
Query Answering over CFD∀
nc Knowledge Bases

David Toman and Grant Weddell

Cheriton School of Computer Science
University of Waterloo, Canada

{david,gweddell}@cs.uwaterloo.ca

Abstract. We consider the problem of answering conjunctive queries
in the description logic CFD∀

nc, a generalization of the logic CFDnc
in which universal restrictions are now permitted on left-hand-sides of
inclusion dependencies. We show this problem retains PTIME data com-
plexity and exhibit a procedure in the spirit of OBDA in which a rela-
tional engine can be usefully employed to address scalability issues for
an ABox. The procedure relies on a combination of the strategies that
underlie both the perfect rewriting and combined approaches to OBDA.
In particular, a knowledge base comprised of a TBox and ABox is first
preprocessed to obtain a new ABox. An arbitrary conjunctive query to-
gether with the TBox can then be translated to a union of conjunctive
queries that can be evaluated over the new ABox viewed as a relational
database.

1 Introduction

Ontology based data access (OBDA) is concerned with access to data in a setting
where the data sources may be incomplete with respect to a given logical schema
or ontology, and where simple model checking no longer suffices to compute
answers to queries. To address scalability issues relating to the volume of data,
current approaches to OBDA focus on ontology and conjunctive query languages
based on DL dialects for which computing certain answers is at worst PTIME-
complete with respect to data complexity, and aim to achieve circumstances in
which query answering can be efficiently reduced to SQL query evaluation over
a relational encoding of data. In particular, scalable OBDA is possible for a DL
dialect if, for any conjunctive query (CQ) Q, ontology T , and an ABox A in
that dialect, there is an ABox A′, a completion of A, and query Q′ that satisfy
the following three requirements:

(1) The certain answers of Q over the knowledge base K = (T ,A) can be ob-
tained by evaluating Q′ viewed as a SQL query over A′ viewed as a relational
database;

(2) A′ can be computed from K by a procedure with PTIME complexity with
respect to A (i.e., with PTIME data complexity with respect to K); and

(3) Q′ can be computed from Q and T alone.

Indeed, scalable OBDA has been shown possible for various dialects of the DL-
Lite and EL families of DLs [2, 6–9].

Recently, Toman and Weddell proposed CFDnc [14], a dialect of their CFD
family of DLs [4, 13] that has PTIME complexity for the fundamental reasoning
tasks of determining knowledge base consistency and of computing the certain
answers to conjunctive queries, and conjectured that scalable OBDA would also
be possible for this logic. In this paper, we show that this is indeed true, and
remains true for CFD∀nc, a slight generalization of CFDnc in which value re-
strictions are also permitted on left-hand-sides of inclusion dependencies. In
particular, our contributions, in the order presented, are as follows:

– We show that concept satisfiability with respect to a CFD∀nc TBox T is
complete for NLOGSPACE by appeal to an automata that derives from T ;

– We exhibit an ABox completion procedure with PTIME data complexity to
compute A′ above for a given knowledge base K, and show how this can
be coupled with our automata for checking concept satisfiability to yield a
procedure for checking knowledge base consistency, also with PTIME data
complexity (thus satisfying condition (2) above);

– We define a mapping that produces a union of conjunctive queries Q′ from
a given conjunctive query Q and T , and show that evaluating Q′ as a SQL
query over A′, viewed as a relational database, computes the certain answers
of Q over K (thus satisfying conditions (1) and (3) above).

Altogether, this shows that scalable OBDA for CFD∀nc is also possible, and
in particular that computing the certain answers to conjunctive queries over a
CFD∀nc knowledge base can be achieved by a combination of perfect rewriting
[2] and combined approaches [6–9]. In the process, we also show that this is not
possible for either of the two approaches alone, and that the potential for an ex-
ponential blowup of query rewriting cannot be avoided. All this follows since the
data complexity for conjunctive query answering in CFD∀nc is PTIME-complete
and since the combined complexity of this problem is PSPACE-complete.

