Decidable Reasoning over Timestamped Conceptual Models

Alessandro Artale and _David Toman_

Faculty of Computer Science – Free University of Bozen-Bolzano

Aims of this Work

• Investigation of the **Computational Complexity** of reasoning over Temporal Ontologies.

• Languages considered: Family of Extended-ER/UML models with **entities, relationships, attributes** as main constructs.

• Kind of constraints considered:
 – *isa* between both entities and relationships;
 – *disjointness* and *covering* between both entities and relationships;
 – *cardinality* constraints for participation of entities in relationships;
 – *timestamping* constraints for entities, relationships and attributes.
Reasoning over Ontologies

Reasoning over Ontologies guarantees fundamental Quality principles of an Ontology.

We are interested in:

1. **Schema Consistency**: Checking the consistency of the Ontology

2. **Entity/Relationship Consistency**: Checking the consistency of single classes/relationships in the Ontology

3. **Entity Subsumption**: Checking whether new ISA constraints hold in the Ontology
Outline of the Talk

• ER_{VT}: A Temporal Data Model
• The logic $S5_{ALCQT}$
• Expressing Timestamping in ER_{VT} via $S5_{ALCQT}$
• Reasoning with Timestamping: Complexity results
• Ongoing Work
\(\mathcal{ER}_{VT} \): The Proposed Temporal Conceptual Model

\(\mathcal{ER}_{VT} \) is a temporal extended Entity-Relationship model able to capture Validity Time with the following features:

- It is equipped with both a linear and a graphical syntax;
- It has a model-theoretic semantics;
- It is a full-fledged conceptual model with constructors for representing:
 - Timestamping: \(\mathcal{ER}_{VT} \) distinguishes between temporal and atemporal modeling constructs.
 - Dynamic Constraints: Describe how an object can change its class membership over time. Such constraints are often called transition constraints and govern object migration.
Known Complexity Results for \mathcal{ER}_{VT}

- **Undecidability.** As far as \mathcal{ER}_{VT} uses both timestamping and dynamic constructs.
 - **Theorem.** Reasoning in \mathcal{ER}_{VT} using both timestamping and evolution constraints is undecidable. [Artale:AMAI-05]
Known Complexity Results for \mathcal{ER}_{VT}

- **Undecidability.** As far as \mathcal{ER}_{VT} uses both timestamping and dynamic constructs.
 - **Theorem.** Reasoning in \mathcal{ER}_{VT} using both timestamping and evolution constraints is undecidable. [Artale:AMAI-05]

- **Decidability.** As far as \mathcal{ER}_{VT} does not use temporal constructs over relationships and attributes.
 - **Theorem.** Reasoning in \mathcal{ER}_{VT} using both timestamping and evolution constraints but just over Classes is complete for $EXPTIME$. [AFWZ:JELIA-02]
Known Complexity Results for \mathcal{ER}_{VT}

- **Undecidability.** As far as \mathcal{ER}_{VT} uses both timestamping and dynamic constructs.

 - **Theorem.** Reasoning in \mathcal{ER}_{VT} using both timestamping and evolution constraints is undecidable. [Artale:AMAI-05]

- **Decidability.** As far as \mathcal{ER}_{VT} does not use temporal constructs over relationships and attributes.

 - **Theorem.** Reasoning in \mathcal{ER}_{VT} using both timestamping and evolution constraints but just over Classes is complete for EXPTIME. [AFWZ:JELIA-02]

- **Open Problem.** What if \mathcal{ER}_{VT} uses only timestamping over Classes, Relationships and Attribute—called \mathcal{ER}^{-}_{VT}?

 - **Wait for the next slides!**
At the syntactical level, \mathcal{ER}_{VT} supports **timestamping** of entities, relationships, and attributes using two different marks:

- **S**, for **Snapshot** constructs: Each of their instances has a global lifetime;
- **T**, for **Temporary** constructs: Each of their instances has a limited lifetime.
The S_5^{ALCQI} Temporal Description Logic [ALT:IJCAI-07]

S_5^{ALCQI} is obtained by combining modal $S5$ and the description logic ALCQI.

$$C \rightarrow \top \mid \bot \mid CN \mid \neg C \mid C_1 \sqcap C_2 \mid (\geq n \ R \ C) \mid \lozenge C \mid \square C$$

$$R \rightarrow RN \mid R^- \mid \lozenge R \mid \square R$$

S_5^{ALCQI} Knowledge Bases are collection of general concept inclusions (GCIs) $C \sqsubseteq D$.
The $S5_{ALCQI}$ Semantics

An $S5_{ALCQI}$ interpretation I is a pair (W, I) with W a non-empty set of worlds and I a function assigning to each $w \in W$ an $ALCQI$-interpretation $I(w) = (\Delta, \cdot I, w)$:

