Decidable Reasoning over Timestamped Conceptual Models

<u>Alessandro Artale</u> and David Toman

Faculty of Computer Science – Free University of Bozen-Bolzano

DL'08 — 13.May.2008 — Dresden

Aims of this Work

- Investigation of the Computational Complexity of reasoning over Temporal Ontologies.
- Languages considered: Family of Extended-ER/UML models with entities, relationships, attributes as main constructs.
- Kind of constraints considered:
 - isa between both entities and relationships;
 - disjointness and covering between both entities and relationships;
 - cardinality constraints for participation of entities in relationships;
 - *timestamping* constraints for entities, relationships and attributes.

Reasoning over Ontologies

Reasoning over Ontologies guarantees fundamental Quality principles of an Ontology.

We are interested in:

- 1. Schema Consistency: Checking the consistency of the Ontology
- 2. Entity/Relationship Consistency: Checking the consistency of single classes/relationships in the Ontology
- 3. Entity Subsumption: Checking whether new ISA constraints hold in the Ontology

Outline of the Talk

- \mathcal{ER}_{VT} : A Temporal Data Model
- The logic $S5_{\mathcal{ALCQI}}$
- Expressing Timestamping in \mathcal{ER}_{VT} via $S5_{\mathcal{ALCQI}}$
- Reasoning with Timestamping: Complexity results
- Ongoing Work

\mathcal{ER}_{VT} : The Proposed Temporal Conceptual Model

 \mathcal{ER}_{VT} is a temporal extended Entity-Relationship model able to capture Validity Time with the following features:

- It is equipped with both a linear and a graphical syntax;
- It has a model-theoretic semantics;
- It is a full-fledged conceptual model with constructors for representing:
 - Timestamping: \mathcal{ER}_{VT} distinguishes between temporal and atemporal modeling constructs.
 - Dynamic Constraints: Describe how an object can change its class membership over time. Such constraints are often called *transition* constraints and govern object migration.

Known Complexity Results for \mathcal{ER}_{VT}

- Undecidability. As far as \mathcal{ER}_{VT} uses both timestamping and dynamic constructs.
 - **Theorem.** Reasoning in \mathcal{ER}_{VT} using both timestamping and evolution constraints is undecidable. [Artale:AMAI-05]

Known Complexity Results for \mathcal{ER}_{VT}

- Undecidability. As far as \mathcal{ER}_{VT} uses both timestamping and dynamic constructs.
 - **Theorem.** Reasoning in \mathcal{ER}_{VT} using both timestamping and evolution constraints is undecidable. [Artale:AMAI-05]
- Decidability. As far as \mathcal{ER}_{VT} does not use temporal constructs over relationships and attributes.
 - Theorem. Reasoning in \mathcal{ER}_{VT} using both timestamping and evolution constraints but just over Classes is complete for *EXPTIME*. [AFWZ:JELIA-02]

Known Complexity Results for \mathcal{ER}_{VT}

- Undecidability. As far as \mathcal{ER}_{VT} uses both timestamping and dynamic constructs.
 - **Theorem.** Reasoning in \mathcal{ER}_{VT} using both timestamping and evolution constraints is undecidable. [Artale:AMAI-05]
- Decidability. As far as \mathcal{ER}_{VT} does not use temporal constructs over relationships and attributes.
 - Theorem. Reasoning in \mathcal{ER}_{VT} using both timestamping and evolution constraints but just over Classes is complete for *EXPTIME*. [AFWZ:JELIA-02]
- Open Problem. What if \mathcal{ER}_{VT} uses only timestamping over Classes, Relationships and Attribute—called \mathcal{ER}_{VT}^{-} ?
 - Wait for the next slides!

\mathcal{ER}_{VT}^{-} & Timestamping

- At the syntactical level, \mathcal{ER}_{VT}^{-} supports timestamping of entities, relationships, and attributes using two different marks:
 - S, for **Snapshot** constructs: Each of their instances has a global lifetime;
 - T, for **Temporary** constructs: Each of their instances has a limited lifetime.

The $S5_{ALCQI}$ Temporal Description Logic [ALT:IJCAI-07]

 $S_{\mathcal{ALCQI}}$ is obtained by combining modal S5 and the description logic \mathcal{ALCQI} .

$$egin{array}{rcl} C &
ightarrow \ op & phantom{\ } \$$

 $S5_{ALCQI}$ Knowledge Bases are collection of general concept inclusions (GCIs) $C \sqsubseteq D$.

