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Abstract. Automata-based decision procedures commonly achieve op-
timal complexity bounds. However, in practice, they are often outper-
formed by sub-optimal (but more local-search based) techniques, such
as tableaux, on many practical reasoning problems. This discrepancy
is often the result of automata-style techniques global approach to the
problem and the consequent need for constructing an extremely large
automaton. This is in particular the case when reasoning in theories con-
sisting of large number of relatively simple formulas, such as descriptions
of database schemes, is required. In this paper, we propose techniques
that allow us to approach a μ-calculus satisfiability problem in an incre-
mental fashion and without the need for re-computation. In addition, we
also propose heuristics that guide the problem partitioning in a way that
is likely to reduce the size of the problems that need to be solved.

1 Introduction

Propositional μ-calculus, thanks to its high expressive power, is often considered
one of the lingua franca logical formalism among logics with EXPTIME deci-
sion procedures. Indeed, many other modal, dynamic, temporal, and description
logics have been shown to be relatively easily encodable in μ-calculus [8,16,24].

The key technique to showing decidability and complexity bounds for μ-
calculus is based on capturing the language of models of a given formula us-
ing an automaton constructed from the formula—usually an alternating parity
automaton—that accepts infinite tree models of the formula [25,26,27]. Hence,
testing for satisfiability reduces to testing for non-emptiness of an appropriate
automaton.

In practice, however, automata-based decision procedures do not enjoy the
success predicted by the accompanying theory. Indeed, in many cases, theo-
retically sub-optimal approaches, such as the use of tableaux equipped with
appropriate blocking conditions that prevent infinite expansions, are more suc-
cessful [1,12]. This rather surprising observation can be traced to severe diffi-
culties in implementing automata-based decision procedures, in particular when
inherently infinite models are considered. For example, the emptiness test for
alternating parity automaton, in particular when based on Safra’s determiniza-
tion approach [22,23], is rather difficult to implement. This issue, for μ-calculus
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formulas, was addressed by using simpler Safraless decision procedures based
on transforming an alternating parity automaton to a non-deterministic Büchi
automaton while preserving emptiness [19].

However, even this improvement does not yield a practical reasoning proce-
dure. The difficulties inherent in the automata-based approaches are especially
apparent when determining logical consequences of moderately large theories
of the form {ϕ1, . . . ϕn} |= ϕ, are considered. Commonly, more local search
techniques applied to this problem try to discover an inconsistency in the set
{ϕ1, . . . ϕn, ¬ϕ}, which in practice rarely involves all the formulas ϕi in the in-
put. Hence, the inconsistency can often be detected much more efficiently than
using the automata-theoretic method which is constructing the automaton for
the formula ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕn ∧ ¬ϕ and then checking for its emptiness. This
problem manifests itself in many important settings, in which theories that de-
scribe system behavior use a large number of relatively simple constraints, such
as database schemes or UML diagrams specified using, e.g., an appropriate de-
scription logic [2,7].

In this paper, we explore techniques that attempt to remedy the above dif-
ficulties by proposing an incremental and interleaved approach to constructing
the automaton corresponding to the logical implication problem while simulta-
neously testing for satisfiability of the so far constructed fragments. The main
contributions of this paper are as follows:

– we show how the decision problem can be split into a sequence of simpler
problems,

– we show that in this incremental process, the larger problems can be con-
structed from the simpler ones, hence avoiding unnecessary recomputation,
and

– we show how top-down query evaluation techniques enhanced with memoing
can be used to drive the incremental computation.

The rest of the paper is organized as follows: Section 2 provides the necessary
definitions and background, Section 3 introduces the incremental approach and
outlines the main results, Section 4 discusses heuristics and optimizations of
the proposed algorithm, and Section 6 concludes outlining directions of further
research.

2 Preliminaries

In this section, we provide definitions needed for the technical development in
the rest of the paper.

2.1 μ-Calculus

The propositional μ-calculus is a propositional modal logic augmented with least
and greatest fixpoint operators [16]. The syntax of μ-calculus [4] is given below:
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Definition 1. Let Var be an (infinite) set of variable names, typically named
X, Y, Z, . . .; Prop a set of atomic propositions, typically named P, Q, . . .; and L
a set of labels, a, b, . . .. The set of Lμ formulas (with respect to Var, Prop, L) is
defined as follows:

– P ∈ Prop and Z ∈ Var are formulas.
– If φ1 and φ2 are formulas, so is φ1 ∧ φ2.
– If φ is a formula, so are [a]φ, ¬φ, and νZ.φ provided that every free occur-

rence of Z in φ occurs positively.

In the rest of the paper we use derived operators, e.g., φ1 ∨φ2 for ¬(¬φ1 ∧¬φ2),
〈a〉φ for ¬[a]¬φ, μZ.φ(Z) for ¬νZ.¬φ(¬Z), [K]φ for

∧
a∈K [a]φ, [−]φ for [L]φ,

etc.
Formulas of Lμ are interpreted with respect to labeled transition systems

over Prop in which nodes are labeled by propositional assignments and edges by
elements of L; for full definition see [4].

2.2 Alternating Automata

Satisfiable Lμ formulas enjoy the tree model property. This property provides a
link to automata theory: satisfiability of a Lμ formula is equivalent to checking
whether a corresponding tree automaton that accepts tree models of the formula
is non-empty.

