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Abstract. We now know that the addition of a concept constructor called a Path
Functional Dependency (PFD) to the Boolean-complete description logic DLF
leads to undecidability of ABox consistency for DLF . Consequently, we de-
fine a boundary condition for PFDs that enables the recovery of earlier DLF
complexity bounds for this problem. This is accomplished indirectly by adding
an additional concept constructor for rooted path equality, which has the added
benefit of increasing the utility of DLF for reasoning about query containment
problems in query optimization, in plan generation and in automated sythesis of
web services.

1 Introduction

The introduction of web service environments with query and ontology languages such
as SWRL [8] and OWL [9] make it necessary for agents to reason about query plans and
about how to communicate the results of queries between agents. It is consequently im-
perative to allow identification constraints to be incorporated in ontologies to enable an
agent to determine, e.g., that there is at most one way of performing a currency conver-
sion, or that items from a particular company are reliably identified by that company’s
item code. Indeed, this situation is anticipated by extensive experience with SQL and
the relational model of data in which keys and functional dependencies have been used
for reasoning about properties of query plans related, e.g., to tuple identification.

In earlier work, we have explored how a general form of uniqueness constraint
called a Path Functional Dependency (PFD) can be added to a Boolean-complete de-
scription logic called DLF , a fragment of the OWL ontology language [14]. The re-
sulting logic is called DLFD and can be used to express, e.g., that customers who have
consulted with a manager can be reliably identified by their social insurance number.
In particular, this can be captured by the following inclusion dependency in DLFD.

Customer u ∀Consults.Manager v Person : SIN → Id

To paraphrase: If a customer has consulted with a manager, then no other person will
share his or her social insurance number. Later on, we show how this constraint can
help with an important reformulation of a query.

AlthoughDLFD is particularly suited to capturing such meta-data, we has recently
discovered that its ABox consistency problem is undecidable [22]. This is bad news
since this greatly limits how the logic can then be used for reasoning about queries and
services, e.g., in query reformulation. To remedy this, we define a boundary syntactic
condition for PFDs that enables the recovery of earlier DLF complexity bounds for



reasoning about ABox consistency. This is effectively accomplished by adding an ad-
ditional concept constructor for rooted path equality along the lines pioneered by the
description logic CLASSIC [3]. The addition of this constructor thereby obtains the
logic DLFDE which serves as the primary focus of this paper.
Our main contributions are as follows.

– We establish the equivalence of the ABox consistency problem for DLFD and the
logical implication problem for DLFDE . Thus, and this was surprising to us, the
latter is also undecidable. We also show that this equivalence continues to hold in
the absence of any occurrences of PFDs.

– We define the logic DLFDE− which refines DLFDE by introducing a syntactic
boundary condition for PFDs, and show that both its ABox consistency problem
and its logical implication problem are decidable and complete for EXPTIME.

1.1 Background and Related Work

In addition to the web ontology language OWL, description logics have been used ex-
tensively as a formal way of understanding a large variety of languages for specifying
meta-data, including ER diagrams, UML class and object diagrams, relational database
schema, etc. [18].

PFDs were first introduced and studied in the context of object-oriented data mod-
els [12, 24] as a way of capturing functional constraints such as keys and functional
dependencies. An FD concept constructor was subsequently proposed and incorporated
in CLASSIC [4], an early DL with a PTIME reasoning procedure, without changing the
complexity of its implication problem. This was particularly noteworthy since CLAS-
SIC also included a concept constructor for rooted path (in)equalities. The general-
ization of the FD constructor to PFDs alone leads to EXPTIME completeness of the
implication problem [14]; this complexity remains unchanged in the presence of addi-
tional concept constructors common in rich DLs [23]. More recent work has shown the
need to limit where PFDs may occur in concepts to avoid undecidability, in particu-
lar outside the scope of non-monotonic concept constructors such as negation, and that
ABox consistency is undecidable regardless [22].

