
On Ordering and Indexing Metadata for the
Semantic Web

Jeffrey Pound†, Lubomir Stanchev¶, David Toman†,‡, and Grant E. Weddell†

†David R. Cheriton School of Computer Science, University of Waterloo, Canada
¶ Computer Science Department, Indiana University - Purdue University, U.S.A.

‡ Faculty of Computer Science, Free University of Bozen-Bolzano, Italy

1 Introduction

RDF underlies a vision of the Semantic Web in which metadata, consisting of a
set of subject/property/object triples, can be associated with web resources de-
noted by Universal Resource Identifiers (URIs) [1]. To support reasoning, there
has been a progression of further standards for inferring the existence of addi-
tional triples. This is accomplished by adding interpretations for particular RDF
properties.

In terms of established reasoning technology, the current best practices for
these standards are the description logic (DL) based fragments of the OWL
web ontology language, called OWL Lite and OWL DL [2]. Building on RDF
Schema, they enable a collection of triples to encode more general concepts. This
metadata can then be modeled as a set of concept descriptions in a description
logic.

In previous work, we introduced the notion of an ordering description, a
language for specifying strict partial orders over the space of possible concept
descriptions in a given DL dialect [3]. These ordering descriptions were then
used to build description indices, tree-based indices over databases consisting
of sets of descriptions, with performance guarantees on query evaluation under
particular restrictions. In this paper, we extend our work on ordering descriptions
and description indices.

The main contributions of this paper are as follows:

1. We extend the definition of ordering descriptions with three new ordering
constructors. One providing an endogenous nested indexing capability, a sec-
ond as a weaker version of our earlier partition ordering, and the last appeal-
ing directly to subsumption relationships. We then discuss these adaptations
in the context of the functionality they enable for indexing different classes
of concept descriptions;

2. We validate the applicability of our ordering language as a basis for index-
ing concept descriptions with an experimental evaluation using a prototype
implementation of description indices.

The remainder of this paper is organized as follows. The following subsection
provides the definitions used in our discussion. Section 2 then presents our revised

definition of ordering descriptions, along with an analysis of their properties
under various assumptions of the descriptions being indexed. In Section 3 we
report on our experimental results, and Section 4 concludes with a summary
and discussion.

1.1 Definitions

We begin with a formal definition of ALCQ(D), the description logic dialect used
in this paper. It should be noted however, that this choice is simply to satisfy
our illustrative purposes, and our results are applicable to any description logic
dialect with a total linearly ordered domain.

Definition 1 (Description Logic ALCQ(D)).
Let {C,C1, . . .}, {R,S, . . .}, {f, g, . . .} and {k, k1, . . .} denote sets of primitive
concept names, roles, concrete features, and constants respectively. A concept
description is then defined by the grammar:

D,E ::= f < g | f < k | C | D u E | ¬D | ∃R.D | (≥ n R D).

An inclusion dependency is an expression of the form D v E. A terminology T
is a finite set of inclusion dependencies.

An interpretation I is a 3-tuple 〈∆I , ∆C , ·I〉 where ∆I is an arbitrary ab-
stract domain, ∆C a linearly ordered concrete domain, and ·I an interpretation
function that maps each concrete feature f to a total function fI : ∆I → ∆C ,
each role R to a relation RI ⊆ ∆I × ∆I , each primitive concept C to a set
CI ⊆ ∆I , the < symbol to the binary relation for the linear order on ∆C , and
k to a constant in ∆C . The interpretation function is extended to arbitrary con-
cepts in the standard way.

An interpretation I satisfies an inclusion dependency D v E if (D)I ⊆ (E)I .
T |= D v E if (D)I ⊆ (E)I for all interpretations I that satisfy all inclusion
dependencies in T .

For the remainder of the paper, we also use standard abbreviations, e.g., D tE
for ¬(¬D u ¬E), as well as the derived comparisons ≤, >,≥, and = on the
concrete domain.

2 Ordering Descriptions

¿From our experiences in considering description indices for some specific prob-
lem domains, we have found the need for nested indexing. Nested indexing is an
ordering of objects in an abstract domain based on their relationships to other
objects. For example, one may want to index an entity set based on a role or ab-
stract feature chain relation to another entity with particular properties. Also, it
may be beneficial to define orderings based strictly on hierarchical relationships.
This prompts the consideration of some extensions to our ordering language, and

the definition of a weaker version of our partition ordering to allow some basic
exogenous nested indexing by partitioning on existential role descriptions.

