994.

9. Vitaliy L. Khizder, David Toman, and Grant Weddell. Reasoning about Duplicate
Elimination with Description Logic. In Rules and Objects in Databases (DOOD,
part of CL’00), pages 1017-1032, 2000.

10. Vitaliy L. Khizder, David Toman, and Grant Weddell. On Decidability and Com-
plexity of Description Logics with Uniqueness Constraints. In International Con-
ference on Database Theory ICDT’01, pages 54-67, 2001.

11.

12.

13.
14.

15.
16.

17.

18.

19.

20.

21.

22.
23.

24.

Carsten Lutz, Carlos Areces, lan Horrocks, and Ulrike Sattler. Keys, Nominals, and
Concrete Domains. In Proc. of the 18th Int. Joint Conf. on Artificial Intelligence
(IJCAI), pages 349-354, 2003.

Carsten Lutz and Maja Milicic. Description Logics with Concrete Domains and
Functional Dependencies. In Proc. FEuropean Conference on Artificial Intelligence
(ECAI), pages 378-382, 2004.

Resource Description Framework (RDF). http://www.w3.org/RDF/.

Ulrike Sattler, Diego Calvanese, and Ralf Molitor. Relationships with other for-
malisms. In The Description Logic Handbook: Theory, Implementation, and Ap-
plications, chapter 4, pages 137-177. Cambridge University Press, 2003.

SPARQL Query Language for RDF. http://www.w3.org/TR/rdf-sparql-query/.

Lubomir Stanchev and Grant Weddell. Index Selection for Embedded Control
Applications using Description Logics. In Description Logics 2003, pages 9-18.
CEUR-~WS vol.81, 2003.

David Toman and Grant Weddell. On Attributes, Roles, and Dependencies in De-
scription Logics and the Ackermann Case of the Decision Problem. In Description
Logics 2001, pages 76-85. CEUR-WS vol.49, 2001.

David Toman and Grant Weddell. Attribute Inversion in Description Logics with
Path Functional Dependencies. In Description Logics 2004, pages 178-187. CEUR-
WS vol.104, 2004.

David Toman and Grant Weddell. On Reasoning about Structural Equality in
XML: A Description Logic Approach. Theoretical Computer Science, 336(1):181—
203, 2005. doi:10.1016/j.tcs.2004.10.036.

David Toman and Grant Weddell. On the Interaction between Inverse Features
and Path-functional Dependencies in Description Logics. In Proc. of the 19th Int.
Joint Conf. on Artificial Intelligence (IJCAI), pages 603-608, 2005.

David Toman and Grant Weddell. On Keys and Functional Dependencies as First-
Class Citizens in Description Logics. In Proc. of the Third Int. Joint Conf. on
Automated Reasoning (IJCAR), pages 647-661, 2006.

Web Ontology Language (OWL). http://www.w3.org/2004/OWL/.

Grant Weddell. A Theory of Functional Dependencies for Object Oriented Data
Models. In International Conference on Deductive and Object-Oriented Databases,
pages 165—-184, 1989.

Grant Weddell. Reasoning about Functional Dependencies Generalized for Seman-
tic Data Models. TODS, 17(1):32-64, 1992.