Definition 2. Given a set D of directions, a D-tree is a set T ⊆ D∗ such that
if x ·c ∈ T (an extension of x with c), where x ∈ D∗ and c ∈ D, then also x ∈ T .
If T = D∗, we say that T is a full D-tree. The empty word ε is the root of T
and the elements of T are called nodes. A path π of a tree T is a set π ⊆ T such
that ε ∈ π and for every x ∈ π either x is a leaf or there exists a unique c such
that x · c ∈ π. Given an alphabet Σ, a Σ-labeled D-tree is a pair 〈T, τ〉 where T
is a tree and τ : T → Σ maps each node of T to a letter in Σ.

For a set X, B+(X) is the set of positive Boolean formulas over X; for a
set Y ⊆ X and a formula φ ∈ B+(X), we say that Y satisfies φ iff assigning
true to elements in Y and assigning false to elements in X \ Y makes φ true.
An alternating tree automaton is A = 〈Σ, D, Q, qi, δ, α〉, where Σ is the input
alphabet, D is a set of directions, Q is a finite set of states, δ : Q × Σ →
B+(D × Q) is a transition function, qi ∈ Q is an initial state, and α specifies
the acceptance condition.

An alternating automaton A runs on Σ-labeled full D-trees. A run of A over
a Σ-labeled D-tree 〈T, τ〉 is a (T × Q)-labeled tree 〈Tr, r〉 such that:

1. ε ∈ Tr and r(ε) = 〈ε, qi〉.
2. For every y ∈ Tr such that r(y) = 〈x, q〉 there is a set

{(c0, q0), (c1, q1), . . . (cn−1, qn−1)} ⊆ D × Q

that satisfies δ(q, τ(x)), and for all 0 ≤ j < n, y · j ∈ Tr, r(y · j) = 〈x · cj , qj〉.
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A run 〈Tr, r〉 is accepting if all its infinite paths satisfy an acceptance condition.
The set of states on a path π ⊆ Tr that appear infinitely often is denoted with
inf(π) where inf(π) ⊆ Q and q ∈ inf(π) if and only if there are infinitely many
y ∈ π for which r(y) ∈ T × {q}. The types of acceptance conditions are defined
as follows:

– A path π satisfies Büchi acceptance condition α ⊆ Q if inf(π) ∩ α �= ∅.
– A path π satisfies co-Büchi acceptance condition α ⊆ Q if inf(π) ∩ α = ∅.
– A path π satisfies parity acceptance condition α = {F1, F2, . . . , Fh} with

F1 ⊆ F2 ⊆ . . . ⊆ Fh = Q if the minimal index i for which inf(π) ∩ Fi �= ∅ is
even. The number h of sets in α is called the index of the automaton.

An automaton accepts a tree if there exists a run that accepts it. The set of all
Σ-trees that are accepted by A is denoted by L(A). An alternating automaton is:

– nondeterministic: if the formulas (c1, q1) and (c2, q2) appear in δ and are
conjunctively related, then c1 �= c2,

– universal: if all the formulas that appear in δ are conjunctions of atoms in
D × Q,

– deterministic: if it satisfies the conditions for being nondeterministic and
universal at the same time.

The connection between Lμ formulas and alternating automata is captured by
the following theorem [9,13,27].

Theorem 1. Let ϕ ∈ Lμ. Then there is an alternating parity tree automaton
Aϕ that can be constructed effectively from ϕ, such that the language of trees
accepted by Aϕ is the set of tree models of ϕ.

Hence, it remains to solve the emptiness problem for alternating automata to
decide the satisfiability of μ-calculus formulas. Logical implication problems can
be solved by using the associated satisfiability problems (possibly with the help
of the greatest fixpoint operator when global axioms are needed).

2.3 From APT to NBT Via UCT

The standard approach for checking the emptiness of an alternating parity tree
automaton (APT) involves Safra’s construction [22] which is complicated and
not very suitable for efficient implementation. An alternative approach to this
problem has been proposed by Vardi and Kupferman [19] and involves the fol-
lowing steps:

1. Translate the APT A representing a μ-calculus formula ϕ to a Universal
Co-Büchi Tree Automaton (UCT) A′,

2. Translate the UCT A′ to a Non-deterministic Büchi Tree Automaton (NBT)
A′′, and

3. Check for emptiness of A′′.



104 G. Unel and D. Toman

The above transformations only preserve emptiness for the automata, not the
actual languages of trees accepted. This is, however, sufficient for deciding satis-
fiability. We modify this procedure to operate in an incremental fashion when the
original alternating automaton represents a conjunction of Lμ formulas. First,
we outline the two main steps in the original construction [19]:

From APT to UCT. Consider an APT A = 〈Σ, D, Q, qi, δ, α〉, where δ :
Q × Σ → B+(D × Q). A restriction of δ is a partial function η : Q → 2D×Q. A
restriction η is relevant to σ ∈ Σ if for all q ∈ Q for which δ(q, σ) is satisfiable,
the set η(q) satisfies δ(q, σ). Let R be the set of restrictions of δ.