Below we extend our previous definition of an ordering description, and also
relax the definition of the partition ordering as seen in [3]. We then reproduce
the definition of a description tree and description index for reference during
the discussion. We begin with a comment on notation for obtaining a copy of
a concept description with unique primitive concepts, features, and role names.
This aids in the definition of the ordering semantics.

Notation 1 We write D∗ to denote a description obtained from D by replacing
all features f by f∗, roles R by R∗, and concepts C by C∗, and extend this no-
tation in the obvious way to apply to inclusion dependencies and terminologies.

Definition 2 (Ordering Description).
Let D be an ALCQ(D) concept description, f a concrete feature, and R a role.
An ordering description is defined by the grammar:

Od ::= Un | f : Od | D(Od,Od) | D(Od,Od] | R.f : Od | v

An instance of the first constructor is called the null ordering. The second
constructor is called a feature value ordering. The third and forth constructors
are called a strong and weak partition ordering respectively. The fifth constructor
is called a role nested ordering. The final constructor is called a subsumption
ordering.

For a given terminology T and concept descriptions D and E, D is ordered
before E by ordering description Od with respect to T , denoted (Od)T (D,E),
if T 2 D v ⊥, T 2 E v ⊥, and at least one of the following conditions holds:

– Od = “f : Od1” and (T ∪ T ∗) |= (D u E∗) v (f < f∗),
– Od = “f : Od1” and (Od1)T (D,E) and (T ∪ T ∗) |= (D u E∗) v (f = f∗),
– Od = “D1(Od1, Od2)” and T |= D v D1 and T |= E v ¬D1,
– Od = “D1(Od1, Od2)”, (Od1)T (D,E) and T |= (D t E) v D1,
– Od = “D1(Od1, Od2)”, (Od2)T (D,E), T |= D v ¬D1, and T |= E v ¬D1,
– Od = “D1(Od1, Od2]” and T |= D v D1 and T 2 E v D1,
– Od = “D1(Od1, Od2]”, (Od1)T (D,E) and T |= (D t E) v D1,
– Od = “D1(Od1, Od2]”, (Od2)T (D,E), T 2 D v D1, and T 2 E v D1,
– Od = “R.f : Od1” and there exists k such that T |= D v ∃R.(f ≤ k) u
∀R.(f ≤ k) and T |= E v ∀R.(f > k),

– Od = “R.f : Od1”, (Od1)T (D,E), and there exists k such that T |= D v
∀R.(f = k) and T |= E v ∀R.(f = k),

– Od = “ v ”, T |= D v E and T 2 E v D.

Two descriptions D and E are said to be incomparable with respect to an or-
dering Od and terminology T if ¬(Od)T (D,E) and ¬(Od)T (E,D), or simply
incomparable when Od and T are clear from context.

Definition 3 (Description Tree). Let D denote an arbitrary concept descrip-
tion in ALCQ(D). A description tree is an ordered rooted binary tree conforming
to the grammar:

Tr , L,R ::= 〈〉 | 〈D,L,R〉.

An instance of the first production denotes an empty tree, while an instance of
the second production denotes a node at the root of a tree with left subtree L,
right subtree R, and labeled by D. We write 〈D,L,R〉 ∈ Tr if 〈D,L,R〉 is a
node occurring in Tr, and call any tree of the form 〈D, 〈〉, 〈〉〉 a leaf node.

A description tree Tr is well formed for ordering description Od with respect
to terminology T if, for all 〈D,L,R〉 ∈ Tr,

– T 2 D v ⊥,
– ¬(Od)T (D,D′) for all 〈D′, L′, R′〉 ∈ L, and
– ¬(Od)T (D′, D) for all 〈D′, L′, R′〉 ∈ R.

When Od and T are clear from context, we say simply that Tr is well formed.

For a given ordering description Od, the conditions for Tr to be well formed
provide the invariants for insertions of new nodes. For example, when inserting
a new node for description D′ in description tree 〈D,L,R〉, a new leaf node
〈D′, 〈〉, 〈〉〉 must be added in subtree L if (Od)T (D′, D).

Definition 4 (Description Index). Let T be a terminology, Od an ordering
description, and Tr a well formed description tree with respect to Od and T . A
description index is a 3-tuple 〈Tr , Od, T 〉.