The $S5_{\mathcal{ALCQI}}$ Semantics

An $S5_{\mathcal{ALCQI}}$ interpretation \mathfrak{I} is a pair (W, \mathcal{I}) with W a non-empty set of worlds and \mathcal{I} a function assigning to each $w \in W$ an \mathcal{ALCQI} -interpretation $\mathcal{I}(w) = (\Delta, \cdot^{\mathcal{I}, w})$:

- $CN^{\mathcal{I},w} \subseteq \Delta$
- ullet $(\neg C)^{\mathcal{I},w}:=\Delta\setminus C^{\mathcal{I},w}$
- $\bullet \ (C \sqcap D)^{\mathcal{I},w} := C^{\mathcal{I},w} \cap D^{\mathcal{I},w}$
- $\bullet \ (\geq \ n \ R \ C)^{\mathcal{I},w} := \{ x \in \Delta \mid \sharp \{ y \in \Delta \mid (x,y) \in R^{\mathcal{I},w} \text{and} y \in C^{\mathcal{I},w} \} \geq n \}$
- $\bullet \ (\diamond C)^{\mathcal{I},w} := \{ x \in \Delta \mid \exists v \in W : x \in C^{\mathcal{I},v} \}$
- $RN^{\mathcal{I},w} \subseteq \Delta \times \Delta$
- $\bullet \ (R^-)^{\mathcal{I},w} := \{(y,x) \in \Delta \times \Delta \mid (x,y) \in R^{\mathcal{I},w}\}$
- $(\Diamond R)^{\mathcal{I},w} := \{(x,y) \in \Delta \times \Delta \mid \exists v \in W : (x,y) \in R^{\mathcal{I},v}\}$
- $\bullet \ (\Box R)^{\mathcal{I},w} := \{(x,y) \in \Delta \times \Delta \mid \forall v \in W : (x,y) \in R^{\mathcal{I},v}\}$

Interpretation of $S5_{\mathcal{ALCQI}}$ Knowledge Bases

An interpretation \mathcal{I} is a model of an axiom $C_1 \sqsubseteq C_2$ iff $C_1^{\mathcal{I},w} \subseteq C_2^{\mathcal{I},w}$, for all $w \in W$.

- A knowledge base, Σ, is satisfiable if there is an interpretation that satisfies all the axioms in Σ (in symbols, *I* ⊨ Σ).
- A concept *C* is consistent w.r.t. Σ if there is an interpretation for Σ , \mathcal{I} , s.t. $C^{\mathcal{I},w} \neq \emptyset$, for some $w \in W$.
- A concepts C₁ subsumes a concept C₂ w.r.t. Σ if C₂^{I,w} ⊆ C₁^{I,w}, for every model of Σ, I, and every w ∈ W.

- $o \in C^{\mathcal{I},w} \to \forall v \in W.o \in C^{\mathcal{I},v}$ Employee \Box \Box Employee
- $r \in R^{\mathcal{I},w} \to \forall v \in W.r \in R^{\mathcal{I},v}$ Member \sqsubseteq (\Box Member) \sqcap (= 1 \Box org OrgUnit) \sqcap (= 1 \Box mbr Employee)
- $(o \in C^{\mathcal{I},w} \land \langle o, a_i \rangle \in A_i^{\mathcal{I},w}) \to \forall v \in W. \langle o, a_i \rangle \in A_i^{\mathcal{I},v}$ Project $\sqsubseteq \exists \Box \mathsf{ProjectCode.T}$

- $o \in C^{\mathcal{I},w} \to \exists v \neq w.o \notin C^{\mathcal{I},v}$ Manager $\sqsubseteq \Diamond \neg$ Manager
- $r \in R^{\mathcal{I},w} \to \exists v \neq w.r \notin R^{\mathcal{I},v}$ Works-for $\sqsubseteq (\diamond \neg Works-for) \sqcap (= 1 \square act \operatorname{Project}) \sqcap (= 1 \square emp Employee)$
- $(o \in C^{\mathcal{I},w} \land \langle o, a_i \rangle \in A_i^{\mathcal{I},w}) \to \exists v \neq w. \langle o, a_i \rangle \not\in A_i^{\mathcal{I},v}$ Employee $\sqsubseteq \forall \Box \text{Salary.} \bot$

Reasoning in \mathcal{ER}_{VT}^- is 2-EXPTIME-complete

Upper Bound: \mathcal{ER}_{VT} can be mapped into $S_{\mathcal{ALCQT}}$ which is 2-EXPTIME [ALT:IJCAI07].

Lower Bound: We reduce $S5_{ALC}^{glo}$ GCI's into \mathcal{ER}_{VT} .

- 1. $S5_{ALC}^{g_{10}}$ is a DL denoting the modal product $S5 \times ALC$, i.e., roles are global.
- 2. $S5_{ACC}^{glo}$ is 2-EXPTIME-hard [ALT:IJCAI07].