For A = 〈Σ, D, Q, qi, δ, α〉 with α = {F1, F2, . . . , F2h}, and F0 = ∅, the UCT
is defined as A′ = 〈Σ′, D, Q × {0, . . . , h − 1}, 〈qi, 0〉, δ′, α′〉 where:

– Σ′ ⊆ Σ × R such that η is relevant to σ for all 〈σ, η〉 ∈ Σ′.
– For every q ∈ Q, σ ∈ Σ, and η ∈ R:

• δ′(〈q, 0〉, 〈σ, η〉) =
∧

0≤i<h

∧
(c,s)∈(η(q)\(D×F2i))(c, 〈s, i〉).

• For every 1 ≤ i < h, δ′(〈q, i〉, 〈σ, η〉) =
∧

(c,s)∈(η(q)\(D×F2i))(c, 〈s, i〉).
– α′ =

⋃
0≤i<h(F2i+1 × {i})

Intuitively, the nondeterminism in A is removed in A′ since Σ′ contains all the
pairs 〈σ, η〉 for which η is relevant to σ (η chooses from all the possible sets of
atoms that satisfy δ). The automaton A′ consists of h copies of A such that the
ith copy checks if a path in a run of A′ visits F2i only finitely often then it also
visits F2i+1 only finitely often by making sure that the run stays in the ith copy
unless it has to move to a state from F2i.

From UCT to NBT. Let A′ = 〈Σ′, D′, Q′, q′i, δ
′, α′〉, and let k = (2n!)n2n3n

(n + 1)/n!. Let R be the set of functions f : Q′ → {0, . . . k} in which f(q) is
even for all q ∈ α′. For g ∈ R, let odd(g) = {q : g(q) is odd}. The definition of
A′′ = 〈Σ′, D′, Q′′, q′′i , δ′′, α′′〉 is given as follows:

– Q′′ = 2Q′ × 2Q′ × R
– q′′i = 〈{q′i}, ∅, g0〉, where g0 maps all states to k.
– For q ∈ Q′, σ ∈ Σ′, and c ∈ D′, let γ′(q, σ, c) = δ′(q, σ) ∩ ({c} × Q). For

two functions g and g′ in R, a letter σ, and direction c ∈ D′, we say that g′

covers 〈g, σ, c〉 if for all q and q′ in Q′, if q′ ∈ γ′(q, σ, c). then g′(q′) ≤ g(q).
Then for all 〈S, O, g〉 ∈ Q′′ and σ ∈ Σ′, δ′′ is defined as follows:

• If O �= ∅ then δ′′(〈S, O, g〉, σ)

=
∧

c∈D

∨

gc covers 〈g,σ,c〉
〈γ′(S, σ, c), γ′(O, σ, c) \ odd(gc), gc〉

• If O = ∅ then δ′′(〈S, O, g〉, σ)

=
∧

c∈D

∨

gc covers 〈g,σ,c〉
〈γ′(S, σ, c), γ′(S, σ, c) \ odd(gc), gc〉

– α′′ = 2Q′ × {∅} × R.
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Intuitively, the automaton A′′ is the result of a subset construction applied to A′

such that for a run of A′ that satisfies a particular co-Büchi condition it guesses
the possible runs that satisfy its dual Büchi condition. The emptiness problem
for NBT is much simpler than the emptiness problem for APT which is shown
to be solved symbolically in quadratic time [17].

3 Incremental Approach to Satisfiability of Conjunctions

In this section, we provide the main contribution of this paper: a decomposition
technique for the APT to NBT construction based on conjunctive formulas and,
in turn, an incremental algorithm for checking the emptiness of an APT A for a
formula ϕ. We also outline a top-down approach for checking the emptiness of
the associated NBT.

Assume that we have a conjunctive formula ϕ = ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕn and ϕ
is represented by an APT A = 〈Σ, D, Q, qi, δ, α〉. We decompose the APT to
NBT translation in such a way that we do not need to construct the complete
automaton for ϕ and we can stop checking for emptiness if ϕ′ = ϕ1∧ϕ2∧ . . .∧ϕk

for k ≤ n is unsatisfiable. Otherwise we are able to reuse the facts we computed
for ϕ′ in the emptiness check of ϕ.

The incremental technique first constructs an automaton A1 for ϕ1 and checks
for its emptiness, if A1 is empty then the procedure stops. Otherwise it continues
with automata for formulas ϕ1 ∧ ϕ2, . . ., ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕn applying the same
technique and reusing the automaton computed in step i for computing the
automaton in step i + 1 as it is shown in Figure 1.

3.1 Decomposition of the APT to NBT Translation

In this section, we describe the proposed decomposition technique for a conjunc-
tion of formulas of the form ϕ = ϕ1∧ϕ2∧. . .∧ϕn. We know that there is an APT
A = 〈Σ, D, Q, qi, δ, α〉 that accepts tree models of ϕ. To define this automaton,
we need the following auxiliary definition:

Definition 3. The closure of a formula φ, cl(φ) is the smallest set of formulas
that satisfies the following:

– φ ∈ cl(φ).
– If φ1 ∧ φ2 ∈ cl(φ), then φ1 ∈ cl(φ) and φ2 ∈ cl(φ).
– If [a]ψ or ¬ψ ∈ cl(φ) then ψ ∈ cl(φ).
– If νZ.ψ ∈ cl(φ), then ψ(νZ.ψ) ∈ cl(φ) and ψ ∈ cl(φ).