We consider queries Q of the form 〈DQ, OdQ〉, where DQ is a concept in
ALCQ(D) and OdQ is an ordering description. A user presumes that query Q
is evaluated with respect to an index 〈Tr , Od, T 〉 by first finding all concepts Ei

labelling nodes in Tr for which T |= Ei v DQ and then sorting the concepts Ei

according to OdQ.

2.1 Properties

The original presentation of description indices in [3] defined properties of the
indices (and the associated ordering descriptions) that collectively allowed ef-
ficient search and order optimization to be performed. To provide a thorough
analysis of the proposed ordering descriptions, and the behaviour of the ordering
descriptions in the presence of different classes of data descriptions, we first sep-
arate the definitions of the properties to identify the functionality they enable.
This creates a framework for general discussion of orderings and their properties.

To begin, the following property establishes that an ordering description is
irreflexive, asymmetric, and transitive. An ordering description satisfying this
property would therefore define a strict partial order over concept descriptions.

Property 1 (Partial Order) Given a terminology T , ordering description Od,
and concept descriptions D1, D2, and D3:

1. ¬(Od)T (D1, D1);
2. If (Od)T (D1, D2), then ¬(Od)T (D2, D1);
3. If (Od)T (D1, D2) and (Od)T (D2, D3); then (Od)T (D1, D3).

Counting The following Property does not have a direct impact on the perfor-
mance of description indices, but can be a useful property if one wishes to extend
the query capabilities to include a count aggregate (that is, a count of objects
denoted by descriptions in a query result). The following property guarantees
disjointness between orderable descriptions.

Property 2 (Disjointness) Given a terminology T , ordering description Od,
and concept descriptions D1andD2:

If (Od)T (D1, D2), then T |= (D1 uD2) v ⊥.

Pruning The following two properties describe an important feature of ordering
descriptions that enables pruning in description indices during search. Note that
not all ordering constructors satisfy both of these properties (see Section 2.2).

Property 3 (Left Pruning) Given a terminology T , ordering description Od,
and concept descriptions D1, D2, and D3:

If (Od)T (D1, D2), T |= D3 v D2 and T 2 D3 v ⊥, then (Od)T (D1, D3).

Property 4 (Right Pruning) Given a terminology T , ordering description
Od, and concept descriptions D1, D2, and D3:

If (Od)T (D1, D2), T |= D3 v D1 and T 2 D3 v ⊥, then (Od)T (D3, D2).

Descriptive Sufficiency In some cases, in order to guarantee that rotations
and order optimization can be performed, we need to introduce a limitation
on the types of descriptions that are being indexed. This limitation ensures,
for example, that descriptions supply values for indexed concrete features, and
are partitionable by the partition orderings. We call this property descriptive
sufficiency. In Section 2.2 we will consider the properties of ordering descriptions
used to index data in the absence and presence of descriptive sufficiency.

Definition 5 (Descriptive Sufficiency). A concept description D is suffi-
ciently descriptive for ordering description Od with respect to terminology T ,
written SDT (D,Od), if at least one of the following conditions hold:

– Od = “Un”,
– Od = “f : Od1”, SDT (D,Od1), and T |= D v (f = k),
– Od = “R.f : Od1”, SDT (D,Od1), and T |= D v ∀R.(f = k),
– Od = “D′(Od1, Od2)”, SDT (D,Od1), and T |= D v D′,
– Od = “D′(Od1, Od2)”, SDT (D,Od2), and T |= D v ¬D′,

for some k ∈ ∆C . When Od and T are clear from context, we say simply that
D is sufficiently descriptive.

Rotations In order to guarantee efficient search capabilities, description indices
need to be able to have rotations performed to ensure a balanced tree is main-
tained after insertions. The following property establishes that both left and
right tree rotations can be performed on description indices without violating
the well formedness property of the tree.

Property 5 (Tree Rotation) Given an ordering description Od, terminology
T , and concept descriptions D1 and D2, for any description trees Tr1, Tr2, and
Tr3 that are well formed, 〈D1, 〈D2,Tr1,Tr2〉,Tr3〉 is well formed if and only if
〈D2,Tr1, 〈D1,Tr2,Tr3〉〉 is well formed.

