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Abstract

Recent research in the area of temporal databases has proposed a number of query languages that vary

in their expressive power and the semantics they provide to users. These query languages represent a

spectrum of solutions to the tension between clean semantics and efficient evaluation. Often, these query

languages are implemented by translating temporal queries into standard relational queries. However, the

compiled queries are often quite cumbersome and expensive to execute even using state-of-the-art relational

products. This paper presents an optimization technique that produces more efficient translated SQL

queries by taking into account the properties of the encoding used for temporal attributes. For concrete-
ness, this translation technique is presented in the context of SQL/TP; however, these techniques are also

applicable to other temporal query languages.
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1. Introduction

The last decade of research in the area of temporal databases has led to the development of
several temporal query languages based on extensions of existing relational languages, in par-
ticular of SQL [10,12–15]. These languages are based on the idea of timestamping tuples: asso-
ciating them with a time instant at which the tuple is valid. These instants are usually drawn from
a linearly ordered universe that models time in the database. The semantics of queries are then
defined in terms of the individual time instants [4].
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Although query semantics is defined in terms of time instants, the space requirements of ex-
plicitly storing tuples with individual instants is prohibitive: tuples would need to be repeated for
each instant at which they are valid. Instead, practical languages rely on a compact encoding of
sets of time instants (often referred to as periods of validity), for example by using intervals,
bitemporal elements, or other interval-based encoding. The chosen encoding is then used as the
concrete domain for the representation of values of temporal attributes.

Example 1. A software development company maintains a time reporting database that records
the projects and tasks that each developer worked on throughout the year. The relation used for
this reporting has the following signature:

AssignmentðDay; Employee; Project; TaskÞ:
Fig. 1 contains an instance of this relation and a compact interval encoding of the instance.

Note that Ann was assigned to both tasks 1 and 2 of project ‘A’ during February.

Since the query semantics is defined over time instants, one way to evaluate queries would be to
use a standard relational query language over the expanded, point-based instance. This approach
would allow queries to be written and executed with the well-understood semantics of relational
theory. However, this approach would require prohibitive time and space to answer queries since
the number of tuples to be processed could depend on the values of attributes in the compact
encoding. For example, a single interval-encoded tuple can be expanded into an arbitrary number
of tuples by adjusting the interval endpoints.
Since it is not feasible to execute queries against the point-based instance, queries are ultimately

evaluated over a compact encoding, independently of the query language used. The query eval-
uation is often based on translating the original query to a standard relational query that can be

Fig. 1. Time-reporting example database.
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executed over the encoding [15] or [12–14] (for snapshot and sequenced fragments). Translation
allows queries to be written with a well-understood relational language, and this translation yields
queries that can be executed in time and space that is at most polynomial in the size of the
compact encoding, regardless of the particular values in intervals. However, such compilation-
based approaches often lead to very complex queries that are extremely difficult to optimize (given
current state-of-the-art query optimizers).
The main obstacle here is the fact that the SQL query optimizer has no knowledge of the

properties of the encoding used for temporal attributes and therefore cannot take advantage of
rewrites valid under the semantics of the original temporal queries. This shortcoming stands out
especially when following the strict duplicate-preserving semantics of SQL.
Duplicates are not permitted in pure relational theory, but SQL permits them in order to allow

counting, and also to allow applications to indicate that the query processor does not need to
spend the time removing duplicates if they do not affect the application. For these reasons, SQL
permits bags instead of sets, and defines the multiplicity of tuples expected from the various
operations.

Example 2. Let D be a temporal database which asserts that value a is in the relation R at all time
instants tP 0. Let D1 ¼ hR : fða; ½0; 10�Þ; ða; ½11;1�Þgi and D2 ¼ hR : fða; ½0;1�Þgi be two (se-
mantically equivalent) compact encodings of D. Now consider the query ‘‘give me all the values in
the first attribute of R’’. Under the set semantics, the answer for both D1 and D2 is a single tuple
containing the value ‘‘a’’. However, answering this query under a duplicate-preserving semantics
is much more complicated: we would have to produce a tuple a for every time instant associated
with a––this is clearly not possible as the result would have to be infinite.

For this reason, SQL/TP (cf. Section 2 or [15,16] for description of the language) prohibits
duplicate-preserving projections of temporal attributes.

Example 3. The commonly proposed solution for implementing the query from Example 2 that
simply projects out the interval attribute [12] (non-sequenced fragment) is also problematic: the
result of the above query differs for D1 and D2 in the number of duplicate ‘‘a’’s returned (2 tuples
for D1 and 1 for D2). It has been argued however, that no well-behaved temporal query should
distinguish between equivalent temporal databases. While one might argue that the difference
between the instances D1 and D2 can be resolved using coalescing [2], it has been shown that, in
general, coalescing-based approaches are bound to fail [5,15].

The query translator may recognize contexts within the translated query where the answer is
not sensitive to the duplicates generated by a subquery. Consider the following example.

