
On Ordering Descriptions in a Description Logic

Jeffrey Pound, Lubomir Stanchev, David Toman, and Grant Weddell

David R. Cheriton School of Computer Science
University of Waterloo, Canada

Abstract. We introduce a description language for specifying partial
ordering relations over concept descriptions in description logics, and
show how the language can be used in combination with binary trees to
efficiently search a database that corresponds to a finite set of concept
descriptions. The language consists of a pair of ordering constructors
that support a form of exogenous indexing in which search criteria is
independent of data, and a form of endogenous indexing in which the
data itself provides search criteria. Our language can be refined in the
same way as a description logic in that greater expressiveness and conse-
quent richer search capability is achieved by adding additional ordering
constructors.

1 Introduction

In earlier work, Stanchev and Weddell have shown how description logics can
play a role in searching among objects in an object-oriented database [1]. In
this paper, we introduce a description language deriving from their notion of an
extended index that can be used to specify what we call ordering descriptions.
Such descriptions correspond to strict partial orders over concept descriptions in
a given description logic, in this paper ALCQ(D). We also show how an ordering
description can be used in combination with binary trees to efficiently query a
database of ALCQ(D) concept descriptions.

To illustrate, consider the case of an online supplier of photography equip-
ment. As part of a web presence, the supplier maintains a binary tree of (descrip-
tions of) items available for purchase, and maintains the tree in such a way that
a traversal of the tree will visit items in a sequence compatible with a partial
order defined by the following ordering description:

ProductCode : SaleItem(DisPrice : Un,RegPrice : Un).

Intuitively, the ordering description specifies a non-descending major sort on
the concrete feature ProductCode. Items having the same value for this feature
then appear in two consecutive groups. The first group consists of items on sale
that in turn occur in non-descending order of their discount price. The second
group consists of items not on sale that in turn occur in non-descending order
of their regular price. The supplier also maintains a terminology that includes
the following constraints:

SaleItem v (≥ 3 Suppliers >),
SaleItem v (Price = DisPrice),
¬SaleItem v (Price = RegPrice), and

> v (DisPrice < RegPrice).

Now consider a request by an online user for all descriptions of single-sourced
digital cameras, retrieved in non-descending order of their price. This query can
be captured in our formalism by a concept description/ordering description pair
as follows:

〈ProductCode = “digicam” u ¬(≥ 2 Suppliers >), Price : Un〉.

Our results enable a procedure to reason that the tree maintained by the supplier
refines the sort order for the query. To paraphrase, the query can be evaluated
by an in-order search of the tree only, during which items will be returned in
the order requested by the user. However, to avoid sorting, items will need to
satisfy a property called descriptive sufficiency that relates to the above ordering
description for the search tree, e.g., that each item description “supplies” a value
for ProductCode. Note that this property will also make it possible to perform
arbitrary rotations to ensure that the tree is balanced following the insertion of
a new item.

Suppose the supplier decides that being single-sourced is a necessary condi-
tion for an item to not be on sale. Suppose in particular that the supplier adds
the following constraint to the terminology:

¬SaleItem v ¬(≥ 2 Suppliers >).

Our results enable a further procedure to reason that the tree maintained by the
supplier will now support the above query. This means not only that the same
in-order search of the tree will suffice, but also that the number of subsumption
checks in ALCQ(D) will be bounded both by the size of the result and by the
logarithm (base two) of the number of items occurring in the tree.

The example illustrates the use of the two kinds of ordering constructors
that make up our initial version of this ordering language. The separation of
sale and non-sale items is an example of exogenous indexing in which search
criteria is independent of data, while the major sort on ProductCode and minor
independent sorts on DisPrice and RegPrice are examples of endogenous index-
ing in which the data itself provides search criteria. However, the language can
be refined in the same way as a description logic in that greater expressiveness
and consequent richer search capability becomes possible by adding additional
ordering constructors. We suggest examples in our summary comments. Also,
the exogenous constructor imposes no conditions on the selection of a particular
dialect of description logic, while the endogenous constructor requires only that
the dialect has a linearly ordered concrete domain.