Order Optimization The last property of description indices that we are in-
terested in, order optimization, is the ability to avoid sorting a query result when
the order in which the indexed descriptions are retrieved is already consistent
with the order specified by the query. This property is given by the refinement
relationship. A sound procedure for computing refinement can be found in [3].

Definition 6 (Order Refinement). Given a terminology T , concept descrip-
tion D, and pair of ordering descriptions Od1 and Od2, Od1 refines Od2 with
respect to T and D, written Od1 ≺T ,D Od2, if, for all concept descriptions E1

and E2 such that T |= (E1 t E2) v D:

(Od2)T (E1, E2) implies (Od1)T (E1, E2).

Od1 is equivalent to Od2 with respect to T and D, written Od1 ≈T ,D Od2,
when Od1 ≺T ,D Od2 and Od2 ≺T ,D Od1. In all cases, D is called a parameter
description.

Property 6 (Order Optimization) Given a terminology T , description in-
dex 〈Tr,OdI , T 〉, and query 〈D,OdQ〉 such that OdI ≺T ,D OdQ: (OdQ)T (E1, E2)
for any descriptions E1 and E2 occurring in Tr for which E1 precedes E2 ac-
cording to an in-order traversal of Tr.

2.2 Analysis of Description Indices

We begin by making a few observations about the properties of ordering de-
scriptions as they relate to description indices. The first observation is that all
ordering descriptions define partial orders over the space of possible concept
descriptions.

Observation Given a terminology T , all possible ordering descriptions Od sat-
isfy Property 1 with respect to T .

The second observation extends pruning, Property 3 and Property 4, to de-
scription indices by the nature of well formed trees. Because description indices
have well formed trees by definition, this observation holds for any description

In Absence of Descriptive Sufficiency

Disjoint Prune Left Prune Right Rotate Order Opt.

Un − − − X X
f : Od X X X × ×
D(Od1, Od2) X X X × ×
D(Od1, Od2] × × X X X
R.f : Od X × × × ×
v × × X X X

With Descriptive Sufficiency

Disjoint Prune Left Prune Right Rotate Order Opt.

Un − − − X X
f : Od X X X X X
D(Od1, Od2) X X X X X
R.f : Od X X X X X

Table 1. Properties of Ordering Descriptions

index with an ordering description satisfying Property 3 and Property 4 for part
one and two of the observation respectively.

Observation For any description index 〈Tr , Od, T 〉, node 〈D,L,R〉 ∈ Tr , and
concept description E:

1. if Od satisfies Property 3 then (Od)T (D,E) implies T 6|= D′ v E for any
node 〈D′, L′, R′〉 ∈ L, and

2. if Od satisfies Property 4 then (Od)T (E,D) implies T 6|= D′ v E for any
node 〈D′, L′, R′〉 ∈ R.

The properties of ordering descriptions are summarized in Table 1. The table
illustrates the properties of each ordering constructor in the absence and presence
of descriptive sufficiency. An arbitrary ordering description thus has only the
properties that are shared by every construct used in the ordering description. As
illustrated in the tables, it is not always the case that pruning can be performed
for both left and right subtrees, meaning logarithmic tree traversal cannot be
guaranteed in all cases. Similarly, not enforcing descriptive sufficiency allows
us to index a wider class of data descriptions, but in many cases at the cost
of rotations and order optimization. Thus, we cannot ensure a balanced tree
and may potentially have to sort a result to satisfy the query specification.
By enforcing descriptive sufficiency we lose the weak partition ordering and
subsumption ordering constructors, but gain the full set of properties for all
other ordering constructors. Note that the “−” symbol denotes a non-applicable
field for the “Un” operator since it is by definition, always false.

XQuery

for $item in /catalog/item

where ($item/author/mailing address/name of state ="New York"

or $item/publisher/mailing address/name of state="New York")

and $item/date of release gt "1995-01-01"

and $item/date of release lt "2005-01-01"

return $item

Concept Description

ITEM u (date of release > 1995-01-01) u (date of release < 2005-01-01) u
(∃hasAuthor.(∃hasMailingAddress.(name of state = "New York"))
t ∃hasPublisher.(∃hasMailingAddress.(name of state = "New York")))

Fig. 1. Example XQuery and Associated Concept Description

3 Experimental Evaluation

In order to demonstrate the feasibility and potential benefit of our approach,
we built a prototype implementation of description indices. The implementation
uses off-the-shelf open-source tools along with a small Java core to link them.
We use the FaCT++ description logic reasoner [4] to perform the subsumption
testing, the DIG XML interface [5] for concept description representation, and
the Xerces XML library [6] for data parsing. Communication with FaCT++ is
via a self-hosted HTTP connection.