Example 4. If we are interested in the time reporting for employee Ann, we can write the query Q
using the schema of Fig. 1 as follows:

SELECT DISTINCT Day, Project

FROM Assignment

WHERE Employee ¼ ‘Ann’

I.T. Bowman, D. Toman / Data & Knowledge Engineering 44 (2003) 143–164 145



We can use query Q to build up larger queries. If we are interested only in knowing the projects
that Ann worked on, we can write query Q2 as:

SELECT DISTINCT Project

FROM Q

If the query translator is aware that Q is being evaluated in a context where duplicates do
not affect the result (for example, because of the DISTINCT keyword in query Q2), then the
translator could simply project out the ‘Task’ attribute of Q. The intermediate results of Q would
then be:

This intermediate result contains duplicate tuples because of the overlapping time intervals; these
duplicates are then eliminated by the DISTINCT of query Q2. If we were also interested in the
days when ‘Ann’ or ‘Bob’ was assigned to each project, with duplicates for days they were both
assigned, we could write a query Q3 as:

(Q) UNION ALL (SELECT DISTINCT Day, Project

FROM Assignment

WHERE Employee¼‘Bob’)

In this case, we must eliminate the duplicate values resulting from the overlapping time in-
tervals. The relational projection used in the Q2 context is not sufficient in this case––we need a
more sophisticated technique (implemented by coalescing in some languages and as normalization
in SQL/TP) to eliminate duplicates within the range-encoded time intervals.
The intermediate results of Q as found by the SQL/TP normalization procedure is the fol-

lowing:

In this example, the context of evaluation of a query can be used to choose a more efficient
evaluation technique. In the Q2 context, Q can be evaluated efficiently using the relational du-
plicate-preserving project. In the Q3 context, we must use the more expensive normalization
procedure to eliminate duplicates in the range-encoded time intervals.

The above examples set up the scene for this paper: while we want to use a well behaved,
declarative language such as SQL/TP, we would also like to employ the simple (relational) pro-
jection that projects out the compact representation of sets of time instants (as in Example 3) and

Day Project

Jan 1–Feb 28 A

Feb 1–Mar 31 A

Day Project

Jan 1–Jan 31 A

Feb 1–Feb 28 A

Mar 1–Mar 31 A
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thus provides a vastly better performance (similarly to duplicate preserving vs. distinct projections
in SQL).
The problem of efficiently executing relational queries in the presence of duplicates has been

well investigated for non-temporal query languages, and formal descriptions of algebras for bag
queries have been developed which allow the issues of duplicates to be described precisely [7,9]. In
addition to formal descriptions, results on optimization allow moving group-by and duplicate
elimination operations to earlier or later contexts during execution plans in order to improve
execution cost [3,8,17]. These optimization results also allow duplicate elimination operations to
be avoided in cases where they do not affect the results. However, these prior results do not im-
mediately generalize to the problem of executing temporal queries containing duplicates, mainly
because SQL/TP supports infinite abstract databases (as shown in Example 2). In particular,
solutions based on counting and aggregation to avoid problems with duplicate values in SQL/92
queries fail for SQL/TP queries as the counts would need to be infinite (cf. Example 3). In ad-
dition, to recover answers required by SQL’s definition, an unfold [10] or expand [8] operation is
necessary to replicate a tuple based on an integer value stored in the database. This operation,
however, cannot be expressed in SQL itself.
The contributions of the paper are twofold:

(1) First, we identify contexts in a given query in which relaxed SQL/TP-to-SQL/92 translation
rules can be used. In addition we provide these additional compilation rules and show their
effect on several examples.

(2) Second, and more importantly, the proposed approach provides a general paradigm for op-
timizing temporal queries (and in general, queries over non-trivial encodings of data) that
leads beyond the optimizations possible in standard SQL.

We demonstrate the approach on SQL/TP, the query language proposed by Toman [15,16].
However, we would like to stress that the proposed approach is applicable to other proposals, e.g.,
to IXRM [10] and to the SQL/Temporal–TSQL2–ATSQL2 family [12–14].
The remainder of this paper is organized as follows. Section 2 provides an introduction to the

SQL/TP query language and the basic compilation technique used to translate SQL/TP queries
into SQL/92 (a more detailed description can be found in [15,16]). Section 3 describes the main
results of the paper: it defines the duplicate insensitive evaluation contexts. Section 4 shows pat-
terns where these contexts can simplify the SQL/TP-to-SQL translation. Section 4.2 outlines the
modified compilation procedure from SQL/TP to standard SQL. Finally, Section 5 presents our
conclusions and discusses several open questions and directions for future research.

2. SQL/TP primer

The SQL/TP language operates on a point-based view of time. Temporal attributes are drawn
from a discrete, countably infinite, linearly ordered set without endpoints. In addition to time, we
also use all of the standard data types provided by SQL such as strings, integers, floats, and so on.
Since we do not assign any a priori meaning to these data types, we refer to them as the un-
interpreted constants.
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The relationship between the time instants and the uninterpreted constants is captured in a
finite set of temporal relations in a database. We distinguish between the abstract temporal
database, which is defined in terms of time points, and the concrete temporal database, which is a
compact encoding of the abstract database.

Definition 5 (Abstract temporal database). A signature sigðRÞ of a relational symbol R is a tuple
ða1 : t1; . . . ; ak : tkÞ where ai are distinct attribute names, ti are the corresponding attribute types,
and k is the arity of R. Attributes of type time are temporal attributes, and the others are data
attributes.

A database schema is a finite set of relational symbols R1; . . . ;Rn paired with signatures
sigðR1Þ; . . . ; sigðRnÞ. A table R is a (possibly infinite) bag of tuples that match the signature of R
defined in the database schema. An abstract temporal database is a set of tables defined by a
database schema.
In general, we do not restrict the cardinality of temporal tables: we allow infinite tables as well.

However, we do require that the multiplicity of each distinct tuple is finite. Note, too, that there is
no restriction on the number of temporal attributes in a relation.
The abstract temporal database provides a natural data model for modeling and querying

temporal data based on timestamps. However, the storage cost for a naive representation of such
a database would be prohibitively large. In the case of infinite tables, it is not even possible to
store the abstract temporal database. To address this issue, SQL/TP uses a compact encoding of
sets of time instants. The choice of intervals as the compact encoding defines a class of concrete
temporal databases.