The remainder of the paper is organized as follows. A formal definition of our
ordering language, a refinement relationship among ordering descriptions, and a
study of some of their properties follows in Section 2. We also include a Ref pro-
cedure for reasoning about refinement relationships. Although not known to be

a complete reasoner at this time, Ref is easily able to recognize the above exam-
ple case regarding sort order. In Section 3, we show how ordering descriptions
define pruning criteria during search in a binary tree of concept descriptions.
To ensure efficiency, such criteria will depend on the above-mentioned notion of
descriptive sufficiency for concept descriptions occurring in the tree. Our main
results complete the section in which we characterize supported queries for a
given ordering condition and terminology. A summary and discussion follow in
Section 4.

2 Ordering Descriptions

Our language for specifying partial orders over concept descriptions depends on
the choice of underlying description logic. In this paper, we use ALCQ(D), a
dialect that satisfies our illustrative requirements. However, our results apply to
any choice of description logic that includes a linearly-ordered concrete domain.

Definition 1 (Description Logic ALCQ(D)) Let {C,C1, . . .}, {R, S, . . .},
{f, g, . . .} and {k, k1, . . .} denote sets of primitive concept names, roles, concrete
features, and constants respectively. A concept description is then defined by the
grammar:

D,E ::= f < g | f < k | C | D u E | ¬D | (≥ n R D).

An inclusion dependency is an expression of the form D v E. A terminology T
is a finite set of inclusion dependencies.

An interpretation I is a 3-tuple 〈∆I ,∆C , ·I〉 where ∆I is an arbitrary ab-
stract domain, ∆C a linearly ordered concrete domain, and ·I an interpretation
function that maps each concrete feature f to a total function fI : ∆I → ∆C ,
each role R to a relation RI ⊆ ∆I × ∆I , each primitive concept C to a set
CI ⊆ ∆I , the < symbol to the binary relation for the linear order on ∆C , and
k to a constant in ∆C . The interpretation function is extended to arbitrary con-
cepts in the standard way.

An interpretation I satisfies an inclusion dependency D v E if (D)I ⊆ (E)I .
T |= D v E if (D)I ⊆ (E)I for all interpretations I that satisfy all inclusion
dependencies in T .

For the remainder of the paper, we also use standard abbreviations, e.g., D tE
for ¬(¬D u ¬E), as well as the derived comparisons ≤, >,≥, and = on the
concrete domain.

Notation 2 We write D∗ to denote a description obtained from D by replacing
all features f by f∗, roles R by R∗, and concepts C by C∗, and extend this no-
tation in the obvious way to apply to inclusion dependencies and terminologies.

A formal definition of our description language for specifying partial orders over
concept descriptions in ALCQ(D) now follows. As our introductory comments
illustrate, we use the language in the next section for two purposes:

1. to define the relative positions of descriptions occurring in a search tree, and
2. as part of a query specifying the order in which such descriptions are to be

presented to a user.

Definition 3 (Ordering Description) Let D be an ALCQ(D) concept de-
scription, and f a concrete feature. An ordering description is defined by the
grammar:

Od ::= Un | f : Od | D(Od,Od).

An instance of the first (resp. second and third) production is called the null
ordering (resp. feature value ordering and description ordering).

For a given terminology T and concept descriptions D and E, D is ordered
before E by ordering description Od with respect to T , denoted (Od)T (D,E),
if T 2 D v ⊥, T 2 E v ⊥, and at least one of the following conditions holds:

– Od = “f : Od1” and (T ∪ T ∗) |= (D u E∗) v (f < f∗),
– Od = “f : Od1”, (Od1)T (D,E) and (T ∪ T ∗) |= (D u E∗) v (f = f∗),
– Od = “D′(Od1, Od2)”, T |= D v D′ and T |= E v ¬D′,
– Od = “D′(Od1, Od2)”, (Od1)T (D,E) and T |= (D t E) v D′, or
– Od = “D′(Od1, Od2)”, (Od2)T (D,E) and T |= (D t E) v ¬D′.