Now we define an alternating automaton Ak = 〈Σk, D, Qk, qik
, δk, αk〉 for a

subformula ϕ′ = ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕk of ϕ as follows:

– Σk = 2APk where APk is the set of atomic propositions in ϕ′,
– qik

= ϕ′,
– Qk = cl(ϕ′),
– for all σ ∈ Σk, δ(q, σ) ∈ δk iff q ∈ Qk, and
– αk = {F1 ∩ Qk, F2 ∩ Qk, . . . , F2h ∩ Qk}.
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Emptiness of Ak implies emptiness of A and, in turn, the unsatisfiability of the
original formula ϕ, as Ak represents a subformula ϕ1 ∧ϕ2 ∧ . . .∧ϕk of ϕ. Hence,
we can stop checking for the emptiness of the automaton A early: whenever we
reach an automaton Ak that is empty. Otherwise we use the following theorem
to extend Ak to Ak+1 without the need to recompute all the transitions from
scratch:

Theorem 2. Let A′
k = 〈Σ′

k, D, Qk × {0, . . . h − 1}, 〈qik
, 0〉, δ′k, α′

k〉 be the UCT
translation of Ak, and A′ = 〈Σ′, D, Q × {0, . . . h − 1}, 〈qi, 0〉, δ′, α′〉 be the UCT
translation of A.
Then for every qk ∈ Qk, σk ∈ Σk, ηk ∈ Rk, ηl ∈ Rl:
δ′(〈qk, i〉, 〈σk, ηk ∪ηl〉) = δ′k(〈qk, i〉, 〈σk, ηk〉) for all 0 ≤ i < h where Rk is the set
of restrictions ηk : Qk → 2D×Qk such that for all 〈σk, ηk〉 ∈ Σ′

k, ηk is relevant
to σk, and Rl is the set of restrictions ηl : Q \ Qk → 2D×Q.

Proof. For every qk ∈ Qk, σk ∈ Σk, ηk ∈ Rk, ηl ∈ Rl:

– δ′(〈qk, 0〉, 〈σk, ηk ∪ ηl〉) =
∧

0≤i<h

∧
(c,s)∈(ηk(qk)∪ηl(qk)\(D×F2i))(c, 〈s, i〉)

=
∧

0≤i<h

∧
(c,s)∈(ηk(qk)\(D×F2i))(c, 〈s, i〉)∧∧

0≤i<h

∧
(c,s)∈(ηl(qk)\(D×F2i))(c, 〈s, i〉)

=
∧

0≤i<h

∧
(c,s)∈(ηk(qk)\(D×F2i))(c, 〈s, i〉)

=
∧

0≤i<h

∧
(c,s)∈(ηk(qk)\(D×(F2i∩Qk)))(c, 〈s, i〉)

= δ′k(〈qk, 0〉, 〈σk, ηk〉), and
– for all 1 ≤ i < h we have

δ′(〈qk, i〉, 〈σk, ηk ∪ ηl〉) =
∧

(c,s)∈(ηk(qk)∪ηl(qk)\(D×F2i))(c, 〈s, i〉)
=

∧
(c,s)∈(ηk(qk)\(D×F2i))(c, 〈s, i〉)∧∧

(c,s)∈(ηl(qk)\(D×F2i))(c, 〈s, i〉)
=

∧
(c,s)∈(ηk(qk)\(D×F2i))(c, 〈s, i〉)

=
∧

(c,s)∈(ηk(qk)\(D×(F2i∩Qk)))(c, 〈s, i〉)
= δ′k(〈qk, i〉, 〈σk, ηk〉).

Thus we can reuse the transitions computed for a UCT A′
k (i.e., for ϕ1 ∧ ϕ2 ∧

. . .∧ϕk) when computing the transitions of A′
k+1 for ϕ1 ∧ϕ2 ∧ . . .∧ϕk+1. Similar

theorem holds for the UCT to NBT step:

Theorem 3. Let A′′
k = 〈Σ′

k, D, Q′′
k, q′′ik

, δ′′k , α′′
k〉 be NBT translation of A′

k, and
A′′ = 〈Σ′, D, Q′′, q′′i , δ′′, α′′〉 be the NBT translation of A′.
Then for all 〈S, O, g〉 ∈ Q′′

k, σ′ = 〈σk, ηk〉 ∈ Σ′
k, σ = 〈σk, ηk ∪ ηl〉 ∈ Σ′,

δ′′(〈S, O, g ∪ f〉, σ) = δ′′k (〈S, O, [g ∪ f/g]〉, σ′) where g : Q′
k → {0, . . . , k′} (k′ =

(2nk!)n2nk

k 3nk(nk + 1)/nk! where nk is the number of states in A′
k), and f :

Q′ \ Q′
k → {0, . . . , k}.
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Proof. If O �= ∅ then

δ′′(〈S, O, g ∪ f〉, σ)

=
∧

c∈D

∨

gccovers 〈g,σ,c〉
fccovers 〈f,σ,c〉

〈γ′(S, σ, c), γ′(O, σ, c) \ odd(gc ∪ fc), gc ∪ fc〉

=
∧

c∈D

∨

gc covers 〈g,σ,c〉
fc covers 〈f,σ,c〉

〈γ′
k(S, σ′, c), γ′

k(O, σ′, c) \ odd(gc), gc ∪ fc〉

= δ′′k (〈S, O, [g ∪ f/g]〉, σ′)

The proof works analogously for the O = ∅ case.