Definition 6 (Concrete temporal database). Let R be a relational symbol with signature E. A
concrete signature corresponding to E is defined as a tuple E of attributes that contains (1) a data
attribute A for every data attribute a in E, and (2) an interval attribute It for every temporal
attribute t in E. The attribute It holds the interval encoding of consecutive time instants.

1 A
concrete temporal database schema is a set of relational symbols and their concrete signatures
derived from their signatures in the abstract database schema. A concrete temporal database is a
set of finite relations defined by a concrete database schema.

To capture the relationship between the abstract and concrete temporal databases, we define a
semantic map operator s � t. The meaning of a single concrete tuple x ¼ ðIt; a1; . . . ; akÞ is a bag of
tuples sxt ¼ fðt; a1; . . . ; akÞjt 2 Itg. Similarly, for concrete tuples with multiple abstract temporal
attributes we define the result of the s � t operator to be the hypercube resulting from allowing
each temporal attribute ti to range within its interval bounds defined in the concrete tuple. This
map is extended to a concrete relation R by taking the additive union

U
t2R½½t�� of the meanings of

all concrete tuples t 2 R.

1 We assume the existence of an interval-valued data type in the target language; in the absence of such a data type we

use pairs of attributes to denote left and right endpoints of intervals instead.
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2.1. Syntax and semantics

The syntax of the SQL/TP query language is defined by the grammar in Fig. 2, which has been
slightly simplified to omit details such as the precedence of query constructs. Here, hcexpi de-
notes a column expression (an aggregate function), hsexpi denotes a scalar expression,
hconditioni represents an atomic condition, and hsetopi is a multi-set operation. The
meaning of QðDÞ is defined by induction as follows:

(1) RðDÞ denotes the relation stored in D named R.
(2) ðFROM Q1 r1; . . . ;Qk rkÞðDÞ ¼ Q1ðDÞ � � � � � QkðDÞ implements Cartesian product.
(3) ðQ WHERE uÞ ¼ ruQðDÞ is the restriction operation, where u is an atomic condition (free of

boolean connectives). For temporal attributes, the allowed conditions u are of the form
ai þ c6 aj, c6 ai, or ai6 c, where ai and aj are temporal attributes and c is a constant.

(4) ðSELECT e1 AS i1; . . . ; ek AS ik QÞðDÞ is the duplicate-preserving projection operation that
generates a bag of tuples with signature i1; . . . ; ik and one tuple ðe1ðxÞ; . . . ; ekðxÞÞ for each tuple
x 2 QðDÞ.

(5) ðQ GROUP BY a1; . . . ; ak AGG f 1ðb1Þ AS i1; . . . ; f nðbnÞ AS inÞðDÞ is the grouping operator,
where ai and bi are attribute names, and f i are aggregate functions. For temporal attributes,
the aggregate functions may be MIN, MAX, or COUNT. The aggregate functions may be omit-
ted, in which case the operation has the effect of removing duplicates (similarly to the SQL/92
SELECT DISTINCT).

(6) ðQ1hSETOPiQ2ÞðDÞ ¼ Q1ðDÞ op Q2ðDÞ are the set (bag) operators. The allowed operations op
are:
UNION (set union),
UNION ALL (additive union),
EXCEPT (set difference),
EXCEPT IN (‘‘not exists’’),
EXCEPT ALL (monus),
INTERSECT (set intersection),
INTERSECT IN (‘‘exists’’), and

Fig. 2. Syntax of SQL/TP.
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INTERSECT ALL (duplicate-preserving intersection).

Compared to the original definition of SQL/TP [15,16], we introduce two additional multi-set
operations EXCEPT IN and INTERSECT IN. These two operations are the counterparts of SQL’s
NOT EXISTS and EXISTS constructs in the WHERE clause and their meaning is defined as follows:

ðQ1 EXCEPT IN Q2ÞðDÞ ¼ fjx 2 Q1ðDÞ : x 62 Q2ðDÞjg
ðQ1 INTERSECT IN Q2ÞðDÞ ¼ fjx 2 Q1ðDÞ : x 2 Q2ðDÞjg

where fjx 2 � � � jg denotes the formation of a bag of x values. Note that from the expressive power
point of view, the new operations do not add new capabilities to SQL/TP (as both of them can be
simulated by EXCEPT ALL and INTERSECT ALL with the help of additional joins). However,
they allow us to extend the inference technique described in Section 3 to a larger class of queries.
Further, these operations allow us to express a query that is semantically equivalent to an SQL/TP
query but which has a more efficient implementation. The other set (bag) operators behave exactly
like their SQL/92 counterparts.
As in the standard SQL/TP, we guarantee closure of all of the above constructs by requiring

that the SELECT clause may not project out a temporal attribute encoded using intervals (as this
might violate the requirement of finite duplication; cf. Example 2) and the grouped-by and non-
grouped attributes in the GROUP BY––AGG clause are mutually independent whenever aggregate
functions COUNT and SUM are used. addition, to guarantee that the result of a query is repre-
sentable using the interval encoding, we require all attributes in the answer to a query to be
pairwise independent [15].
The particular restriction to bags with finite duplication only, and in turn the restriction placed

on the projection operation, is needed to guarantee meaningful semantics of bag operations.