Two descriptions D and E are said to be incomparable with respect to an or-
dering Od and terminology T if ¬(Od)T (D,E) and ¬(Od)T (E,D), or simply
incomparable when Od and T are clear from context.

Note that the null ordering denotes an unspecified or unknown ordering, and is
used to capture circumstances when no (possibly residual) ordering relationship
between descriptions is either sensible or needed.

Important properties of ordering descriptions are given by the following
lemma.

Lemma 4 For any terminology T , ordering description Od, and concept de-
scriptions D1, D2, and D3:

1. If (Od)T (D1, D2), then ¬(Od)T (D2, D1);
2. If (Od)T (D1, D2) and (Od)T (D2, D3), then (Od)T (D1, D3);
3. If (Od)T (D1, D2), then T |= (D1 uD2) v ⊥;
4. If (Od)T (D1, D2), T |= D3 v D1 and T 2 D3 v ⊥, then (Od)T (D3, D2);

and
5. If (Od)T (D1, D2), T |= D3 v D2 and T 2 D3 v ⊥, then (Od)T (D1, D3).

Properties 1 and 2 establish the basic requirement that any ordering description
will define a strict (or irreflexive) partial order over descriptions in ALCQ(D).
It turns out that these properties are sufficient conditions for pruning subtrees
during search.

We now introduce the notion of order refinement that can be used, for ex-
ample, to characterize order optimization—to formally define when sorting can
be avoided when evaluating a query. Some properties of order refinement and an
outline of procedures for reasoning about order refinement then follow.

Definition 5 (Order Refinement) Assume a given terminology T , concept
description D and pair of ordering descriptions Od1 and Od2. Then, Od1 re-
fines Od2 with respect to T and D, written Od1 ≺T ,D Od2, if, for all concept
descriptions E1 and E2 such that T |= (E1 t E2) v D:

(Od2)T (E1, E2) implies (Od1)T (E1, E2).

Od1 is equivalent to Od2 with respect to T and D, written Od1 ≈T ,D Od2,
when Od1 ≺T ,D Od2 and Od2 ≺T ,D Od1. In all cases, D is called a parameter
description.

Consider again an application in order optimization. One can, for example, avoid
sorting a query result if the order in which the descriptions are retrieved is the
same as the sort order specified by the query. Our notion of order refinement,
however, is much more general, and the procedures that are outlined below
for reasoning about order refinement can easily handle the case given in our
introductory comments.

To further illustrate some basic capabilities of these procedures, assume that
the order in which descriptions occur in a binary tree are defined by the or-
dering description “f : g : Un”, in particular, that an in-order traversal of the
tree satisfies a major sort on concrete feature f and a minor sort on concrete
feature g. Also assume that a user submits a query with the sort order “f : Un”.
The procedures will deduce an order refinement between these ordering descrip-
tions. Should the query also stipulate that any retrieved description should be
subsumed by the concept description “f = 27”, then the procedures will also
deduce an order refinement between “f : g : Un” and “g : Un”. Further de-
tails on query evaluation will be given in Section 3. Also note that an ability to
reason about order refinement will have may related applications, e.g., in query
optimization [2] and in index selection [1].

The following lemma establishes a number of equivalence properties of or-
dering descriptions that are independent of parameter descriptions.

Lemma 6 For any terminology T , ordering descriptions Od1, Od2, and Od3

and concept descriptions D1 and D2:

1. If T |= D2 v D1, then (D2(Od1, D1(Od2, Od3))) ≈T ,> (D1(D2(Od1, Od2), Od3));
2. If T |= D1 v D2, then (D1(D2(Od1, Od2), Od3)) ≈T ,> (D1(Od1, Od3));
3. If T |= D1 v ¬D2, then (D1(D2(Od1, Od2), Od3)) ≈T ,> (D1(Od2, Od3));
4. If T |= D2 v D1, then (D1(Od1, D2(Od2, Od3))) ≈T ,> (D1(Od1, Od3));
5. If T |= ¬D1 v D2, then (D1(Od1, D2(Od2, Od3))) ≈T ,> (D1(Od1, Od2));
6. If T |= D v (f < k) and T |= ¬D v ¬(f < k), for some k ∈ ∆C , then

f : D(Od1, Od2) ≈T ,> D(f : Od1, f : Od2); and
7. If T |= (f = g) and Od3 = “g : Od2”, then f : Od1 ≈T ,> f : Od1[Od3/Od2]

for any occurrence of Od3 in Od1.