Calvanese and others have considered a DL with functional dependencies and a
general form of keys added as additional varieties of dependencies, called a key box
[6]. They show that their dialect is undecidable for DLs with inverse roles, but becomes
decidable when unary functional dependencies are disallowed. This line of investigation
is continued in the context of PFDs and inverse attributes, with analogous results [21].
We therefore disallow inverse attributes in this paper to exclude an already known cause
for undecidability.

A form of key dependency with left hand side feature paths has been considered for
a DL coupled with various concrete domains [15, 16]. In this case, the authors explore
how the complexity of satisfaction is influenced by the selection of a concrete domain
together with various syntactic restrictions on the key dependencies themselves.

PFDs have been used in a number of applications: in object-oriented schema diag-
nosis and synthesis [1, 2], in query optimization [13] and in the selection of indexing
for a database [19]. Description logics have also been used for reasoning about query
containment in the presence of rich database schema [5, 10].



SYNTAX SEMANTICS: DEFN OF “(·)I”

C ::= A (A)I ⊆ ∆

| C1 u C2 (C1)
I ∩ (C2)

I

| ¬C ∆ \ (C)I

| ∀f.C {x : (f)I(x) ∈ (C)I}

D ::= C

| C : Pf1, ..., Pfk → Pf {x : ∀ y ∈ (C)I .Vk
i=1(Pfi)

I(x) = (Pfi)
I(y) ⇒ (Pf)I(x) = (Pf)I(y)}

E ::= C

| E1 u E2 (E1)
I ∩ (E2)

I

| ¬E ∆ \ (E)I

| ∀f.E {x : (f)I(x) ∈ (E)I}
| (Pf1 = Pf2) {x : (Pf1)

I(x) = (Pf2)
I(x)}

Fig. 1. SYNTAX AND SEMANTICS OF DLFDE .

The remainder of the paper is organized as follows. The definition of DLFDE , a
Boolean complete DL based on attributes that includes the PFD concept construc-
tor, immediately follows. In Section 3, we establish the first of our main results: the
equivalence of the ABox consistency problem for DLFD and the logical implica-
tion problem for DLFDE , and that this equivalence continues to hold in the absence
of any occurrences of PFDs. Section 4 introduces the logic DLFDE− which refines
DLFDE by introducing the above-mentioned syntactic boundary condition for PFDs,
and shows that both the ABox consistency problem and the logical implication problem
for DLFDE− are decidable and complete for EXPTIME. A more in depth example
of using DLFDE− for reasoning about a query property follows in Section 5. Our
summary comments then follow in Section 6.

2 Definitions

To simplify the presentation, the description logic DLFDE defined below is based on
attributes (also called features) instead of the more common case of roles. With regard
to expressiveness, note that ALCN with a suitable PFD construct can simulate our
dialect. Conversely, DLFD can simulate ALCQI [20].

Definition 1 (Description Logic DLFDE) Let F, A and N be sets of (names of) at-
tributes, primitive concepts and individuals, respectively. A path expression is defined
by the grammar “ Pf ::= f.Pf | Id” for f ∈ F. We define derived concept descriptions
by the grammar on the left-hand-side of Figure 1. A concept description obtained by
using the fourth production of this grammar is called an attribute value restriction. A
concept description obtained by using the sixth production is called a path functional
dependency (PFD).
An inclusion dependency C is an expression of the form C v D. A posed question Q is
an expression of the form E1 v E2. A terminology (TBox) T consists of a finite set of
inclusion dependencies.
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Fig. 2. THE SERVICE SCHEMA AND TERMINOLOGY.

An ABox A consists of a finite set of assertions of the form C(a) or f(a) = b, for C a
concept description, f ∈ F and {a, b} ⊆ N.
The semantics of expressions is defined with respect to a structure (∆, ·I), where ∆ is
a domain of “objects” and (.)I an interpretation function that fixes the interpretation
of primitive concepts A to be subsets of ∆, primitive attributes f to be total functions
(f)I : ∆ → ∆ and individuals a to be elements of ∆. The interpretation is extended
to path expressions, (Id)I = λx.x, (f.Pf)I = (Pf)I ◦ (f)I and derived concept
descriptions C, D and E as defined on the right-hand-side of Figure 1.
An interpretation satisfies an inclusion dependency C v D (resp. a posed question
E1 v E2) if (C)I ⊆ (D)I (resp. (E1)I ⊆ (E2)I). An interpretation satisfies an ABox
assertion C(a) (resp. f(a) = b) if (a)I ∈ (C)I (resp. (f)I((a)I) = (b)I).
The logical implication problem asks if T |= Q holds; that is, for a posed question
Q, if Q is satisfied by any interpretation that satisfies all inclusion dependencies in T .
The ABox consistency problem asks if T ∪ A is consistent; that is, if there exists an
interpretation that satisfies all inclusion dependencies in T and all assertions in A.