We begin in the next section by introducing the syntax and semantics of
CFD∀nc, including a normal form that is assumed in the remainder of the paper.
The problem of concept satisfiability for CFD∀nc TBoxes is then considered in
Section 3. Our second contribution is given in Section 4 in which we present
our ABox completion procedure, and show how consistency of CFD∀nc knowl-
edge bases can be determined in PTIME. Our final contribution relating to the
above mentioned mapping of conjunctive queries is the topic of Section 5, and
a discussion of related work and summary comments then follow in Sections 6
and 7.

2 The Description Logic CFD∀
nc

CFD∀nc is a member of the CFD family of DLs, all of which are essentially frag-
ments of FO with underlying signatures based on disjoint sets of unary predicate
symbols called primitive concepts, constant symbols called individuals and unary

Syntax Semantics: “(·)I”
C ::= A AI ⊆ 4
| ∀Pf .C {x : PfI(x) ∈ CI}

D ::= A AI ⊆ 4
| ¬A 4 \AI

| ∀Pf .D {x : PfI(x) ∈ DI}
| C : Pf1, . . . ,Pfk → Pf {x : ∀ y ∈ CI .

∧k

i=1
PfIi (x) = PfIi (y)⇒ PfI(x) = PfI(y)}

Fig. 1. CFD∀
nc concepts.

function symbols called attributes. Note that incorporating attributes deviates
from normal practice to use binary predicate symbols called roles. However, at-
tributes make is easier to incorporate concept constructors suited to the capture
of relational data sources and constraints such as keys and functional depen-
dencies by a straightforward reification of n-ary predicates. Thus, e.g., a role R
in ALC would correspond to a primitive concept RC and two attributes domR
and ranR in CFD∀nc, and an ALC inclusion dependency A v ∀R.B would be
captured as the CFD∀nc inclusion dependency ∀domR.A v ∀ranR.B.

Definition 1 (CFD∀nc Knowledge Bases) Let F, PC and IN be disjoint sets
of (names of) attributes, primitive concepts and individuals, respectively. A path
function Pf is a word in F∗ with the usual convention that the empty word is
denoted by id and concatenation by “.”. Concepts C and D are defined by
the grammars on the left-hand-side of Figure 1 in which occurrences of “A”
denote primitive concepts. A concept “C : Pf1, . . . ,Pfk → Pf” produced by the
last production of the grammar for D is called a path functional dependency
(PFD). To avoid undecidability [12], any occurrence of a PFD must also satisfy
a regularity condition by adhering to one of the following two forms:

(a) C : Pf1, . . . ,Pf .Pfi, . . . ,Pfk → Pf or
(b) C : Pf1, . . . ,Pf .Pfi, . . . ,Pfk → Pf .f

(1)

A PFD is a key if it adheres to the first of these forms.

Metadata and data in a CFD∀nc knowledge base K are respectively defined by
a TBox T and an ABox A. Assume A ∈ PC, C and D are arbitrary concepts
given by the grammars in Figure 1, {Pf1,Pf2} ⊆ F∗ and that {a, b} ⊆ IN. Then
T consists of a finite set of inclusion dependencies of the form C v D, and A
consists of a finite set of facts in form of concept assertions A(a), basic function
assertions f(a) = b and path function assertions Pf1(a) = Pf2(b). A is called a
primitive ABox if it consists only of concept and basic function assertions.

Semantics is defined in the standard way with respect to an interpretation
I = (4, (·)I), where 4 is a domain of “objects” and (·)I an interpretation
function that fixes the interpretation of primitive concepts A to be subsets of
4, attributes f to be total functions on 4, and individuals a to be elements of

4. The interpretation function is extended to path expressions by interpreting
id , the empty word, as the identity function λx.x, concatenation as function
composition, and to derived concept descriptions C or D as defined in Figure 1.