Observe that the first is an associativity condition for nested instances of the
description ordering constructor. This allows balancing a large number of oc-
currences of this constructor that might hypothetically comprise a (very large)
ordering description.

Ref (Od,Un, T , D) = true .

Ref (Un, g : Od, T , D) = (T |= D v (g = k) for some k, and Ref (Un, Od, T , D)).

Ref (Un, D′(Od1, Od2), T , D) = (T |= D v D′ and Ref (Un, Od1, T , D)) or
(T |= D v ¬D′ and Ref (Un, Od2, T , D)).

Ref (f : Od′, g : Od, T , D) = (T |= D v (f = g) and Ref (Od′, Od, T , D)) or
(T |= D v (f = k) for some k, and Ref (Od′, g : Od, T , D)) or
(T |= D v (g = k) for some k, and Ref (f : Od′, Od, T , D)).

Ref (f : Od,D′(Od1, Od2), T , D) =
(T |= D v (f = k) for some k, and Ref (Od,D′(Od1, Od2), T , D)) or
(T |= D v ¬D′ and Ref (f : Od,Od2, T , D)) or
(T |= D v D′ and Ref (f : Od,Od1, T , D)).

Ref (D′(Od1, Od2), g : Od, T , D) =
(T |= D v (g = k) for some k, and Ref (D′(Od1, Od2), Od, T , D)) or
(T |= D v ¬D′ and Ref (Od2, g : Od, T , D)) or
(T |= D v D′ and Ref (Od1, g : Od, T , D)).

Ref (D1(Od1, Od2), D2(Od3, Od4), T , D) =
(T |= D v D2 and Ref (D1(Od1, Od2), Od3, T , D)) or
(T |= D v ¬D2 and Ref (D1(Od1, Od2), Od4, T , D)) or
(T |= D v D1 and Ref (Od1, D2(Od3, Od4), T , D)) or
(T |= D v ¬D1 and Ref (Od2, D2(Od3, Od4), T , D)) or
(T |= (D uD1) ≡ (D uD2) and

Ref (Od1, Od3, T , D uD1 uD2) and
Ref (Od2, Od4, T , D u ¬D1 u ¬D2)).

Fig. 1. An approximate structural refinement procedure.

It is possible to define a canonical form for ordering descriptions based on
the above properties only, and to devise an effective procedure for computing
this form, say Can(Od, T), by a careful search for constants k, by orienting the
equations for the first five properties, and so on. To determine if Od1 ≺T ,D Od2,
we present the sound structural algorithm Ref (Od1, Od2, T , D) in Figure 1.

Lemma 7 For any terminology T , ordering descriptions Od1 and Od2, and
concept description D, it follows that Od1 ≺T ,D Od2 holds if

Ref (Can(Od1, T),Can(Od2, T), T , D).

3 Indexing Descriptions

Our goal in this section is to show how ordering descriptions can be used to
efficiently search an index consisting of a finite collection of concept descriptions
in ALCQ(D). We begin with a formal definition of an underlying tree for an
index.

Definition 8 (Description Tree) Let D denote an arbitrary concept descrip-
tion in ALCQ(D). A description tree is an ordered rooted binary tree conforming
to the grammar:

Tr , L,R ::= 〈〉 | 〈D,L,R〉.

An instance of the first production denotes an empty tree, while an instance of
the second production denotes a node at the root of a tree with left subtree L,
right subtree R, and labelled by D. We write 〈D,L,R〉 ∈ Tr if 〈D,L,R〉 is a
node occurring in Tr, and call any tree of the form 〈D, 〈〉, 〈〉〉 a leaf node.