Example 7. Consider the query

ðSELECT d FROM rÞ EXCEPT ALL ðSELECT d FROM r WHERE t > 10Þ
executed over a concrete relation rðd; tÞ ¼ fða; ½0;1�Þg. Clearly, if a duplicate-preserving pro-
jection of temporal attributes (in this case t) was permitted, the two subqueries would both return
countably many tuples (a), and thus the number of duplicate tuples in the result of the query
(according to the usual rules for cardinal arithmetic) is not defined.

2.2. Query compilation

Our final goal is to translate SQL/TP queries to standard SQL and then submit the result to an
off-the-shelf database engine. To achieve this goal we have to resolve two problems. First, while
the top-level attributes of an SQL/TP query have to be independent, this restriction may not hold
for subqueries of the original query. To translate (sub-)queries with dependent attributes we use
conditional queries of the form Qfug where Q is an SQL translation of the original query (without
any references to individual time instants) and u is a formula that captures the remaining re-
strictions on temporal attributes. The translation itself is then realized by a function comp that
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maps SQL/TP queries to sets of conditional queries by induction on their structure, while
maintaining the following invariant:

QðsDtÞ ¼ scompðQÞðDÞt¼M
]

Qjfujg2compðQÞ
rujsQ

jðDÞt

The SQL/TP language carefully models the set and the multi-set semantics of SQL––SQL/TP
queries are translated to generate exact multiplicities for all tuples as defined by standard SQL
semantics. The compilation procedure thus proceeds inductively on the structure of the original
query Q by replacing subqueries by ‘‘equivalent’’ subqueries according to the above invariant
[15,16].
The second problem that arises during translation is that every temporal attribute t in an

SQL/TP query that refers to individual time instants in T has to be replaced with an attribute It
ranging over intervals, the elements of the concrete temporal sort. The challenge here lies in the
definition of relational operators that preserve semantics over the interval-based encoding.

Example 8. Let D be the following encoding of a temporal database:

D ¼ hS1 : fða; ½0; 4�Þ; ðb; ½0; 1�Þ; ðb; ½7; 8�Þg; S2 : fða; ½4; 6�Þ; ðb; ½1; 7�Þgi
If we compute the expression S ¼ S1 EXCEPT S2, then one possible encoding is given by

S : fða; ½0; 3�Þ; ðb; ½0; 0�Þ; ðb; ½8; 8�Þg

Relational database engines do not have the ability to generate the desired results using existing
relational techniques. For this purpose, we introduce a novel normalization technique. The idea
behind the technique is quite simple: we normalize the encoded input relations in a manner which
allows relational operations to treat intervals as atomic values. In this way, the ordinary relational
operations give the desired results for the encoded relations. Fig. 3 shows a graphical depiction of
the normalization operation applied to implement set difference for Example 8. The formal def-
initions are as follows:

Fig. 3. Set difference using normalization.
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Definition 9 (Time compatibility). Let fQ1; . . . ;Qkg be a set of SQL/92 queries with compatible
signatures and X a subset of their attributes. We call the queries Q1; . . . ;Qk X-compatible if,
whenever there are two concrete tuples t1 2 QiðDÞ and t2 2 QjðDÞ, then

spX ðt1Þt \ spX ðt2Þt 6¼ ; ) pX ðt1Þ ¼ pX ðt2Þ
for all concrete temporal databases D and all 0 < i6 j6 k.

The definition of an X-compatible set of queries says that if the meanings of two concrete tuples
intersect then it is always the case that these two tuples coincide. This way we can guarantee the
intervals behave like points with respect to set/bag operations. If X contains all of the temporal
attributes of the queries, then we say that the queries are time compatible.
It is also easy to see that we can define a normalization operation that transforms an arbitrary

set of queries to an X-compatible set of s � t-equivalent queries. Moreover, this operation can be
defined using a first-order query: 2

Lemma 10. Let fQ1; . . . ;Qkg be a set of SQL/92 queries with compatible signatures and X a subset
of their attributes. Then there are first-order queries NX ½Qi;Q1; . . . ;Qk� such that

(1) sQiðDÞt ¼ sNX ½Qi;Q1; . . . ;Qk�ðDÞt for all concrete databases D,
(2) fNX ½Qi;Q1; . . . ;Qk� : 0 < i6 kg are X-compatible.

To define a time-compatible set of queries the above lemma is used for all temporal attributes in
the common signature.

2.3. Implementation of normalization operator

The normalization operation can be performed in Oðn log nÞ þOðmÞ where n is the combined
size of the inputs and m is the size of the output of the operator. For example, it can be imple-
mented by merging sorted inputs. More efficient implementations are possible in cases the opti-
mizer knows properties of the inputs to the operator (e.g., that the inputs are already sorted).
However, the normalization operation is never better than OðnÞ in the size of the input relations,
and removing it or replacing it by SQL’s duplicate-preserving projection always improves per-
formance.

3. Duplicate insensitive contexts

For many queries, the requirement to match the precise multiplicity semantics imposes a sig-
nificant cost in the translated query. For some sub-expressions, this additional cost can be
eliminated because the translated expression is evaluated in a context that does not require precise
multiplicity semantics. More formally:

2 Similarly to coalescing; a native implementation of the normalization can often be made more efficient.
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Definition 11 (Query equivalence). Let Q1 and Q2 be SQL/TP queries. We say that Q1 and Q2 are:

• set equivalent, Q1 ¼SETQ2 if fx : x 2 Q1ðDÞg ¼ fx : x 2 Q2ðDÞg for all databases D;
• bag equivalent, Q1 ¼BAGQ2, if Q1ðDÞ ¼ Q2ðDÞ for all databases D; the ¼ sign is used to denote bag
equality unless otherwise noted.