This result shows that we can reuse the transitions we compute for an NBT A′′
k

used for checking the satisfiability of ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕk when we are computing
the transitions of A′′

k+1 for ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕk+1.

Example 1. Consider a formula ϕ = ϕ1 ∧ ϕ2 such that ϕ1 = νX.(ψ ∧ 〈−〉X)
ϕ2 = ¬νX.(ψ∧〈−〉X) where ψ = μY.(b∨〈−〉Y ). Let Σ = {a, b}, and D = {1, 2},
an APT accepting models (which are tree models that have at least one path
with infinitely many b’s) of ϕ1 is A1 = {Σ, D, Q1, q1, δ1, α1} where:

Q1 = {q0, q1}
δ1(q0, a) = (1, q0) ∨ (2, q0)
δ1(q0, b) = (1, q1) ∨ (2, q1)
δ1(q1, a) = (1, q0) ∨ (2, q0)
δ1(q1, b) = (1, q1) ∨ (2, q1)
α1 = {{q0}, {q0, q1}, {q0, q1}, {q0, q1}}

APT for ϕ2, A2 = {Σ, D, Q2, q2, δ2, α2}:

Q2 = {q2, q3}
δ2(q2, a) = (1, q2) ∧ (2, q2)
δ2(q2, b) = (1, q3) ∧ (2, q3)
δ2(q3, a) = (1, q2) ∧ (2, q2)
δ2(q3, b) = (1, q3) ∧ (2, q3)
α2 = {{}, {q2}, {q2, q3}, {q2, q3}}

and the APT for ϕ is A3 = {Σ, D, Q3, q4, δ3, α3}:

Q3 = Q1 ∪ Q2 ∪ {q4}
δ3 = δ1 ∪ δ2 plus the following transitions:
δ3(q4, a) = (1, q0) ∧ (1, q2)
δ3(q4, b) = (1, q0) ∧ (1, q2)
α3 = {{q0}, {q0, q1, q2}, {q0, q1, q2, q3}, {q0, q1, q2, q3}}
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Note that the index of A3 is 4 and A1 and A2 have the same index as A3
according to the definition of αk (for k=1 and k=2 in this case). As a result
some sets in α1 and α2 are repeated at the end.

The incremental strategy used for this formula first checks for the emptiness of
A1 (which is not empty), then checks for the emptiness of A3 (while re-using the
transitions computed for the UCT A′

1 and the NBT A′′
1), e.g.: δ′3(〈q0, 0〉, 〈a, η1 ∪

η2〉) = δ′1(〈q0, 0〉, 〈a, η1〉) for all η1 ∈ R1 and η2 ∈ R2. Here R1 is the set of
restrictions η1 : Q1 → 2D×Q1 such that for all 〈σ1, η1〉 ∈ Σ′

1, η1 is relevant to σ1,
and R2 is the set of restrictions η2 : Q3 \ Q1 → 2D×Q3 .

3.2 The Algorithm

Let Ai be the APT for ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕi, and let A′
i be the UCT translation

of Ai, A′′
i [j] be the NBT translation of A′

i where R is the set of functions f :
Q′

i → {0, . . . , j} for 1 ≤ i ≤ n. The algorithm outlined in Figure 1 incrementally

1: initial = 1
2: for i = 1 to n do
3: construct Ai

4: if i > 1 then
5: construct A′

i using A′
i−1

6: end if
7: k = (2n!)n2n3n(n + 1)/n! for A′

i with n states
8: for j = initial to k − 1 do
9: construct A′′

i [j]
10: if A′′

i [j] is not empty then
11: if i = n then
12: return not empty
13: else
14: initial = j
15: go to 2
16: end if
17: end if
18: end for
19: if A′′

i [k] is empty then
20: return empty
21: end if
22: end for

Fig. 1. Pseudo-code for Incremental Satisfaction Algorithm

constructs automata A′′
i [j] representing ϕi for 1 ≤ i ≤ n and looks for the

smallest j, jm ≤ k such that A′′
i [j] is not empty reusing the automaton A′′

i [j]
in the computation of A′′

i [j + 1]. If A′′
i [k] is empty it stops, if not it constructs

A′′
i+1[jm] reusing the automaton A′′

i [jm]. Hence we have two directions first we
are checking for the emptiness of a particular automaton A′′

i [j] for 1 ≤ j ≤ k,
second we are checking for the emptiness of automata A′′

i [j] for 1 ≤ i ≤ n. We
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are using the proposed incremental technique on computing automata reusing
the previous automata in both directions.

Theorem 4. If A′′
i [k′] is not empty then A′′

i−1[k
′] is also not empty where 1 ≤

k′ ≤ (2n!)n2n3n(n + 1)/n! and n is the number of states in A′
i.