A description tree Tr is well formed for ordering description Od with respect
to terminology T if, for all 〈D,L,R〉 ∈ Tr,

– T 2 D v ⊥,
– ¬(Od)T (D,D′) for all 〈D′, L′, R′〉 ∈ L, and
– ¬(Od)T (D′, D) for all 〈D′, L′, R′〉 ∈ R.

When Od and T are clear from context, we say simply that Tr is well formed.

For a given ordering description Od, the conditions for Tr to be well formed
provide the invariants for insertions of new nodes. For example, when inserting
a new node for description D′ in description tree 〈D,L,R〉, a new leaf node
〈D′, 〈〉, 〈〉〉 must be added in subtree L if (Od)T (D′, D).

Definition 9 (Description Index) Let T be a terminology, Od an ordering
description, and Tr a well formed description tree with respect to Od and T . A
description index is a 3-tuple 〈Tr , Od, T 〉.

We consider queries Q of the form 〈DQ, OdQ〉, where DQ is a concept description
in ALCQ(D) and OdQ is an ordering description. A user presumes that query
Q is evaluated with respect to an index 〈Tr , Od, T 〉 by first finding all concept
descriptions Ei labelling nodes in Tr for which T |= Ei v DQ and then sorting
the descriptions Ei according to OdQ. In concrete terms, the first operation
is accomplished by standard in-order tree traversal algorithms, assuming the
following pruning conditions for a subtree 〈Ei, L,R〉 in Tr :

1. prune L if (Od)T (Ei, DQ), and
2. prune R if (Od)T (DQ, Ei).

If T |= Ei v DQ then Ei is included in the query result.
The correctness of this procedure is a simple consequence of the following

lemma showing that no query result can exist in a pruned subtree. Note that its
proof is a straightforward consequence of Lemma 4.

〈(f ≥ 2) u (f ≤ 4),jk•

WV

���
�

, hi•

UT

���
�

〉

〈(f > 3) u (f ≤ 5), 〈 〉, 〈 〉〉 〈(f ≥ 1) u (f ≤ 3), 〈 〉, 〈 〉〉

Fig. 2. A well formed description tree with respect to “f : Un”.

Lemma 10 For any description index 〈Tr , Od, T 〉, node 〈D,L,R〉 ∈ Tr, and
concept description E:

1. (Od)T (E,D) implies T 6|= D′ v E for any node 〈D′, L′, R′〉 ∈ R, and
2. (Od)T (D,E) implies T 6|= D′ v E for any node 〈D′, L′, R′〉 ∈ L.

Unfortunately, the conditions for a description tree to be well formed are not
strong enough to prevent a concept description labelling a Tr node to be ordered
by Od prior to a concept description labelling a previous node in an in-order
traversal of Tr . Thus, there is no guarantee that the descriptions returned during
an in-order traversal will satisfy the ordering description for the index. Worse,
rotations to ensure balance in Tr will not in general be possible. The following
example illustrates these problems.

Example 11 Consider the description index 〈Tr , f : Un, ∅〉 in which Tr consists
of the three nodes illustrated in Figure 2. Note that Tr is well formed since each
description is satisfiable and since the root node is incomparable to both of
the child nodes. If one considers a query that retrieves all descriptions, then
descriptions will be retrieved out of order by an in-order traversal since the right
child compares left of the left child with respect to f : Un.

Now consider what happens when a user submits a query Q for which DQ is
the same as the description labelling the right child, and when Tr itself is rotated
right to make the left child the new root node. In this new circumstance, the
above procedure for evaluating a query, in particular the strategy for pruning, is
now incorrect in the sense that the description labelling the rightmost node will
not be returned. This problem is caused by the rotation producing a description
tree that is not well formed.

One way to overcome these problems is to introduce limitations on the concept
descriptions that can label nodes in a description tree.

Definition 12 (Descriptive Sufficiency) A concept description D is suffi-
ciently descriptive for ordering description Od with respect to terminology T ,
written SDT (D,Od), if at least one of the following conditions hold:

– Od = “Un”,

– Od = “f : Od1”, SDT (D,Od1), and T |= D v (f = k),
– Od = “D′(Od1, Od2)”, SDT (D,Od1), and T |= D v D′, or
– Od = “D′(Od1, Od2)”, SDT (D,Od2), and T |= D v ¬D′,

for some k ∈ ∆C . When Od and T are clear from context, we say simply that
D is sufficiently descriptive.