We used XBench [7], an XML benchmark as the basis for our experiments.
The goal of the evaluation was to compare the performance of our tree-based de-
scription indices to a traditional tree-based indexing method. We use the X-Hive
XML database [8] as a representative XML engine with indexing capabilities,
and also include Qexo [9] and Galax [10], two popular streaming XML query
processors (no indexing) for reference.

We use a mapping from XML entities to ALCQ(D) concept descriptions
that is a simple conversion preserving the semantics of the raw data and XML
structure. Nested entities are modeled with role relations, and data nodes an
attributes are modeled with concrete features. Similarly, we map the XQueries
from the benchmark into a description and ordering pair. Because of the simplic-
ity of this model, we can only support queries which are expressible as a concept
description, and thus cannot handle constructive queries like joins. Also, our
model does not have the capacity to express projections, so the results from our
system are always the top level entities being indexed. Figure 1 shows a sample
XQuery (labeled as Q21 in our experiments) and the concept description trans-
lation (note that long XML paths are simplified for illustrative purposes). The
query finds all item entities released during a certain time period that have ei-
ther an author or publisher from New York. The XML data itself is translated to
concept descriptions in an analogous way, mapping all data items and structural
components to concrete features and roles respectively.

Our System X-Hive Qexo Galax
Query Time Query Time Total Time Adj. Time Total Time Adj. Time

Q1 7 4 2652 1680 4373 3401

Q2 1164 1006 2009 1037 3740 2768

Q5 8 9 1664 692 3591 2619

Q6 22 915 2012 1040 3907 2935

Q8 3 422 1668 696 3580 2608

Q9 2 4 1664 692 3603 2631

Q12 2 69 1672 700 3550 2578

Q14 7 701 1720 748 3612 2640

Q21 439 9332 3910 2938 9367 8395

Q22 121 522 3160 2188 N/A N/A

Table 2. Query processing run times (msec).

3.1 Experimental Setup

The experiments were run on a Linux based 1.66 GHz dual-core system, with
1 GB of main memory. We used the data-centric single document benchmark
(DC/SD) from the XBench suite [7], which contains a synthetic XML document
with publication data.

We consider data generated in three sizes, the first with 2,500 items (approx-
imately 10MB), the second with 13,750 items (approximately 55MB), and the
last with 25,000 items (approximately 100MB). We use eight queries from the
XBench DC/SD workload that are expressible as concept descriptions and two
additional queries that illustrate the advantage of our proposed enhancements.

The first query, labeled as query Q21, is supported by it’s associated index,
and takes advantage of the partition ordering of ordering descriptions. The sec-
ond query, labeled as query Q22, is not supported by an index, but is the only
query containing a disjunction to illustrate the utility of using the DL reasoner.

Both our system and the X-Hive system [8] preprocess and index the XML
data before query processing. We manually create the appropriate indices in
both systems to maximize the performance of each query. This entails creating
the best set of XML indices (determined by experimentation) for X-Hive, and
the appropriate ordering description for a description index in our system. We
consider the fragment of our ordering language that retains the full set of in-
dexing properties as shown in Table 1. The Qexo [9] and Galax [10] systems,
however, are file streaming XQuery engines. As such, they do not have a prepro-
cessing and indexing phase. Because file loading is done during query processing
in these systems, we provide a total time and an adjusted time. The adjusted
time is calculated by subtracting a constant factor (determined by experimen-
tation) to account for the average file loading time and depends on the size of
the file.

Number of Items 2500 13750 25000

Our System (Q1) 7 11 120

X-Hive (Q1) 4 10 330

Qexo (Q1) 1680 4348 6357

Galax (Q1) 3401 34712 97095

Our System (Q6) 22 117 198

X-Hive (Q6) 915 3838 7001

Qexo (Q6) 1040 4111 5597

Galax (Q6) 2935 33126 94976

Table 3. Comparison times for all three data sets (msec).