- $CN_{I, w} \subseteq \Delta$
- $(\neg C)_{I, w} := \Delta \setminus C_{I, w}$
- $(C \cap D)_{I, w} := C_{I, w} \cap D_{I, w}$
- $(\geq n \mathcal{R} C)_{I, w} := \{x \in \Delta \mid \#\{y \in \Delta \mid (x, y) \in R_{I, w} \text{ and } y \in C_{I, w}\} \geq n\}$
- $(\Diamond C)_{I, w} := \{x \in \Delta \mid \exists v \in W : x \in C_{I, v}\}$
- $RN_{I, w} \subseteq \Delta \times \Delta$
- $(\mathcal{R}^\rightarrow)_{I, w} := \{(y, x) \in \Delta \times \Delta \mid (x, y) \in R_{I, w}\}$
- $(\Diamond\mathcal{R})_{I, w} := \{(x, y) \in \Delta \times \Delta \mid \exists v \in W : (x, y) \in R_{I, v}\}$
- $(\Box\mathcal{R})_{I, w} := \{(x, y) \in \Delta \times \Delta \mid \forall v \in W : (x, y) \in R_{I, v}\}$
Interpretation of $S5_{\mathcal{ALCQI}}$ Knowledge Bases

An interpretation \mathcal{I} is a model of an axiom $C_1 \sqsubseteq C_2$ iff $C_1^{\mathcal{I},w} \subseteq C_2^{\mathcal{I},w}$, for all $w \in \mathcal{W}$.

- A knowledge base, Σ, is satisfiable if there is an interpretation that satisfies all the axioms in Σ (in symbols, $\mathcal{I} \models \Sigma$).

- A concept C is consistent w.r.t. Σ if there is an interpretation for Σ, \mathcal{I}, s.t. $C^{\mathcal{I},w} \neq \emptyset$, for some $w \in \mathcal{W}$.

- A concepts C_1 subsumes a concept C_2 w.r.t. Σ if $C_2^{\mathcal{I},w} \subseteq C_1^{\mathcal{I},w}$, for every model of Σ, \mathcal{I}, and every $w \in \mathcal{W}$.
A Semantics for Timestamps

\[o \in C^{I,w} \rightarrow \forall v \in W. o \in C^{I,v} \]
Employee \sqsubseteq \square \text{Employee}

\[r \in R^{I,w} \rightarrow \forall v \in W. r \in R^{I,v} \]
Member \sqsubseteq (\square \text{Member}) \sqcap (\sqcap = 1 \square \text{org OrgUnit}) \sqcap (\sqcap = 1 \square \text{mbr Employee})

\[(o \in C^{I,w} \land \langle o, a_i \rangle \in A^{I,w}_i) \rightarrow \forall v \in W. \langle o, a_i \rangle \in A^{I,v}_i \]
Project \sqsubseteq \exists \square \text{ProjectCode.T}
A Semantics for Timestamps (Cont.)

- $o \in C^{\tau,w} \rightarrow \exists v \neq w. o \not\in C^{\tau,v}$
 Manager $\sqsubseteq \Diamond \neg Manager$

- $r \in R^{\tau,w} \rightarrow \exists v \neq w. r \not\in R^{\tau,v}$
 Works-for $\sqsubseteq (\Diamond \neg Works-for) \sqcap (= 1 \sqcap act Project) \sqcap (= 1 \sqcap emp Employee)$

- $(o \in C^{\tau,w} \land \langle o, a_i \rangle \in A^{\tau,w}_i) \rightarrow \exists v \neq w. \langle o, a_i \rangle \not\in A^{\tau,v}_i$
 Employee $\sqsubseteq \forall \Box Salary$
Reasoning in \mathcal{ER}^{-}_{VT} is 2-ExpTime-complete

Upper Bound: \mathcal{ER}_{VT} can be mapped into $S5_{\text{ALCQT}}$ which is 2-ExpTime [ALT:IJCAI07].

Lower Bound: We reduce $S5_{\text{ALCGo}}$ GCI’s into \mathcal{ER}_{VT}.

1. $S5_{\text{ALC}}$ is a DL denoting the modal product $S5 \times \mathcal{ALC}$, i.e., roles are global.
2. $S5_{\text{ALC}}^{\text{go}}$ is 2-ExpTime-hard [ALT:IJCAI07].
Reasoning in \mathcal{ER}_{VT}: Lower Bound

We restrict to primitive inclusions, i.e. $A \sqsubseteq C$, with A primitive and C as:

$$C \rightarrow A \mid \neg A \mid A_1 \sqcup A_2 \mid \forall R.A \mid \exists R.A \mid \square A \mid \diamond A$$
Reasoning in ERV^-_T: Lower Bound