To improve readability in the remainder of the paper, we follow the simple protocol of
removing “. Id” from the end of path expressions that consist of at least one attribute.
We also allow the use of standard abbreviations, e.g., ⊥ for A u ¬A, (Pf1 6= Pf2) for
¬(Pf1 = Pf2), etc. Finally, we write Pf(a) = b as shorthand for the equivalent set of
primitive ABox assertions with “single use” intermediate individuals.

Example 2 Figure 2 illustrates an information schema for a hypothetical online cus-
tomer SERVICE system where, e.g., service representatives are special cases of people
who in turn have social insurance numbers and consult with service representatives, and
so on. The information can be captured as a SERVICE TBox with the inclusion depen-
dencies in the right part of Figure 2. The four marked dependencies more thoroughly
exercise the capabilities of DLFDE , asserting that:
1. A person is either a service representative or a customer;
2. Nothing is both a person and a number;
3. Any service representative is uniquely identified by a social insurance number; and
4. (from our introductory comments) Any customer who has consulted with a man-

ager is also uniquely identified by a social insurance number.



3 Equations and ABoxes

We first explore the relationship between ABox consistency problems and allowing path
agreements in posed questions. It turns out that either capacity alone is sufficient: each
is able to effectively simulate the other.

Intuitively, path equations (and inequations) can enforce that an arbitrary finite
graph (with feature-labeled edges and concept description-labeled nodes) is a part of
any model that satisfies the equations. Such a graph can equivalently be enforced by an
ABox. Hence we have:

Theorem 3 Let T be a DLFD terminology and A an ABox. Then there is a concept
E such that T ∪ A is not consistent if and only if T |= E v ⊥.

Conversely, it is also possible to show that ABox reasoning can be used for reasoning
about equational constraints in the posed questions. However, as the equational concepts
are closed under boolean constructors, a single equational problem may need to map to
several ABox consistency problems.

Theorem 4 Let T be a DLFD terminology and E an equational concept. Then there
is a finite set of ABoxes {Ai : 0 < i ≤ k} such that

T |= E v ⊥ iff T ∪ Ai is not consistent for all 0 < i ≤ k.

Theorems 3 and 4 hold even when the terminology T is restricted to theDLF fragment
(i.e., does not contain any occurrences of the PFD concept constructor).

4 Adding PFDs

The correspondence between ABox reasoning and equational concepts in the posed
questions provides us with the necessary means to understanding the impact of PFDs
in the presence of an ABox or path agreements. Indeed, our DLFDE grammar in Fig-
ure 1 does not explicitly allow posed questions to contain PFDs (the PFD constructor is
confined by the Grammar to the TBox). However, this restriction can be easily circum-
vented using the following lemma:

Lemma 5 Let T be a DLFD terminology and E1 v E2 : Pf1, . . . ,Pfk → Pf a posed
question. Then there is a equational concept E such that T |= E v ⊥ iff

T |= E1 v E2 : Pf1, . . . ,Pfk → Pf .

4.1 Undecidability

While allowing general reasoning about path agreements in terminologies leads imme-
diately to undecidability (by virtue of a straightforward reduction of the uniform word
problem [17]), the following two restricted cases have decidable decision problems:

– Allowing arbitrary PFDs in terminologies; and
– Allowing path agreements in the posed question.

Unfortunately, the combination of the two cases again leads to undecidability:

Theorem 6 Let T be a DLFD terminology and E an equational concept. Then the
problem T |= E v ⊥ is undecidable.