An interpretation I satisfies an inclusion dependency C v D if CI ⊆ DI , a
concept assertion A(a) if aI ∈ AI , a basic function assertion f(a) = b if fI(aI) =
bI and a path function assertion Pf1(a) = Pf2(b) if PfI1 (aI) = PfI2 (bI). I satisfies
a knowledge base K if it satisfies each inclusion dependency and assertion in K,
and also satisfies UNA if, for any individuals a and b occurring in K, aI 6= bI . 2

As usual, allowing conjunction (resp. disjunction) on the right-hand (resp. left-
hand) sides of inclusion dependencies is a simple syntactic sugar.

The conditions imposed on PFDs in (1) are necessary to retain PTIME com-
plexity for the reasoning problems [5, 12] and does not impact the modeling
utility of CFD∀nc for formatted legacy data sources such as relational databases.
It remains possible, for example, to capture arbitrary keys or functional depen-
dencies in a relational schema.

For reasoning tasks, such as TBox and more general KB consistency, it is
convenient to assume by default, and without loss of generality, that CFD∀nc
knowledge bases are given in a normal form.

Lemma 2 (TBox and ABox Normal Forms)
For every CFD∀nc TBox T , there exists a conservative extension T ′ that adheres
to the following (more limited) grammar for CFD∀nc concept descriptions.

C ::= A | ∀f.A
D ::= A | ¬A | ∀f.A | A : Pf1, . . . ,Pfk → Pf

Also, for every ABox A, there exists an equivalent ABox A′ containing only
assertions of the form f(a) = b and a = b. 2

Obtaining T ′ and A′ from an arbitrary knowledge base K is achieved by a
straightforward introduction of auxiliary names for intermediate concept descrip-
tions and individuals (e.g., see defn. of simple concepts in [12]); the normalized
TBox and ABox are linear in the size of the inputs.

3 TBox and Concept Satisfiability

It is easy to see that every CFD∀nc TBox T is consistent (by setting all primitive
concepts to be interpreted as the empty set).

Definition 3 (Transition Relation for T) Let T be a CFD∀nc TBox in nor-
mal form. We define a transition relation δ(T) over the set of states

S = PC ∪ {¬A | A ∈ PC} ∪ {∀f.A | A ∈ PC, f ∈ F}

and the alphabet F as follows:

C
ε→D ∈ δ(T) if C v D ∈ T

∀f.A f→A ∈ δ(T)

where ε is the empty letter transition, f ∈ F, A ∈ PC, and C,D ∈ S. 2

The transition relation allows us to construct non-deterministic finite automata
(NFA) that can be used for various reasoning problems that relate to a CFD∀nc
TBox T . Note that we follow common practice in automata theory and use ε for
the empty letter in transition relations.1

Lemma 4 Let M = (S, {C}, {D}, δ(T)) be an NFA with the set of states S (as
above), start state C, final state D, and transition relation δ(T). Then T |= C v
∀Pf .D whenever Pf ∈ L(M).

Proof (sketch) For Pf ∈ L(M) there must be a run

C = A0
l1→A1

l2→A2 · · ·Ak−1
lk→Ak = D

in M where li ∈ F ∪ {ε} and such that Pf = l1.l2. · · · .lk. It follows from the

definition of δ(T) that Ai−1
li→Ai exists if Ai−1 v Ai, for li = ε, or li ∈ F (and

hence these dependencies are trivially implied by T). The claim then follows by
simple transitive reasoning, all necessary cases derive from the fact that

{B1 v ∀Pf .B2,B2 v ∀Pf ′ .B3} |= B1 v ∀Pf .Pf ′ .B3,

and the lemma then follows by induction on the length of the run. 2

3.1 Concept Satisfiability

The problem of concept satisfiability asks, for a given concept C and TBox
T , if there exists an interpretation I for T in which CI is non-empty. Such
problems can be reduced to the case where C is a primitive concept A by simply
augmenting T with {A v C}, where A is a fresh primitive concept. Note the
C concept can be a conjunction of other concepts as it only appears on the
right-hand side of an inclusion dependency.