Again, it is possible to devise an effective procedure for deciding if SDT (D,Od)
holds, primarily by reusing the careful search for constants k presumed by the
Can procedure mentioned at the end of the previous section.

Descriptive sufficiency now enables us to say when rotations can be used to
balance a description tree Tr .

Lemma 13 Let Od be an ordering description and T a terminology. If concept
descriptions D1 and D2 are sufficiently descriptive, then, for any description
trees Tr1, Tr2, and Tr3 that are well formed, 〈D1, 〈D2,Tr1,Tr2〉,Tr3〉 is well
formed if and only if 〈D2,Tr1, 〈D1,Tr2,Tr3〉〉 is well formed.

Lemma 14 that follows defines the additional properties of ordering descriptions
that are needed to ensure the above procedure for searching a description index
will return descriptions in non-descending order of the ordering description for
the index. A proof of this is now a simple consequence of this lemma together
with Lemma 4. As we show in the remainder of this section, it also becomes
possible to ensure that query evaluation can be accomplished very efficiently in
terms of the number of calls to a DL reasoner.

Lemma 14 Let Od be an ordering description and T a terminology. For any
concept description D and pair of concept descriptions E1 and E2 that are in-
comparable and sufficiently descriptive:

1. If (Od)T (D,E1), then (Od)T (D,E2); and
2. If (Od)T (E1, D), then (Od)T (E2, D).

Definition 15 (Order Preserving Description Index) An index 〈Tr , Od, T 〉
is order preserving if any concept description labelling any node in Tr is suffi-
ciently descriptive.

To summarize, adding a new concept description D to an order preserving index
〈Tr , Od, T 〉 is only possible if D is sufficiently descriptive, and is accomplished
by adding 〈D, 〈〉, 〈〉〉 as a new leaf node in Tr and then performing rotations
to ensure balance. If 〈D′, L,R〉 ∈ Tr , then the new node must be inserted in
L when (Od)T (D,D′) holds, in R if (Od)T (D′, D) holds, and in either L or R
otherwise.

Our main result now follows in which we characterize a number of the stan-
dard cases of queries for which an initial search followed by an index scan (and
without a subsequent sort) will suffice to efficiently evaluate the query.

Definition 16 (Supported Query) A description D is sufficiently selective
for ordering description Od with respect to terminology T , denoted SST (D,Od),
if at least one of the following conditions hold:

– T |= > v D,
– Od = “f : Od1”, SST (E,Od1) and T |= D ≡ ((f = k) u E),
– Od = “f : Od1” and T |= D ≡ (f < k),
– Od = “f : Od1” and T |= D ≡ ¬(f < k),
– Od = “f : Od1” and T |= D ≡ (¬(f < k) u (f < k′)),
– Od = “D′(Od1, Od2)”, SST (E,Od1) and T |= D ≡ (D′ u E),
– Od = “D′(Od1, Od2)”, SST (E,Od2) and T |= D ≡ (¬D′ u E), or
– T |= D ≡ (E t E′), SST (E,Od) and SST (E′, Od),

for some constants k and k′ in ∆C and descriptions E and E′.
A query 〈DQ, OdQ〉 is supported by an order preserving description index

〈Tr , Od′, T 〉 if and only if DQ is sufficiently selective for ordering description
Od′ with respect to T , and Od′ ≺T ,DQ OdQ.

A procedure for deciding if the concept description of a query is sufficiently selec-
tive is an open problem at this time. However, an approximate procedure easily
capable of recognizing our introductory example is straightforward, e.g., one that
uses the above-mentioned careful search for constants k and k′ to recognize the
range query cases.

Theorem 17 Let 〈Tr , Od, T 〉 be an order preserving description index and Q
a supported query. Then Q can be evaluated in O(log(n) + k) subsumption tests
of ALCQ(D), where n is the number of nodes in Tr and k is the number of
descriptions in the result.