3.2 Results

The experimental results for the 2,500 item data set, shown in Table 2, demon-
strate that our implementation is comparable with the other three systems.
(Note that the numbers for the first eight queries correspond to the numbering
from the XBench benchmark.) The table shows query processing times for our
system and X-Hive, and total run time and adjusted times for Qexo and Galax
as previously described. We outperform the other systems by a significant mar-
gin on queries 6, 8, and 14 of the XBench benchmark because we are able to
exploit description indices for the queries. Conversely, X-Hive, the only other
system that creates indices, does not support index structures that are expres-
sive enough to efficiently answer these queries. Our system suffers on query 2
because of the HTTP and FaCT++ overhead. In particular, this query requires
a complete scan of the data set resulting in a large amount of data transfer for
subsumption testing.

Our supplied query 21 forces a partitioning of the data, followed by two
independent sorts. Because this construct can be captured by our ordering de-
scriptions, we can create an index that supports the query and avoid all of the
required tasks by simply retrieving the data in the desired order. Conversely,
The XQuery engines are forced to perform the partition and sort operations,
causing a significant discrepancy in performance.

Query 22 is the only query that contains a disjunction, which we suspect is
harder for XQuery processors to handle. We attribute the good performance of
our system for this query to the efficiency of FaCT++ in computing if a concept
description qualifies as a query result.

For the remainder of the queries, our description indices are similar to the in-
dices created by X-Hive, and consequently have comparable performance. These
situations correspond to indices with simple feature value orderings. The differ-
ence is that we use FaCT++ to check if candidate results qualify, while X-Hive
traverses the XML to find all relevant values needed to evaluate the predicate.

Table 3 shows the result of running Queries 1 and 6 on all three data sets.
Query 1 is taken as representative query in which both our system and the X-Hive
system can use an index. Query 6 on the other hand, represents a situation in

which our system can exploit a description index, while X-Hive cannot. Because
our system and X-Hive use indices for query 1, and the other two systems do not,
our system and X-Hive scale much better than the other two systems. Query 6,
the case in which ours is the only system that is able to use an index, shows that
our system still scales well with the partitioning ordering description, while the
other systems are forced to perform a linear scan of the data. This is a promising
result, since it shows that the potentially complex subsumption calls to FaCT++
during index traversal do not have a substantial impact on performance.

4 Summary and Discussion

We have explored the properties of ordering descriptions, including some new
ordering constructors, in different classes of data descriptions. Our results show
that one can impose varying levels of restrictions on the descriptions being in-
dexed in order to achieve the desired index properties. This allows flexibility in
applying description indices to particular problems.

Our experimental results suggest that enabling potentially complex subsump-
tion tests during query evaluation has a tolerable overhead. While we acknowl-
edge that the XML example is a rather simplistic data set, lacking the worst case
scenarios of DL reasoning, we have found that other DL expressible data sets
with large terminologies, such as YAGO [11], share similar properties with our
XML example (i.e. entities described by mostly conjunctive descriptions). Thus,
we feel our indexing method can play a pivotal role in enhancing technologies
such as ABox querying and semantic search.

References

1. Resource Description Framework (RDF): http://www.w3.org/RDF/
2. Web Ontology Language (OWL): http://www.w3.org/2004/OWL/
3. Pound, J., Stanchev, L., Toman, D., Weddell, G.: On Ordering Descriptions in

a Description Logic. Proc. 20th Int. Workshop on Description Logics 250 (2007)
123–134

4. Dmitry Tsarkov and Ian Horrocks: FaCT++ Description Logic Reasoner: System
Description . In: 3rd International Joint Conference on Automated Reasoning.
(2006)

5. Bechhofer, S., Moller, R., Crowther, P.: The DIG Description Logic Interface. In:
In Proc. of International Workshop on Description Logics (DL2003). (2003)

6. Xerces XML Parser: http://xerces.apache.org/xerces-j/
7. B. B. Yao, M. T. Ozsu, and N. Khandelwal: XBench Benchmark and Performance

Testing of XML DBMSs. In: IEEE International Conference on Data Engineering.
(2004) 621–632

8. X-Hive/DB: http://www.x-hive.com
9. Qexo: http://www.gnu.org/software/qexo/

10. Galax: http://www.galaxquery.org/
11. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A Core of Semantic Knowledge

- Unifying WordNet and Wikipedia. In Williamson, C.L., Zurko, M.E., Patel-
Schneider, Peter F. Shenoy, P.J., eds.: 16th International World Wide Web Con-
ference (WWW 2007), Banff, Canada, ACM (2007) 697–706