Given a primitive concept A and TBox T , one can test for primitive concept
satisfiability by using the following NFA, denoted nfaAB(T):

(S, {A}, {B}, δ(T)),

with states induced by primitive concepts, their negations, and value restrictions,
with start state A, with the set of final states {B} ⊆ S, and with transition
relation δ(T).

Theorem 5 (Concept Satisfiability) A is satisfiable with respect to the TBox
T if and only if

L(nfaAB(T) ∩ L(nfaA¬B(T) = ∅
1 Another option would have been to use id for this purpose, but we thought, on

balance, that this would hinder readability.

for every B ∈ PC.

Proof (sketch) Assume A is non-empty and hence there is a ∈ AI . For a
primitive concept B ∈ PC, a word Pf in the intersection language of the two
automata above is a witness of the fact that PfI(aI) ∈ BI and PfI(aI) ∈ ¬BI

must hold in every model of T , for reasons analogous to the proof of Lemma 4,
which leads to a contradiction since Pf is a (total) function.

Conversely, if no such word exists then one can construct a deterministic finite
automaton from nfaAB(T), using the standard subset construction, in which no
state containing both B and ¬B is reachable from the start state A. Unfolding the
transition relation of this automaton, starting from the state A, labeling nodes by
the concepts associated with the automaton’s states, and adding missing features
to complete trees in which no primitive concept is true for any node, yields a
tree interpretation that satisfies T (in particular in which all PFD constraints
are satisfied vacuously) and whose root provides a witness for satisfiability of A
(as we can simply assert a ∈ A). 2

To test for emptiness of nfaAB(T) we use an graph connectivity algorithm that
(nondeterministically) searches for a (A,A)− (B,¬B) path in the (virtual) poly-
sized product automaton [3]; the following result is then immediate.

Corollary 6 Concept satisfiability with respect to CFD∀nc TBoxes is complete
for NLOGSPACE.

Note that, as we remarked above, this procedure can be used to test for con-
sistency of conjunctions of concepts in CFD∀nc. It is, however, impossible to
precompute all such inconsistent concepts since this would require consideration
of all possible types over PC (or finite subsets of primitive concepts), a process es-
sentially equivalent to constructing an equivalent deterministic automaton which
can require exponential time [3].

4 ABox Completion

To test for consistency we follow the path first outlined for the combined approach
to CQ answering in PTIME-complete DLs [9] by completing the explicit data
using the TBox. Note however, that in our case do not attempt to generate
auxiliary anonymous individuals to satisfy totality of features (the counterpart
of qualified existential restrictions in EL). We reuse the completion later for CQ
answering.

Definition 7 (ABox Completion) A completion of an ABox A with respect
to T , denoted completionT (A), is the least ABox that contains A and is closed
under the rules in Figure 2.

Lemma 8 Let K = (T ,A) be a CFD∀nc knowledge base such that A(a) ∈
completionT (A). Then K |= A(a).

Proof (sketch) The completion rules in Figure 2 only add facts implied by K.

ABox Equality Rules:

if a = b, b = c ∈ A then add a = c to A
if f(a) = b, b = c ∈ A then add f(a) = c to A
if a = b, f(b) = c ∈ A then add f(a) = c to A
if f(a) = b, f(a) = c ∈ A then add b = c to A
if a = b,A(a) ∈ A then add A(b) to A

ABox–δ(T) Interactions:

if A(a) ∈ A and ε ∈ L(nfaAB(δ(T))) then add B(a) to A
if A(a), f(a) = b ∈ A and f ∈ L(nfaAB(δ(T))) then add B(b) to A

ABox–PFD Interactions:

if A(a), B(b) ∈ A, Pf ′i(a) = ci,Pf
′
i(b) = ci ∈ A for 0 < i ≤ k, and

A v B : Pf1, . . . ,Pfk → Pf ∈ T such that Pf ′i is a prefix of Pfi then
1. Pf ′(a) = c,Pf ′(b) = c ∈ A for Pf ′ a prefix of Pf and c an A individual,

2. Pf(a) = c,Pf(b) = d ∈ A and then we add c = d to A, or

3. Pf is of the form Pf ′′ .f and Pf ′′(a) = c,Pf ′′(b) = d and then
we add f(c) = e, f(d) = e to A for a new individual e.