If two queries are set equivalent, they produce the same set of distinct tuples for any given
instance. However, the multiplicity of the tuples does not need to agree in the results of the two
queries. If, however, two queries are bag equivalent, they produce the same bag of tuples for any
given instance.

Definition 12 (Context). An expression C½ � is a context (of signature r) if, for any SQL/TP query
Q with signature r, C½Q� (denoting the syntactical substitution of Q for ½ �) is a valid SQL/TP
query. Here, the signature r represents the schema of attributes expected by the context, and we
say that the above queries Q are compatible with C½ �. For simplicity we omit the context sig-
natures whenever possible.

For example,

C½ � ¼ ð½ � WHERE Employee ¼ ‘Ann0Þ and
C0½ � ¼ ðFROM Q1 r1; ½ � r2Þ

are contexts. The expression C½Assignment� represents the expansion:

ðAssignment WHERE Employee ¼ ‘Ann0Þ

and the expression C½ðAssignment WHERE Project ¼ ‘A0Þ� represents the expansion:

ððAssignment WHERE Project ¼ ‘A0Þ WHERE Employee ¼ ‘Ann0Þ:

If C½ � and C0½ � are two contexts with signature r and r0, respectively, then C½C0½ �� is also a
context of signature r0. Here, C½C0½ �� stands for the composition of contexts. The above contexts
also define the composite context and the expansion

C½C0½ �� ¼ ððFROM Q1r1; ½ �r2Þ WHERE Employee ¼ ‘Ann0Þ
C½C0½Assignment�� ¼ ððFROM Q1r1;Assignment r2Þ WHERE Employee ¼ ‘Ann0Þ;

respectively.

Definition 13 (Duplicate insensitive context). A context C½ � is duplicate insensitive if

Q1 ¼SETQ2 ) C½Q1� ¼BAGC½Q2�

for any pair of queries Q1 and Q2 compatible with C½ �.

Example 14. Consider the context

C½ � ¼ ð½ � GROUP BY aÞ:
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This context is duplicate insensitive since the result of the expression contains one tuple in its
output for each distinct value a for any pair of Q1 set-equivalent to Q2 (both with the same sig-
nature containing the attribute a).

Lemma 15. It is undecidable whether or not an arbitrary context C½ � is duplicate insensitive.

Proof. Consider the context C½ � ¼ ðFROM½ �r;QsÞ where Q is a closed query. 3 Then C½ � is du-
plicate insensitive if and only if Q is unsatisfiable (empty). However, emptiness is not decidable [1],
so there cannot exist a decision algorithm for duplicate insensitivity. �

Definition 16 (Set preserving context). A context C½ � is set preserving if

Q1 ¼SETQ2 ) C½Q1� ¼SETC½Q2�
for any pair of queries Q1 and Q2 compatible with C½ �.

Example 17. Clearly, every context that is duplicate insensitive is also set preserving. In addition,
there are several contexts which are set preserving but which are not duplicate insensitive. Con-
sider the context

C½ � ¼ ð½ � WHERE uÞ:
This context is set preserving since the result of the expression contains the same set of distinct
tuples in its output for any pair of set-equivalent queries Q1 and Q2 with signatures compatible
with C½ �.

Lemma 18 (Set preserving contexts). The following contexts are set preserving:

FROM Q1 r1; . . . ; ½ �ri; . . . ;Qk rk,
½ � WHERE u,
SELECT e1 AS i1; . . . ; ek AS ik ½ �,
½ � GROUP BY a1; . . . ; ak AGG f 1 AS i1; . . . ; f m AS im ðfor f i 2 fMIN;MAXgÞ,
½ � hSETOPi Q2,
Q1 hSETOPi ½ �

where hSETOPi is one of the following:

• UNION, UNION ALL,

• INTERSECT, INTERSECT IN, INTERSECT ALL,

• EXCEPT, EXCEPT IN.

Note that the EXCEPT ALL contexts are not set preserving in general, since the monus operation
produces different sets as results depending on the multiplicities of the tuples in each input.

3 Unlike the SQL standard, SQL/TP allows closed queries with the expected semantics.
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Proof. By case analysis.

Case FROM: Consider the context

CF ½ � ¼ FROM Q r; ½ � s
For any two compatible queries Q1 and Q2, the results of the expansion CF ½Q1� is Q� Q1 and the
result of CF ½Q2� is Q� Q2. For each tuple t 2 CF ½Q1�, there are tuples r 2 Q and s 2 Q1 such that
t is the concatenation of r and s. If Q1 ¼SETQ2, then s 2 Q2 as well, so t 2 CF ½Q2�. Therefore,
fs 2 CF ½Q1�g � fs 2 CF ½Q2�g. By a similar argument, fs 2 CF ½Q2�g � fs 2 CF ½Q1�g. Therefore,

Q1 ¼SETQ2 ) CF ½Q1� ¼SETCF ½Q2�
and the context CF ½ � is set preserving. The extension to a general Cartesian product of more than
two relations follows from the standard equivalence with a sequence of binary Cartesian products
and an inductive argument.