Proof. Let A′
i = 〈Σ, D, Q, qi, δ, α〉, and A′

i−1 = 〈Σ1, D, Q1, qi1 , δ1, α1〉 Start-
ing state of A′′

i is q′′i = 〈{〈qi, 0〉}, ∅, g0〉, and starting state of A′′
i−1 is q′′i1 =

〈{〈qi1 , 0〉}, ∅, g1
0〉 where R is the set of functions f : Q → {0, . . . k′} and g0 ∈ R

and g1
0 ∈ R map all the states in Q and Q1 to k′ respectively. For each c ∈ D,

q′′i goes to 〈S, O, g0〉. If we remove all the states Q2 = Q \Q1 from a path π that
start with 〈S, O, g0〉 then we get a path π2 that start with 〈S2, O2, g

1
0〉 where

〈qi1 , 0〉 ∈ S2 and 〈qi1 , 0〉 ∈ O2. For each c ∈ D, q′′i1 goes to 〈S1, O1, g
1
0〉 where

S1 = {〈qi1 , 0〉} and O1 = {〈qi1 , 0〉}. Let a path that start with 〈S1, O1, g
1
0〉 be

π1. If π2 is accepting then π1 is also accepting since O1 ⊆ O2 and we get to ∅
from O1 if we get to ∅ from O2.

This theorem shows that the smallest j such that A′′
i−1[j] is not empty is also

the smallest possible j such that A′′
i [j] is not empty. As a consequence, when

we are constructing A′′
i [j] we can start from the last j. Also, this means we can

directly reuse the information computed at stage i − 1.

3.3 A Top-Down Approach to the APT to NBT Translation and to
the NBT Emptiness Algorithm

We represent the general construction algorithm as a logic program and check
the emptiness using a goal with respect to the program. The outline of the
program for the construction of an NBT A′′

n for a formula ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕn is
as follows:

– sat(A′′
1 [1]) ← check(A′′

1 [1], )
– For all 1 < i ≤ k and 1 < j ≤ n:

sat(A′′
j [i]) ← sat(A′′

j [i − 1])
sat(A′′

j [i]) ← exists(A′′
j [i − 1]), check(A′′

j [i], A′′
j [i − 1])

sat(A′′
j [i]) ← exists(A′′

j−1[i]), check(A′′
j [i], A′′

j−1[i])
exists(A′′

j [i]) ← check(A′′
j [i], )

We ask the following query with respect to this program:

sat(A′′
1 [k]), sat(A′′

2 [k]), . . . , sat(A′′
n[k])

Here, sat(A′′
j [i]) is true if A′′

j [i] is not empty. The predicate check(A′′
j [i], A′′

l [m])
checks the emptiness of A′′

j [i] using A′′
l [m] and returns true if A′′

j [i] not empty. If
an automaton A′′

j [i] is constructed exists(A′′
j [i]) is marked as true. As a result we

check the emptiness of A′′
1 , A′′

2 , . . . A′′
n and stop if we hit an empty one using a

top-down approach with memoing where the automata we compute are kept in
the memo tables to be used whenever needed where the construction rules ensure
that we reuse the automaton we compute at a particular stage in the next stage.
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The proposed NBT emptiness algorithm for a particular automaton (imple-
mentation of the check predicate) checks if subtrees which have only final nodes
in their leaves are repeated infinitely often. The emptiness query works top-down
starting from the transitive closure of the initial state on these types of subtrees
and stops checking when it makes certain that they are repeated infinitely often.
This means that there is a tree accepted by the automaton. We compute only
the transitions that we need to answer the emptiness query. For instance, to
answer the emptiness query on an NBT automaton we only need to compute
the transitions that are reachable from the starting state of the automaton.

Example 2. Consider an NBT automaton A where Σ = {a}, D = {1, 2} Q =
{q0, q1, q2, q3, q4, q5}, qi = q0, δ(q0, a) = (1, q1)∧(2, q2), δ(q1, a) = (1, q2)∧(2, q3),
δ(q2, a) = (1, q1) ∧ (2, q1), δ(q3, a) = (1, q1) ∧ (2, q3), δ(q4, a) = (1, q5) ∧ (2, q5),
δ(q5, a) = (1, q1) ∧ (2, q1), and α = {q2, q3}

When we are running the emptiness algorithm on this automaton we only
compute the first four transitions.

4 Heuristics

In this section, we provide several heuristics and optimizations that can be ap-
plied to the proposed technique. First, we explain the optimizations in translation
of an APT A to a UCT A′ which is an incremental technique on the alphabet
we use for A′. Then we explain the optimizations in translation of a UCT A′ to
an NBT A′′ which is an incremental technique on the size of the functions in
R we use for A′′ which is proposed in [19]. Finally, we describe the heuristics
we can use for rewriting conjunctive formulas (i.e. reordering the subformulas
in a conjunctive formula) so that we have a better chance for detecting possible
contradictions faster.

Optimizations in APT to UCT Translation. First we introduce an opti-
mization used in the translation of APT to UCT.

Since Σ′ ⊆ Σ × R we can start the construction using a subset Σ′
1 of Σ′. We

proceed with a larger subset, Σ′
2, if the satisfiability query is empty, and repeat

enlarging the alphabet until either the query becomes non-empty or we reach to
the set Σ′. We are also able to reuse the results in the next computation since
Σ′

1 ⊆ Σ′
2.