4.2 Decidability and a Boundary Condition

To regain decidability, we restrict the PFD constructor to the following two forms:
– C : Pf1, . . . ,Pf .Pfi, . . . ,Pfk → Pf; and
– C : Pf1, . . . ,Pf .Pfi, . . . ,Pfk → Pf .f , for some primitive feature f .

We call the resulting fragment DLFDE−. To abstract syntax a bit for the sake of read-
ability, the condition distinguishes, e.g., the PFDs f → Id and f → g from the PFD
f → g.f . Intuitively, a simple saturation procedure that “fires” PFDs on a hypothetical
database is now guaranteed to terminate as a consequence.

Notice that the boundary condition still admits PFDs that express arbitrary keys or
functional dependencies in the sense of the relational model, including those occurring
in all our examples. Thus, we believe that restricting PFDs in this manner does not
sacrifice any real world modeling utility.

Theorem 7 Let T and T ′ be a DLF and DLFDE− terminologies, respectively, and
E an equational concept. Then there is a concept E′ such that

T ∪ T ′ |= E v ⊥ iff T |= (E u E′) v ⊥.

Moreover, E′ can be constructed from T ′ and E effectively and is polynomial in |T ′|.
The boundary condition on PFDs is essential for the above theorem to hold. If unre-
stricted PFDs are combined with either equations or an ABox, there is no limit on the
length of paths participating in path agreements when measured from an initial object
o ∈ E u E′ in the associated satisfiability problem. Moreover, any minimal relaxation
of this condition, i.e., allowing any PFDs of the form C : f → g.h, already leads to
undecidability [22].

Corollary 8 DLFDE− logical implication and ABox consistency problems are decid-
able and complete for EXPTIME.

5 Applications to Query Optimization

Assuming set semantics for query results and the presence of a database schema, [5]
and [10] have shown how conjunctive and positive query containment can be reduced
to ABox consistency problems for the description logics DLR [7] and SHIQ [11],
respectively. Analogous reductions can also be made to ABox consistency problems for
DLFD. In addition, more direct and transparent reductions that use path agreements are
now possible withDLFDE− (c.f. the concept description E in the following example).

DLFDE− can also be used in query reformulation when allowing duplicate seman-
tics. However, in this case, PFDs serve an essential role as we now illustrate.

Example 9 Consider the following SQL-like query on our example SERVICE schema
that finds distinct social insurance numbers for all persons who have consulted with a
manager.

select distinct N
from Person as P , Number as N ,
where exists ( select ∗

from Manager as M
where P.Consults = M )

and P.SIN = N



Clearly, there is a considerable incentive on the grounds of query performance to reason
about the possibility of avoiding expensive duplication elimination operations, i.e., if
the above query can be reformulated without the distinct keyword. Indeed, this is
possible iff

SERVICE |= E v E : N → P

where E is the concept description

(∀P.Person) u (∀N.Number) u (∀M.Manager)
u(P.Consults = M) u (P.SIN = N)

that encodes the above query. Note that this clear and direct formulation relies on
Lemma 5.

The link between the above formulation and earlier ABox consistency approaches to
query containment is explained by Theorems 4 and 3.

6 Conclusions

Earlier research has led to the development of a Boolean-complete description logic
called DLFD that incorporated a powerful concept constructor for expressing unique-
ness constraints called PFDs. Unfortunately, recent negative results have shown that
the ABox consistency problem for DLFD is not decidable. In this paper, we have
proposed a boundary condition for PFDs that re-obtains decidability and tight com-
plexity bounds for ABox consistency and logical implication problems. We have also
shown how ABox consistency checking relates to logical implication problems when
path agreement is allowed in posed questions. This connection is essential to the design
of the decision procedure for DLFD in the presence of an ABox.

There are several directions for future research, in particular exploring alternative
fragments of DLFDE with decidable reasoning problems; finding further restrictions
onDLFDE that lead to polynomial time reasoning algorithms; and incorporating more
general ordering dependencies that generalize equality based reasoning that underlies
PFDs.
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