Case WHERE: The context

CW ½ � ¼ ½ � WHERE u

produces the same set of distinct resulting tuples for any two set equivalent queries Q1 and Q2
compatible with the context. For any tuple t 2 CW ½Q1�, t 2 Q1 and hence t 2 Q2 and therefore
t 2 CW ½Q2�. Thus, the context CW ½ � is set preserving.
Case SELECT: The context

CS½ � ¼ SELECT e1 AS i1; . . . ; ek AS ik ½ �
is also set preserving. Let Q1 and Q2 be any two set equivalent queries compatible with CS½ �. If
tuple t 2 CS½Q1�, then there is a tuple r 2 Q1 such that t is the projection of r. By set equivalence,
r 2 Q2 and therefore t 2 CS½Q2�. This gives the result that CS½ � is a set preserving context.
Case GROUP BY: The context

CG½ � ¼ ½ � GROUP BY a1; . . . ; ak AGG f 1 AS i1; . . . ; f m AS im

is duplicate insensitive if either there are no aggregate functions, or they are drawn only from MIN

and MAX. In this case, the context is trivially set preserving since duplicate insensitivity is a
stronger condition.

Case hsetopi: The contexts
CP1 ½ � ¼ ½ � hSETOPi Q2
CP2 ½ � ¼ Q1 hSETOPi ½ �

are set preserving for the set operations listed above. For these contexts, the presence of a distinct
tuple t in the results depends only on the existence of a single tuple t in one or both of the inputs
(depending on the particular hsetopi used). Thus, additional duplicates do not affect the distinct
tuples generated in the result, although they do change the multiplicity. �

Lemma 19 (Duplicate insensitive composition). Let C1½ � be a duplicate insensitive context with
signature r1, and C2½ � a set-preserving context with signature r2. Then the context defined by
composition of these two contexts, C½ � ¼ C1½C2½ ��, is duplicate insensitive.
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Proof. For any two queries Q1, Q2 compatible with r2, we have that

Q1 ¼SETQ2 ) C2½Q1� ¼SETC2½Q2�
because C2½ � is set preserving. Further, we have that

C2½Q1� ¼SETC2½Q2� ) C1½C2½Q1�� ¼BAGC1½C2½Q2��
since C1 is duplicate insensitive. Thus, for any two queries Q1, Q2 compatible with r2, we have

Q1 ¼SETQ2 ) C½Q1� ¼BAGC½Q2�
and C½ � is thus duplicate-insensitive. �

3.1. Inference of duplicate insensitivity

Although there is no decision algorithm to find precisely whether a given context is duplicate
insensitive, we can define syntax directed rules for finding several useful classes of duplicate in-
sensitive contexts.

Lemma 20 (Duplicate insensitive contexts (i)). The contexts

½ � GROUP BY a1; . . . ; ak AGG f 1 AS i1; . . . ; f m AS im ðfor f i 2 fMIN;MAXgÞ,
½ � INTERSECT Q; ½ � EXCEPT Q; ½ � UNION Q,
Q INTERSECT ½ �;Q EXCEPT ½ �;Q UNION ½ �

are duplicate insensitive.

Proof. All the above contexts C½ � are set preserving (by Lemma 18); further, these contexts al-
ways generate duplicate-free results. For these contexts,

Q1 ¼SETQ2 ) C½Q1� ¼SETC½Q2�
and further, since duplicates are eliminated in the output,

C½Q1� ¼SETC½Q2� ) C½Q1� ¼BAGC½Q2�
Thus,

Q1 ¼SETQ2 ) C½Q1� ¼BAGC½Q2�
and the contexts are duplicate insensitive as desired. �

Lemma 21 (Duplicate insensitive contexts (ii)). The contexts

Q INTERSECT IN ½ �; and Q EXCEPT IN ½ �
are duplicate insensitive.

Proof. Let C½ � ¼ ðQ hopi ½ �Þ be a context where hopi is INTERSECT IN or EXCEPT IN. Let Q1
and Q2 be any two queries compatible with the signature of context C½ � where Q1 ¼SETQ2. For each
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tuple t 2 Q, either t 2 Q1 ^ t 2 Q2 or t 62 Q1 ^ t 62 Q2. The decision to include t in the output of C½ �
depends only on the existence of a single witness in Q1 and Q2, and different multiplicities does
not affect this decision. Further, all duplicates of t 2 Q are treated identically, so the multiplicity of
t in the result will either be zero or the same as the multiplicity in the original query. Therefore, we
see that for any pair of queries Q1 and Q2

Q1 ¼SETQ2 ) C½Q1� ¼BAGC½Q2�:

Thus the context C½ � is duplicate insensitive. �

Lemma 22 (Inference of duplicate insensitivity). If C½ � is a duplicate-insensitive context, then the
contexts

C½FROM Q1 r1; . . . ; ½ �ri; . . . ;Qn rn�,
C½SELECT e1 AS i1; . . . ; en AS in½ ��,
C½½ � WHERE u�,
C½Q INTERSECT ALL ½ ��,
C½½ � INTERSECT ALL Q�,
C½½ � INTERSECT IN Q�,
C½½ � EXCEPT IN Q�,
C½Q UNION ALL ½ ��, and
C½½ � UNION ALL Q�

are also duplicate insensitive.

Proof. The inner contexts in all of the above cases are set preserving by Lemma 18. Since con-
text C½ � is duplicate insensitive, the composed context C½C0½ �� is also duplicate insensitive by
Lemma 20. �

4. Duplicate insensitive compilation

In this section we turn to the main goal of the paper: we show how the information about
duplicate insensitivity of query contexts can be used to improve the SQL/TP compilation to SQL
and in turn to generate more efficient SQL queries. Our focus is the elimination of the normal-
ization operator generated by the original approach [15] in the translations of the following two
SQL/TP constructs:

• the aggregation/duplicate elimination operation and
• a set/bag operation.