Theorem 5. Let A′
1 = 〈Σ′

1, D, Q, qi, δ
′
1, α〉 and A′

2 = 〈Σ′
2, D, Q, qi, δ

′
2, α〉 are

UCT translations of an APT A using Σ′
1 as alphabet of A′

1 and using Σ′
2 as

alphabet of A′
2. If Σ′

1 ⊆ Σ′
2, then δ′1 ⊆ δ′2.

Proof. Since we define δ′2(〈q, i〉, 〈σ2, η2〉) for every q ∈ Q, σ2 ∈ Σ2, η2 ∈ R2, and
for all 0 ≤ i < h where R2 is the set of restrictions such that for all 〈σ2, η2〉 ∈ Σ′

2,
η2 is relevant to σ2 the same way as δ′1(〈q, i〉, 〈σ1, η1〉) for every q ∈ Q, σ1 ∈ Σ1,
η1 ∈ R1, and for all 0 ≤ i < h where R1 is the set of restrictions such that for
all 〈σ1, η1〉 ∈ Σ′

1, η1 is relevant to σ1 then if Σ′
1 ⊆ Σ′

2, δ′1 ⊆ δ′2.
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Optimizations in UCT to NBT Translation. In the proposed translation
of UCT to NBT we start from an initial value k1 for k and increase this value
up to k2, as long as the satisfiability query is empty. We continue this process
until either the automaton becomes non-empty or we reach the upper bound
of (2n!)n2n3n(n + 1)/n! for n the number of states in the UCT automaton.
This approach has been proposed in [19]. Our decomposition, however, allows
an incremental implementation that reuses the transitions computed for k1 in
the subsequent construction for k2.

Theorem 6. Let A′′
1 [k1] and A′′

2 [k2] are NBT translations of an APT A, using
k1 as the maximum range of functions in R1 for A′′

1 and k2 as the maximum
range of functions in R2 for A′′

2 . If k1 ≤ k2, then δ′′1 ⊆ δ′′2 .

Proof. Since R1 is the set of functions f1 : Q′ → {0, . . . , k1} and R2 is the set
of functions f2 : Q′ → {0, . . . , k2} and k1 ≤ k2 then R1 ⊆ R2 which means
Q′′

1 ⊆ Q′′
2 . Thus δ′′1 ⊆ δ′′2 .

Example 3. Consider an alternating automaton A such that: Σ = {a}, D =
{1, 2}, Q = {q0, q1, q2, q3}, qi = q0, δ(q0, a) = (1, q1) ∧ (2, q2), δ(q1, a) = (1, q3) ∧
(2, q3), δ(q2, a) = (1, q3) ∧ (2, q3), δ(q3, a) = (1, q3), and α = {{}, {q0, q1, q2, q3}}
We have calculated the actual number of transitions in the UCT translation
of A, A′ and the NBT translation of A, A′′, and the number of transitions we
need to answer the satisfiability query after we apply the above optimizations.
The set of restrictions is R and the set of restrictions we used for answering
the satisfiability query is R1. The number of transitions computed for A′ with
R is 4 × 232 and the number of transitions computed for A′ with R1 is 4. The
results for the NBT translation are given in Figure 2 where k = 220 · 42525, and
k1 = 1.

# of transitions computed for A′′[k] 256 · k4

# of transitions computed for A′′[k1] 256
# of transitions computed for A′′[k1] with top-down evaluation 70

Fig. 2. Number of transitions in the NBT automata A′′[k] and A′′[k1]

Heuristics for Ordering of Conjunctive Formulas. Consider a logical
consequence question {ϕ1, ϕ2, . . . , ϕn} |= ψ, such that the formula ψ is al-
ready inconsistent with a subset of formulas in {ϕ1, ϕ2, . . . , ϕn}. As we use an
incremental technique we can use rewriting heuristics to generate a formula
¬ψ ∧ ϕi1 ∧ ϕi2 ∧ . . . ∧ ϕin such that [i1, i2, . . . in] is a permutation of [1, 2, . . . n].
For instance, the formulas ϕ1, ϕ2, . . . , ϕn can be ordered according to the num-
ber of free variables they share with ψ. Hence we improve our chances of finding
a possible contradiction faster if we use this formula instead of the original one
in the proposed algorithm. The following examples demonstrate the effect of
ordering of the subformulas of a conjunctive formula.
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Example 4. Consider a formula ψ = ϕ ∧ ϕ4 where ϕ is the formula given in
Example 1, ϕ4 = νX.(ψ ∧ 〈−〉X) such that ψ = μY.(a ∨ 〈−〉Y ), Σ = {a, b}, and
D = {1, 2}, an APT for ϕ4 is A4 = {Σ, D, Q4, q5, δ4, α4} where:

Q4 = {q5, q6}
δ4(q5, a) = (1, q5) ∨ (2, q5)
δ4(q5, b) = (1, q6) ∨ (2, q6)
δ4(q6, a) = (1, q5) ∨ (2, q5)
δ4(q6, b) = (1, q6) ∨ (2, q6)
α4 = {{q6}, {q5, q6}, {q5, q6}, {q5, q6}}

APT for ψ, A5 = {D, Σ, Q5, q7, δ5, α5}:

Q5 = Q3 ∪ Q4 ∪ {q7}
δ5 = δ3 ∪ δ4 plus the following transitions:
δ5(q7, a) = (1, q4) ∧ (1, q5)
δ5(q7, b) = (1, q4) ∧ (1, q5)
α5 = {{q0, q6}, {q0, q1, q2, q5, q6}, {q0, q1, q2, q3, q5, q6}, {q0, q1, q2, q3, q5, q6}}

Using the proposed strategy we first check whether A1 defined in Example 1
is empty (it is not empty), then we check the emptiness of A3 which is empty
and thus we do not need to construct A′

5 and A′′
5 . The estimated number of

transitions is 10 × 250 for A′
3, and 16 × 2128 for A′

5. The estimated number of
transitions for A′′

3 and A′′
5 are given in Figure 3 where k3 = 20! ·1020 ·310 ·11/10!,

k5 = 32! · 2128 · 316 · 17/16!.

estimated # of transitions for A′′
3 2 × 210 × 210 × k10

3

estimated # of transitions for A′′
5 2 × 216 × 216 × k16

5

Fig. 3. Number of transitions in the NBT automata A′′
3 and A′′

5

Example 5. Consider a logical consequence problem {ϕ2, ϕ3, ϕ4, ϕ5} |= ϕ1 where
ϕ1 and ϕ2 are given in Example 1, ϕ3 = νX.(ψ1 ∧ 〈−〉X) such that ψ1 =
μY.(a∨〈−〉Y ), Σ3 = {a, b}, ϕ4 = νX.(ψ2 ∧〈−〉X) such that ψ2 = μY.(c∨〈−〉Y ),
Σ4 = {c, b}, ϕ5 = νX.(ψ3 ∧ 〈−〉X) such that ψ3 = μY.(d ∨ 〈−〉Y ), Σ5 = {d, b},
and D = {1, 2}, an APT for ϕ3 is A3 = {Σ, D, Q3, q5, δ3, α3} where:

Q3 = {q5, q6}
δ3(q5, a) = (1, q5) ∨ (2, q5)
δ3(q5, b) = (1, q6) ∨ (2, q6)
δ3(q6, a) = (1, q5) ∨ (2, q5)
δ3(q6, b) = (1, q6) ∨ (2, q6)
α3 = {{q6}, {q5, q6}, {q5, q6}, {q5, q6}}
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The APT A4 for ϕ4 and the APT A5 for ϕ5 are the same as A3 except that
the state names are changed and the letter a is replaced with c in A4 and d in
A5, respectively.

Using the proposed strategy we first check if A1 defined in Example 1 is empty
(it is not empty), then we check the emptiness of the intersection automaton A1,2
of A1 and A2 which is empty. Hence, we do not need to construct the complete
intersection automaton A for A1, A2, A3, A4, and A5. The estimated number of
transitions for A′′

1,2 and A′′ are given in Figure 4 where k1 = 20!·1020 ·310 ·11/10!,
k2 = 56! · 2856 · 328 · 29/28!.

estimated # of transitions for A′′
1,2 2 × 210 × 210 × k10

1

estimated # of transitions for A′′ 5 × 228 × 228 × k28
2

Fig. 4. Number of transitions in the NBT automata A′′
1,2 and A′′

5 Related Work

The connection between logic and automata was first considered by Büchi [5]
and Elgot [10]. They have shown that monadic second-order logic over finite
words and finite automata have the same expressive power, and we can trans-
form formulas of this logic to finite automata and vice versa. Later, Büchi [6],
McNaughton [18], and Rabin [21] proved that monadic second-order logic over
infinite words (and trees) and finite automata also have the same expressive
power. The practical use of this connection was investigated for temporal logics
and fixed-point logics which led to the theory of model checking [3,28]. In ad-
dition, μ-calculus formulas can be translated to alternating automata [9,13,27].
Unfortunately, the standard way of checking for emptiness of an alternating
automaton involves Safra’s construction [22]. An alternative approach to this
problem is proposed by Vardi and Kupferman [19] that does not use Safra’s
theorem. An extensive survey on automata and logic can be found in [25].

The connection between logics and automata theory has been used for imple-
menting decision procedures for numerous logics, for example the MONA system
[11,14] for deciding monadic second order logics on finite words and trees. It is
argued that the success of these procedures relies on efficient operations on a
compact representation of automata based on BDDs [14,15]. Recently, an ex-
tension of Safraless decision algorithm that is amenable to implementation was
proposed for LTL formulas [20] which also improved the complexity of the algo-
rithm.

6 Conclusions and Future Work

In this paper, we have developed an incremental approach to an automata-based
decision procedure for μ-calculus. The proposed technique and optimizations are
sufficiently general to be applicable to other automata-based techniques. Future
research will follow several directions:
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1. we attempt to reduce the part of the automaton needed to show satisfia-
bility/unsatisfiability by introducing additional heuristics in the incremental
construction,

2. for particular classes of problems, for which other techniques exhibit better
performance due to reduced search space, we attempt to modify the proposed
incremental approach to mimic those approaches, and

3. we study how the proposed incremental technique can take advantage of
the structure of problems formulated in more restricted formalisms such as
description logics.
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