Fig. 2. ABox Completion Rules.

Note that the converse is contingent on consistency of K.

4.1 Knowledge Base Consistency

The automata-based approach to concept satisfiability can be used to the more
general problem of knowledge base consistency.

Theorem 9 (K Consistency) Let K = (T ,A) be a CFD∀nc knowledge base.
K is consistent if and only if {A | A(a) ∈ completionT (A)} is satisfiable with
respect to T for every individual a in completionT (A).

Proof (sketch) If {A | A(a) ∈ completionT (A)} is not satisfiable then the

knowledge base (T , {A | A(a) ∈ completionT (A)}) is inconsistent and hence K
is also inconsistent due to Lemma 8.

For the other direction we construct an interpretation for K as follows: We con-
struct an interpretation I by closing A under the rules in Figure 2 and then
extending the closure with anonymous objects by unfolding δ(T) for every in-
dividual that does not satisfy the totality of features requirement. It is easy to
show I |= T . 2

Note that the ABox individuals are considered separately (i.e., without consid-
ering the ABox equalities); however, were an inconsistency with respect to an
individual forced by traversing a feature within the ABox, this inconsistency will
be detected when the target individual is considered in the above theorem.

The construction yields a PTIME algorithm for consistency checking, a lower
bound has been already established for CFDnc [14].

Corollary 10 Knowledge base consistency for CFD∀nc is PTIME-complete. 2

The interpretation constructed in the only if part of the proof is called the
canonical model of K and is analogous to the minimal models of horn theories.

5 Conjunctive Queries over CFD∀
nc KBs

In the following we show that CQ answering is tractable in data complexity for
CFD∀nc. This development also subsumes the instance retrieval problem.

A conjunctive query (CQ) is an expression of the form {x̄ | ∃ȳ.body} where
body is a conjunction of atomic formulas of the form C(x) and Pf(x) = Pf ′(y)
for C a CFD∀nc concept description not containing PFDs, Pf,Pf ′ ∈ F∗, and x
are variables among x̄∪ ȳ. We often conflate the body of the query with the set
of its atomic conjuncts. We call the variables x̄ the answer variables. A union
of CQ (UCQ) is a set of CQ that denotes a disjunction of the formulas that
define the individual CQs. An answer to a CQ ϕ w.r.t. a KB K is a vector of
individuals ā ⊆ IN such that K |= ϕ(ā) where ϕ(ā) is a formula obtained from ϕ
by substituting x̄ by ā. We assume that CQs are connected; otherwise we simply
process each component separately.

Without loss of generality we can assume that all CQs are in normal form:
the concepts used in the CQs are primitive concepts or their negations and
the equational atoms of the form f(x) = y. It is easy to see that every CQ
can be transformed to a equivalent one by introducing additional variables and
existential quantifiers.

To compute answers for a CQ ϕ we use the notion of CQ folding. We need
the following auxiliary definition:

Definition 11 Let T be a CFD∀nc TBox and C a primitive concept, negation of
one, or value restriction. We say that a primitive concept A is a Pf-precondition
of C in T if Pf ∈ L(nfaAC(δ(T))).

Lemma 12 Let T be a CFD∀nc TBox and A1, . . . ,Ak all Pf-preconditions of C
in T . Then in every model I of T we have CI ⊆

⋃
0<i≤k AIi .

Proof (sketch) Follows from immediately Lemma 4.

The above allows us to replace concepts of the form ¬A and ∀f.A by their
preconditions w.r.t. T and this way keeping each of the queries in normal form.

Definition 13 Let ϕ be a CQ. We define a set FoldT (ϕ) with respect to T to
be the least set of CQ that contains ϕ and is closed under the following rules.