More formally, let Q1 and Q2 be two SQL/92 queries with a common concrete signature X cor-
responding to an SQL/TP signature �xx, perhaps resulting from translating parts of an SQL/TP
query. The original translation establishes the following:
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sQ1ðDÞt GROUP BY �yy ¼BAG sNY ½Q1;Q1� GROUP BY Y ðDÞt

sQ1ðDÞt hSETOPi sQ2ðDÞt ¼BAG sNX ½Q1;Q1;Q2� hSETOPi NX ½Q2;Q1;Q2�ðDÞt

for �yy � �xx a set of grouping attributes and D an arbitrary concrete database.
It is easy to see that we cannot use optimization based on rewrites purely within SQL/TP and

therefore (modified) techniques for ‘‘distinct’’ elimination used by standard SQL optimizers, e.g.,
[6,9,11], cannot be used: there is no SQL/TP expression that could replace the original one in a
duplicate-insensitive context and simplify the result of the translation.
In particular the (commonly suggested) expression SELECT �xx AS �xx Q is not a valid substitute

and, moreover, must be disallowed due to the problems outlined in Example 1. In addition, it is
also easy to see that translating an SQL/TP expression cannot generate SQL’s duplicate preserving
projection since such SQL/92 queries are not s � t-generic over concrete temporal databases in
general (while all translations of SQL/TP queries are s � t-generic).
Therefore, we consider modifying the SQL/TP-to-SQL translation instead. We proceed in two

steps. First we explore translation rules in which the normalization operator can be removed if we
weaken the requirement of bag equality to set equality for the results of the compiled queries.
Second, we integrate these new rules with an existing SQL/TP compilation procedure [15,16]
employing duplicate insensitivity inferred for query contexts present in the input query.

4.1. Relaxed compilation rules

In the following we use Q1 and Q2 to stand for two SQL/92 queries with a common concrete
signature X corresponding to a SQL/TP signature �xx. The following Lemmas treat the individual
cases.
First and most important is the case where the GROUP BY operation in SQL/TP is used for

projection. Here we want to use SQL’s vastly more efficient duplicate-preserving projection. This
is, however, only possible in duplicate insensitive contexts:

Lemma 23 (Aggregation and duplicate elimination). Let D be an arbitrary concrete database and
�yy a subset of Q1’s attributes. Then

sQ1ðDÞt GROUP BY �yy ¼SET sSELECT Y FROM Q1ðDÞt

Proof. Let �aa be an abstract tuple such that �aa 2 sQ1ðDÞt GROUP BY �yy. Then there must be a tuple
ab 2 sQ1ðDÞt and consequently a concrete tuple AB 2 Q1ðDÞ such that ab 2 sABt. Then, however,
�AA 2 SELECT Y FROM Q1ðDÞ and thus �aa 2 sSELECT Y FROM Q1ðDÞt since �aa 2 s�AAt. The proof of
the reverse inclusion is similar. �

The right-hand side query is a pure SQL/92 query and does not involve the normalization
operator. Thus, we use this equation to generate a translation rule (cf. Section 4.2). Note also that
the query on the right-hand side is not bag-equivalent to any SQL/TP query. The following three
Lemmas provide similar results for the other operations that involve normalization:
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Lemma 24 (Union). Let D be an arbitrary concrete database. Then

sQ1ðDÞt UNION ½ALL� sQ2ðDÞt ¼SET sQ1 UNION ALL Q2ðDÞt

Proof. Let �aa 2 sQ1ðDÞt UNION ½ALL� sQ2ðDÞt. Then �aa must belong to the answer to Q1 or Q2.
W.l.o.g., we assume �aa 2 sQ1ðDÞt. Then, there must be a concrete tuple �AA 2 Q1ðDÞ such that
�aa 2 s�AAt. Since �AA 2 Q1 UNION ALL Q2ðDÞ we have �aa 2 sQ1 UNION ALL Q2ðDÞt. Again, the other
direction is similar. �

In duplicate insensitive contexts the set/bag intersection can be turned into a join:

Lemma 25 (Intersection). Let D be an arbitrary concrete database. Then

sQ1ðDÞt INTERSECT ½ALLjIN� sQ2ðDÞt ¼SET sSELECT r:X \ s:X FROM Q1r;Q2s

WHERE r:X \ s:X 6¼ ;ðDÞt

where r:X \ s:X is a select list consisting of r:Xj AS Xj for data attributes and r:Ij \ s:Ij AS Ij for
temporal attributes. The select list expression r:Ij \ s:Ij AS Ij gives the interval encoding of the
overlap of the r:Ij and s:Ij intervals. Similarly, r:X \ s:X 6¼ ; is a conjunction of equalities for
matching data attributes and conditions of the form r:Ij \ s:Ij 6¼ ; for temporal attributes. This latter
condition identifies tuples r and s that have overlapping interval encodings of the Ij temporal at-
tribute. This condition can, of course, be further expressed as a simple order condition involving
interval endpoints.