We restrict to primitive inclusions, i.e. $A \subseteq C$, with A primitive and C as:

$$C \rightarrow A \mid \lnot A \mid A_1 \cup A_2 \mid \forall R. A \mid \exists R. A \mid \Box A \mid \Diamond A$$

1. Let Γ be an $S5^{glo}_{ALC} KB$. A concept C is is satisfiable w.r.t. Γ iff the atomic concept A_C is satisfiable w.r.t. $\Gamma_1 \cup \{A_C \subseteq A_\Gamma \cap C\}$, where:

$$\Gamma_1 = \{ A_\Gamma \subseteq \bigcap_{C_1 \subseteq C_2 \in \Gamma} (\lnot C_1 \cup C_2) \cap \bigcap_{P \in N_R} (\forall P. A_\Gamma \cap \forall P^-. A_\Gamma), A_\Gamma \subseteq \Box A_\Gamma \}$$
Reasoning in \mathcal{ER}_{VT}^{-}: Lower Bound

We restrict to primitive inclusions, i.e. $A \sqsubseteq C$ with A primitive and C as:

$$C \rightarrow A | \neg A | A_1 \sqcup A_2 | \forall R.A | \exists R.A | \Box A | \Diamond A$$

1. Let Γ be an $S5^{g1}_A^{\mathcal{ALC}}$ KB. A concept C is is satisfiable w.r.t. Γ iff the atomic concept A_C is satisfiable w.r.t. $\Gamma_1 \cup \{A_C \sqsubseteq A_\Gamma \cap C\}$, where:

$$\Gamma_1 = \{A_\Gamma \sqsubseteq \bigcap_{C_1 \subseteq C_2 \in \Gamma} (\neg C_1 \sqcup C_2) \cap \bigcap_{P \in \mathcal{N}_R} (\forall P.A_\Gamma \cap \forall P^{-}.A_\Gamma), A_\Gamma \sqsubseteq \Box A_\Gamma\}$$

2. We convert Γ_1 to NNF and then we apply the following rules:
 - $A \sqsubseteq C_1 \cap C_2$ into $A \sqsubseteq C_1$ and $A \sqsubseteq C_2$;
 - $A \sqsubseteq C_1 \sqcup C_2$ into $A \sqsubseteq A_1 \sqcup A_2$ and $A_1 \sqsubseteq C_1$ and $A_2 \sqsubseteq C_2$;
 - $A \sqsubseteq \exists R.C$ into $A \sqsubseteq \exists R.A_1$ and $A_1 \sqsubseteq C$;
 - $A \sqsubseteq \forall R.C$ into $A \sqsubseteq \forall R.A_1$ and $A_1 \sqsubseteq C$;
 - $A \sqsubseteq \Box C$ into $A \sqsubseteq \Box A_1$ and $A_1 \sqsubseteq C$;
 - $A \sqsubseteq \Diamond C$ into $A \sqsubseteq \Diamond A_1$ and $A_1 \sqsubseteq C$.
Reasoning in \mathcal{ER}_{VT}: Lower Bound (Cont.)

\[A \subseteq \neg B \]

\[A \subseteq B_1 \cup B_2 \]

\[A \subseteq \forall R.B \]

\[A \subseteq \exists R.B \]
Reasoning in \mathcal{ER}_{VT}: Lower Bound (Cont.)

$A \subseteq \Box B$

$A \subseteq \Diamond B$

$A \subseteq \Box B$

$A \subseteq \Diamond B$
Ongoing Work

- Re-gaining **Dynamic Temporal Constraints** by limiting the Conceptual Modelling constraints. Good candidates:
 - Avoid *isa* between relationships;
 - Avoid *covering* between entities.

- Study the S^5 (and full temporal) extension of *DL-Lite* to be applied over temporal conceptual data models (preliminary results in [AKLWZ:Time-07]).
Ongoing Work

- Re-gaining **Dynamic Temporal Constraints** by limiting the Conceptual Modelling constraints. Good candidates:
 - Avoid *isa* between relationships;
 - Avoid *covering* between entities.

- Study the \(S^5 \) (and full temporal) extension of *DL-Lite* to be applied over temporal conceptual data models (preliminary results in [AKLWZ:Time-07]).

- The DL \(S^5_{\text{ALCQI}} \) do not enjoy the finite model property: What if we want to restrict the attention to finite models only?
Ongoing Work

- Re-gaining Dynamic Temporal Constraints by limiting the Conceptual Modelling constraints. Good candidates:
 - Avoid isa between relationships;
 - Avoid $covering$ between entities.

- Study the S^5 (and full temporal) extension of DL-$Lite$ to be applied over temporal conceptual data models (preliminary results in [AKLWZ:Time-07]).

- The DL S^5_{ALCQI} do not enjoy the finite model property: What if we want to restrict the attention to finite models only?

- Study the problem of query answering w.r.t a Temporal Ontology.
THANK YOU!