1. If {x̄ | ∃ȳ.body} ∈ FoldT (ϕ), {¬A(x)} ⊆ body then {x̄ | ∃ȳ.body} −
{¬A(x)} ∪ {Bi(x)} ∈ FoldT (ϕ) for all Bi an ε-precondition of ¬A;

2. If {x̄ | ∃ȳ.body} ∈ FoldT (ϕ), {f(x) = y,A1(y), . . . ,Ak(y)} ⊆ body and y
does not appear elsewhere in body nor in x̄, then {x̄ | ∃ȳ.body − {f(x) =

y,A1(y), . . . ,Ak(y)}∪{Bj1
1 (x), . . . ,Bjk

k (x)}} ∈ FoldT (ϕ) for all possible com-

binations of Bji
i an f -precondition of Ai w.r.t. T .

3. If {x̄ | ∃ȳ.body} ∈ FoldT (ϕ) and {f(x) = y, f(x′) = y} ⊆ body, then
{x̄ | ∃ȳ.body}[x/x′] ∈ FoldT (ϕ);

The intuition behind this definition is that, to find query answers, it is now suf-
ficient to match the queries in Fold(ϕ) explicitly against the (extended) ABox
(cf. Definition 7) and verify correct concept membership for these nodes as pre-
scribed by the query since possible matches outside of this ABox are reduced to
primitive membership checks against Pf-preconditions.

Lemma 14 Let ϕ be a CQ with at least one answer variable. Then ā is an
answer to ϕ over K = (T ,A) if and only if there is a mapping µ : x̄ ∪ ȳ → IN is
the set of ABox individuals in completionT (A), such that

1. µ(x) an individual in A for x ∈ x̄ an answer variable;
2. f(µ(x)) = µ(y) ∈ completionT (A) for all f(x) = y ∈ body; and
3. A(µ(x)) ∈ completionT (A) for all A(x) ∈ body,

for at least one {x̄ | ∃ȳ.body} ∈ FoldT (ϕ).

Proof (sketch) Observing that the extended ABox is essentially a part of the

minimal model of K (since K is Horn) and that every element of Fold(ϕ) implies
ϕ, it is easy to see that whenever (1-3) are satisfied, there is a match of ϕ in the
minimal model and thus ā is an answer. Conversely, if a match of ϕ in a minimal
model exists yielding ā as an answer, then part of the match will be realized in
the ABox (since at least one variable must be bound to an ABox individual)
and the reminder of the match must be forest-like. Hence, one of the queries in
FoldT (ϕ) matches in the ABox making the remaining conjuncts implied by T
due to Lemma 12. 2

For CQ without answer variables, we need an additional step that checks whether
the query (when equivalent to a concept) matches in the tree part of the canonical
model of K. To achieve this, we determine every primitive type {A1, . . . ,An} ⊆
PC (of a potential completed ABox individual) whether C must be realized in
the canonical model in which an extended ABox individual belongs to such a
primitive type. We use the following construction: Let T be a CFD∀nc TBox,
{A1, . . . ,An} ⊆ PC a consistent primitive type w.r.t. T , and be a query the
form ψ = {∅ | ∃y.B1(y) ∧ . . . ∧ Bk(y)}2. We define an automaton

M(ψ) = nfaA0

B1
(δ)× . . .× nfaA0

Bk
(δ)

where δ = δ(T) ∪ {A0
ε→A1, . . . , A0

ε→An} and A0 is a primitive concept not
occurring in T .

2 Due to the definition of FoldT it is sufficient to consider only queries of this form as
more complex queries are simplified by the folding process.

Definition 15 Let T be a CFD∀nc TBox, {A1, . . . ,An} ⊆ PC a primitive type,
and ψ ∈ FoldT (ϕ) of the form {∅ | ∃y.B1(y), . . . ,Bk(y)}. We say that the type
{A1, . . . ,An} forces ψ if M(ψ) is nonempty.

Now whenever such a query ψ appears in FoldT (ϕ) we add ∃x.T (x) for all T that
force ψ w.r.t. T . These additional queries can be evaluated solely with respect
to the completed ABox and guarantee that ψ is realized outside of the ABox
whenever a match is found.