4 Summary and Discussion

We have proposed a language for specifying partial orders over concept descrip-
tions that consists of an initial selection of two ordering constructors. The first
is called feature value ordering, and is the standard notion of ordering supported
by SQL and relational databases. The second is called description ordering, and
can be viewed as a way of capturing indexing based on grid file techniques in
which the focus is on organizing the data space in which data resides [3]. Mul-
tidimensional indices such as quad trees [4] are examples.

There are also a number of other ordering constructors that one might con-
sider. Two possibilities for additional endogenous indexing are given by the fol-
lowing productions for our ordering language.

Od ::= f desc : Od | v

The first is an obvious extension that would enable (sub)orders satisfying non-
ascending values for concrete features in descriptions, while the second appeals
directly to subsumption checking in a description logic. More formally, the nec-
essary revision to Definition 3 requires adding three conditions:

– Od = “f desc : Od1” and (T ∪ T ∗) |= (D u E∗) v (f∗ < f),
– Od = “f desc : Od1”, (Od1)T (D,E) and (T ∪ T ∗) |= (D uE∗) v (f = f∗),

or
– Od = “ v ” and T |= D v E.

For the first constructor, it is also straightforward to extend proofs for Lemmas 4
and 10, and to extend the definition of description sufficiency in a way that
will preserve Lemmas 13 and 14, which will then allow arbitrary rotations in
a description tree and the possibility of removing a sort operator from a query
plan, respectively. The same is not true, however, for the second constructor. In
this case, Property 5 of Lemma 4 and Property 2 of Lemma 10 will no longer
hold. Thus, pruning during search will only remain possible for right subtrees
in a description index. There is also no obvious way to repair the definition of
descriptive sufficiency in a way that will also preserve Lemmas 13 and 14.

We have demonstrated how our ordering language can support retrieving
descriptions in response to queries. In an algebraic sense, the query language we
have considered is very simple, consisting only of a selection operation for finding
descriptions subsumed by a given “selection” concept, and a sort operation for
ordering the set of descriptions produced by selection. DL systems such as Racer
[5] that implement ABox reasoning already support the first of these operations.
We believe our results provide some guidance on how DL systems can incorporate
better support for sorting, for order optimization in ABox querying, and for
ABox indexing.

There are several open problems and many possible avenues of further re-
search. Finding a complete Ref procedure and either adding further operators
to our query language or a sort capability to existing query languages such as
EQL [6] are respective examples. Finally, an expanded version of this paper con-
taining complete proofs is available as a technical report [7].

Acknowledgments

We thank Peter Tarle and Nortel for many valuable discussions on this work
and for financial support. We also acknowledge the financial support in part by
grants from NSERC of Canada.

References

1. Stanchev, L., Weddell, G.: Index Selection for Embedded Control Applications using
Description Logics. In: Description Logics 2003, CEUR-WS vol.81 (2003) 9–18

2. Simmen, D.E., Shekita, E.J., Malkemus, T.: Fundamental Techniques for Order
Optimization. In: Proceedings of the 1996 ACM SIGMOD International Conference
on Management of Data. (1996) 57–67

3. Nievergelt, J., Hinterberger, H., Sevcik, K.C.: The grid file: An adaptable, symmetric
multikey file structure. ACM Trans. Database Syst. 9(1) (1984) 38–71

4. Samet, H.: The quadtree and related hierarchical data structures. ACM Comput.
Surv. 16(2) (1984) 187–260

5. Volker Haarslev and Ralf Moller: Racer system description. In: International Joint
Conference on Automated Reasoning, IJCAR. (2001)

6. Diego Calvanese and Giuseppe De Giacomo and Domenico Lembo and Maurizio
Lenzerini and Riccardo Rosati: Epistemic First-Order Queries over Description
Logic Knowledge Bases. In: Description Logics 2006, CEUR-WS vol.189 (2006)

7. Pound, J., Stanchev, L., Toman, D., Weddell, G.: On ordering descriptions in
a description logic. Technical Report CS-2007-16, David R. Cheriton School of
Computer Science, University of Waterloo (2007)