Reasoning in \mathcal{ER}^-_{VT} : Lower Bound We restrict to primitive inclusions, i.e. $A \sqsubseteq C$, with A primitive and C as:

 $C \to A \mid \neg A \mid A_1 \sqcup A_2 \mid \forall R.A \mid \exists R.A \mid \Box A \mid \diamond A$

Reasoning in \mathcal{ER}^-_{VT} : Lower Bound We restrict to primitive inclusions, i.e. $A \sqsubseteq C$, with A primitive and C as:

 $C \to A \mid \neg A \mid A_1 \sqcup A_2 \mid \forall R.A \mid \exists R.A \mid \Box A \mid \diamondsuit A$

1. Let Γ be an $S5_{ALC}^{g_{1\circ}}$ KB. A concept C is is satisfiable w.r.t. Γ iff the atomic concept A_C is satisfiable w.r.t. $\Gamma_1 \cup \{A_C \sqsubseteq A_{\Gamma} \sqcap C\}$, where: $\Gamma_1 = \{A_{\Gamma} \sqsubseteq \bigcap_{C_1 \sqsubseteq C_2 \in \Gamma} (\neg C_1 \sqcup C_2) \sqcap \bigcap_{P \in \mathbb{N}_P} (\forall P.A_{\Gamma} \sqcap \forall P^-.A_{\Gamma}), A_{\Gamma} \sqsubseteq \Box A_{\Gamma}\}$ **Reasoning in** \mathcal{ER}^-_{VT} : Lower Bound We restrict to primitive inclusions, i.e. $A \sqsubseteq C$, with A primitive and C as:

 $C \to A \mid \neg A \mid A_1 \sqcup A_2 \mid \forall R.A \mid \exists R.A \mid \Box A \mid \diamond A$

1. Let Γ be an $S5_{ACC}^{g_{10}}$ KB. A concept C is is satisfiable w.r.t. Γ iff the atomic concept A_C is satisfiable w.r.t. $\Gamma_1 \cup \{A_C \sqsubseteq A_\Gamma \sqcap C\}$, where: $\Gamma_1 = \{A_\Gamma \sqsubseteq \bigcap_{C_1 \sqsubseteq C_2 \in \Gamma} (\neg C_1 \sqcup C_2) \sqcap \bigcap_{P \in \mathsf{N}_{\mathsf{R}}} (\forall P.A_\Gamma \sqcap \forall P^-.A_\Gamma), A_\Gamma \sqsubseteq \Box A_\Gamma \}$

- 2. We convert Γ_1 to NNF and then we apply the following rules:
 - $A \sqsubseteq C_1 \sqcap C_2$ into $A \sqsubseteq C_1$ and $A \sqsubseteq C_2$;
 - $A \sqsubseteq C_1 \sqcup C_2$ into $A \sqsubseteq A_1 \sqcup A_2$ and $A_1 \sqsubseteq C_1$ and $A_2 \sqsubseteq C_2$;
 - $A \sqsubseteq \exists R.C$ into $A \sqsubseteq \exists R.A_1$ and $A_1 \sqsubseteq C$;
 - $A \sqsubseteq \forall R.C$ into $A \sqsubseteq \forall R.A_1$ and $A_1 \sqsubseteq C$;
 - $A \sqsubseteq \Box C$ into $A \sqsubseteq \Box A_1$ and $A_1 \sqsubseteq C$;
 - $A \sqsubseteq \diamond C$ into $A \sqsubseteq \diamond A_1$ and $A_1 \sqsubseteq C$.

Reasoning in \mathcal{ER}_{VT}^{-} : Lower Bound (Cont.)

Reasoning in \mathcal{ER}_{VT}^{-} : Lower Bound (Cont.)

Ongoing Work

- Re-gaining Dynamic Temporal Constraints by limiting the Conceptual Modelling constraints. Good candidates:
 - Avoid *isa* between relationships;
 - Avoid covering between entities.
- Study the S5 (and full temporal) extension of *DL-Lite* to be applied over temporal conceptual data models (preliminary results in [AKLWZ:Time-07]).

Ongoing Work

- Re-gaining Dynamic Temporal Constraints by limiting the Conceptual Modelling constraints. Good candidates:
 - Avoid *isa* between relationships;
 - Avoid covering between entities.
- Study the S5 (and full temporal) extension of *DL-Lite* to be applied over temporal conceptual data models (preliminary results in [AKLWZ:Time-07]).
- The DL $S5_{ALCQI}$ do not enjoy the finite model propoerty: What if we want to restrict the attention to finite models only?

Ongoing Work

- Re-gaining Dynamic Temporal Constraints by limiting the Conceptual Modelling constraints. Good candidates:
 - Avoid *isa* between relationships;
 - Avoid covering between entities.
- Study the S5 (and full temporal) extension of *DL-Lite* to be applied over temporal conceptual data models (preliminary results in [AKLWZ:Time-07]).
- The DL $S5_{ALCQI}$ do not enjoy the finite model propoerty: What if we want to restrict the attention to finite models only?
- Study the problem of query answering w.r.t a Temporal Ontology.

THANK YOU!