Theorem 1. Let ϕ be a CQ with at least one answer variable. Then ā is an
answer to ϕ over K = (T ,A) if and only if completionT (A) |= ψ(ā) for at least
one ψ ∈ FoldT (ϕ).

Proof (sketch) Follows from Lemma 14 and the observation that closed queries

that correspond to CFD∀nc concepts are handled using the construction in Def-
inition 15.

Analyzing the constructions it is easy to verify that overall data complexity of
CQ answering over CFD∀nc knowledge bases is in PTIME, as the ABox comple-
tion can be realized by a Datalog program (that depends only on T) followed by
evaluation of an UCQ (defined by FoldT (ϕ)) which is in AC0. This matches the
lower bound established for CFDnc in [14] (and hence precludes using perfect
rewriting alone for CQ answering). Note also that |FoldT (ϕ)| is worst-case expo-
nential in |T |+ |ϕ|; this, however, is unavoidable as the combined complexity of
CQ answering is hard for PSPACE even for CFDnc while merely NP-complete
for UCQ. Hence, unless NP=PSPACE, the blowup cannot be avoided. This ob-
servation also precludes the various filtering approaches used previously for the
combined approach [6–9]. Hence the combination of the combined approach and
perfect rewriting is necessary for CQ answering over CFD∀nc.

6 Related Work

An early version of the CFD dialect first appeared in [4]; the name was a con-
traction of “CLASSIC with FDs”. The present form appears in [13], which also
explored the consequences of adding additional concept constructors on the com-
plexity of concept subsumption problems. Dialect CFDnc was recently proposed
as a modification of CFD in [14], mainly to gain PTIME data complexity for
conjunctive query answering. However, scalable OBDA in the sense we have
outlined was not possible with the query answering approach used in this work.

In [13], the authors outline an alternative approach to computing the certain
answers to so-called attribute connected conjunctive queries for the logic CFD.
The approach reduces such problems to concept subsumption problems in which
path agreements are used in posed question concepts to encode an ABox.

Scalable OBDA based on a perfect rewriting of conjunctive queries was shown
for DL-Lite in [2]. Note that if perfect rewriting suffices to accomplish scalable
OBDA for a DL dialect, requirement (2) given in our introductory comments
can be strengthened to require that A′ = A. This has considerable advantages

in an information integration setting in which rebuilding a new A is not feasible.
The combined approach to scalable OBDA was first shown for a member of the
EL family in [9]. In general, if a combined approach suffices, requirement (3) can
be strengthened (but not requirement (2)) to require that Q′ can be computed
independently of the inclusion dependencies in a given ontology, and can have
a size bounded by a polynomial in the size of Q, but see [8] to understand how
this is possible in the presence of role hierarchies.

7 Summary

We have introduced a new member of the CFD family of DL dialects called
CFD∀nc with the following notable properties.

– CFD∀nc is a generalization of CFDnc. Consequently, it inherits the ability
of CFDnc to capture terminological cycles with universal restrictions over
functional roles, to capture a rich variety of functional constraints over func-
tional role paths, and to express disjointness of atomic concepts. In addition,
it is now possible in CFD∀nc to have universal restrictions occurring on left-
hand-sides of inclusion dependencies.

– We have established the foundations for scalable OBDA for CFD∀nc knowl-
edge bases, for which both knowledge base consistency and conjunctive query
evaluation have PTIME data complexity.

We have also shown that it is not possible for scalable OBDA over a CFD∀nc
knowledge base K that is based exclusively on either a perfect rewriting approach
or a combined approach. Thus, there is a potential for exponential blowup of a
conjunctive query in the size of a TBox, and for a non-linear completion A′ in
the size of K. However, note that earlier work on (1) reducing the complexity of
generated queries in perfect rewriting approaches [11], e.g., removing members
of a union of conjunctive queries that are subsumed by other members, and on
(2) using interval encodings to compress the expansion of an ABox in combined
approaches [1, 10] can also be applied in our setting.