Proof. If �aa 2 sQ1ðDÞt INTERSECT ½ALLjIN�sQ2ðDÞt then there must be concrete tuples A1 2
Q1ðDÞ and A2 2 Q2ðDÞ such that �aa 2 s�AA1t \ s�AA2t. These two tuples, however, satisfy the WHERE
clause on the right-hand side of the equation and therefore a concrete tuple �AA representing the
intersection of �AA1 and �AA2 is in the answer to the right-hand side query. Subsequently, �aa is in the
abstract answer to the right-hand side, since �aa 2 s�AAt ¼ s�AA1t \ s�AA2t. Similarly, the other inclusion
holds. �

Similarly, the set/not-exists-like set difference can be turned into an anti-join:

Lemma 26 (Difference). Let D be an arbitrary concrete database. Then

sQ1ðDÞt EXCEPT ½IN� sQ2ðDÞt ¼BAG sSELECT ½DISTINCT� r:X
FROM NX ½Q1;Q1;Q2�r
WHERE NOT EXISTS ðSELECT�

FROM Q2s
WHERE r:X � s:X Þ ðDÞt

where r:X � s:X is a conjunction of equalities for data attributes (with matching names) and interval
inclusion conditions for temporal attributes, respectively.
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Proof. Let �aa 2 sQ1ðDÞt EXCEPT½IN� sQ2ðDÞt. Then there must be a concrete tuple �AA 2
NX ½Q1;Q1;Q2� such that �aa 2 s�AAt such that �aa 2 s�AAt (such a tuple must exist since the normalization
operation preserves meaning of abstract relations and �aa 2 sQ1ðDÞt). Moreover, there is no tuple
B 2 Q2ðDÞ such that �aa 2 sBt. Then, however, the �AA tuple satisfies the NOT EXISTS condition as,
due to the normalization operation applied on Q1ðDÞ we have s�AAt \ sBt 6¼ ; implies s�AAt � sBt.
The other direction is the same. �

Note that in the case of set difference we can eliminate only the normalization operation
connected with the R operand. On the other hand, due to the (necessary) N operator applied on
Q1, this translation preserves bag equality.

4

4.2. Enhancement of query compilation

As the last step of the development we incorporate the notion of duplicate insensitive contexts
and the simplified translation rule(s) developed in last section into the SQL/TP-to-SQL/92
translator. We use two mutually recursive functions compS and compB that are used in the du-
plicate insensitive (set) and duplicate sensitive (bag) contexts, respectively (comp� stands for both
cases). We follow a convention that if Qj and uj appear in the translation, then they range over all
j such that Qjfujg 2 compX ðQÞ where X (the appropriate bag- or set-based translation rule) is
determined by the context created by the operation for its arguments (cf. Lemmas 20–22). Fig. 4
summarizes the translation rules.

Theorem 27. Let Q be an SQL/TP query. Then for every concrete database D we have

(1) QðsDtÞ ¼BAG scompBðQÞðDÞt¼D
U

Qjfujg2compBðQÞ rujsQjðDÞt
(2) QðsDtÞ ¼SET scompSðQÞðDÞt¼D

S
Qjfujg2compSðQÞ rujsQjðDÞt

Proof. The compB translation rules have been shown to be correct in previous work [15]. Each of
the set-based translation rules compS is either an instance of an equality shown in Lemmas 23–26
or follows from Lemmas 20–22. �

We illustrate the improved translation in the following examples. The first example shows how
the translation handles nested ‘‘distinct’’ queries.

Example 28. Decorrelation of SELECT DISTINCT and EXISTS-like queries; in SQL/TP syntax:

FROM Q1q1;

ðQ2 GROUP BY tÞ q2
WHERE q1:t ¼ q2:t

GROUP BY q1:a

4 The set EXCEPT operator is paired with the SELECT DISTINCT right-hand side.

160 I.T. Bowman, D. Toman / Data & Knowledge Engineering 44 (2003) 143–164



Fig. 4. Complete SQL/TP translation rules.
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is translated to the SQL/92 query

SELECT q1:a

FROM Q1q1;

ðSELECT I t AS I t Q2Þ q2
WHERE leftðq1:I tÞ <¼ rightðq2:I tÞ
AND leftðq2:I tÞ <¼ rightðq1:I tÞ
GROUP BY q1:a

where the left and right (perhaps user-defined) functions allow us to access the left and right
endpoints of a given interval value, respectively. This query can be further ‘‘flattened’’ using the
standard SQL rewriting rules. Without the ability to detect that the inner query operated in a
duplicate insensitive context, we would have to use the Nftg normalization procedure, and generate
a much more expensive query.
Similar examples can be made for other EXISTS-based queries which, in practice, cover a very

large number of cases. In the above example, we could, however, completely omit the inner
projection in the original query. The next example shows that this cannot be done in general:

Example 29. Duplicate elimination removal within a set operation:
ðQ1 GROUP BY a AS aÞ EXCEPT ðQ2 GROUP BY a AS aÞ

assuming a is a data attribute (but both Q1 and Q2 have additional temporal attributes in their
signatures), can still be compiled to

ðSELECT a AS a FROM Q1Þ EXCEPT ðSELECT a AS a FROM Q2Þ

5. Conclusion

We have presented a technique for optimizing the translation of SQL/TP to SQL/92. The
technique takes advantage of static determination of duplicate insensitive contexts in the original
query and uses more lax translation rules that produce much more efficient SQL/92 queries as
results. These more efficient queries cannot be achieved by a pure SQL/TP to SQL/TP translation,
nor by state-of-the-art commercial query optimizers from the SQL/92 queries resulting from the
translation. The proposed technique introduces a novel approach to optimizing queries that are
evaluated over an encoded database rather than over a standard relational representation. The
proposed technique is also applicable in the more general constraint databases, e.g., where
complex spatial objects are compactly encoded in a relational tables using a particular constraint
representation.

5.1. Future work

The technique presents a new approach to query optimization. While the current application of
the technique is limited to handling duplicates in SQL/TP, the approach is much more general and
can be summarized as follows: Given a declarative query language that is translated to another
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language to facilitate query evaluation over a particular encoding of data, can the translation
process take advantage of the fact that in certain query contexts we can use a translation that
produces more efficient translations (but which are not equivalent to the original query in general)?
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