The complexity landscape of most of the variants of CFD have now been
resolved. In particular, see [15]3 in the case of CFDnc and [13] for the case
of CFD (which allows conjunction on left-hand-sides of inclusion dependencies,
but disallows negation on right-hand-sides). However, several additional issues
for CFD∀nc merit further investigation. For one, it would be very desirable to
incorporate at least a limited capacity for expressing existential restrictions re-
lating to inverse attributes in CFD∀nc. This would allow one to fully reify roles in
CFD∀nc and, in this way, to reduce reasoning with roles to reasoning about con-
cepts. Another more ambitious opportunity lies in incorporating limited forms
of equational constraints while preserving tractability of reasoning. Finally, al-
though the modelling utility is unclear, the consequences of allowing PFDs on
the left-hand-sides of inclusion dependencies in CFD∀nc is still open.

3 Also submitted to DL14.

References

1. Rakesh Agrawal, Alexander Borgida, and H. V. Jagadish. Efficient management
of transitive relationships in large data and knowledge bases. In James Clifford,
Bruce G. Lindsay, and David Maier, editors, SIGMOD Conference, pages 253–262.
ACM Press, 1989.

2. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. Tractable reasoning and efficient query answering in descrip-
tion logics: The DL-Lite family. J. Autom. Reasoning, 39(3):385–429, 2007.

3. John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, 1979.

4. Vitaliy L. Khizder, David Toman, and Grant Weddell. Reasoning about Duplicate
Elimination with Description Logic. In Rules and Objects in Databases (DOOD,
part of CL’00), pages 1017–1032, 2000.

5. Vitaliy L. Khizder, David Toman, and Grant Weddell. On Decidability and
Complexity of Description Logics with Uniqueness Constraints. In Int. Conf. on
Database Theory ICDT’01, pages 54–67, 2001.

6. Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter, and Michael Za-
kharyaschev. The combined approach to query answering in DL-Lite. In Principles
of Knowledge Representation and Reasoning, 2010.

7. Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter, and Michael Za-
kharyaschev. The combined approach to ontology-based data access. In Proc. Int.
Joint Conf. on Artificial Intelligence (IJCAI), pages 2656–2661, 2011.

8. Carsten Lutz, Inanç Seylan, David Toman, and Frank Wolter. The combined
approach to OBDA: Taming role hierarchies using filters. In International Semantic
Web Conference (1), pages 314–330, 2013.

9. Carsten Lutz, David Toman, and Frank Wolter. Conjunctive query answering in
the description logic EL using a relational database system. In Proc. Int. Joint
Conf. on Artificial Intelligence (IJCAI), pages 2070–2075, 2009.

10. Mariano Rodriguez-Muro and Diego Calvanese. High performance query answer-
ing over DL-Lite ontologies. In Gerhard Brewka, Thomas Eiter, and Sheila A.
McIlraith, editors, KR. AAAI Press, 2012.

11. Riccardo Rosati and Alessandro Almatelli. Improving query answering over DL-
Lite ontologies. In Fangzhen Lin, Ulrike Sattler, and Miroslaw Truszczynski, edi-
tors, KR. AAAI Press, 2010.

12. David Toman and Grant E. Weddell. On keys and functional dependencies as
first-class citizens in description logics. J. Autom. Reasoning, 40(2-3):117–132,
2008.

13. David Toman and Grant E. Weddell. Applications and extensions of PTIME
description logics with functional constraints. In Proc. Int. Joint Conf. on Artificial
Intelligence (IJCAI), pages 948–954, 2009.

14. David Toman and Grant E. Weddell. Conjunctive Query Answering in CFDnc:
A PTIME Description Logic with Functional Constraints and Disjointness. In
Australasian Conference on Artificial Intelligence, pages 350–361, 2013.

15. David Toman and Grant E. Weddell. Pushing the CFDnc Envelope. Technical
report, Cheriton School of Computer Science, University of Waterloo, April 2014.
Available at http://cs.uwaterloo.ca/ david/papers-dl14a.pdf.

