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Knowledge Representation: a Big Picture

Knowledge K Answer
query

update

What is “Knowledge” (how is it represented, and does the user care?)
⇒ not really as long as the updates and queries “play nicely together”
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Knowledge K Answer
query

update

What is “Knowledge” (how is it represented, and does the user care?)
⇒ not really as long as the updates and queries “play nicely together”

Structured World:

K is a (first order) theory,
queries are (FO) formulæ with answers defined by entailment, and
updates are (variations on) belief revision.
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Knowledge Representation: a Big Picture

Knowledge K Answer
query

update

What is “Knowledge” (how is it represented, and does the user care?)
⇒ not really as long as the updates and queries “play nicely together”

Probabilistic World:

K is a ML model (e.g., neural net),
queries are inputs (e.g., photos) and answers are labels
updates are pairs of, e.g., photos with their labels.
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Abstract. In this paper we present MASTRO, a Java tool for ontology-based data access (OBDA) developed at Sapienza Univer-
sità di Roma and at the Free University of Bozen-Bolzano. MASTRO manages OBDA systems in which the ontology is specified
in DL-LiteA,id , a logic of the DL-Lite family of tractable Description Logics specifically tailored to ontology-based data access,
and is connected to external JDBC enabled data management systems through semantic mappings that associate SQL queries
over the external data to the elements of the ontology. Advanced forms of integrity constraints, which turned out to be very
useful in practical applications, are also enabled over the ontologies. Optimized algorithms for answering expressive queries
are provided, as well as features for intensional reasoning and consistency checking. MASTRO provides a proprietary API, an
OWLAPI compatible interface, and a plugin for the Protégé 4 ontology editor. It has been successfully used in several projects
carried out in collaboration with important organizations, on which we briefly comment in this paper.
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1. Introduction

In this paper we present MASTRO, a tool for
ontology-based data access developed at Sapienza
Università di Roma and at the Free University of
Bozen-Bolzano. Ontology-based data access (OBDA)
refers to a setting in which an ontology is used as a
high-level, conceptual view over data repositories, al-
lowing users to access data without the need to know
how they are actually organized and where they are
stored (cf. Fig. 1).

The OBDA approach turns out to be very useful in
all scenarios in which accessing data in a unified and
coherent way is difficult. This may happen for several

*Corresponding author.

reasons. For example, databases may have undergone
several manipulations during the years, often for op-
timizing applications using them, and may have lost

Fig. 1. Ontology-based data access.
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Information Integration [Genesereth: Data Integration, 2010]

Data Exchange [Arenas et el.: Data Exchange, 2014]
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Data vs. Metadata

Raw Data
Vocabulary

User
Vocabulary

Knowledge

Answer
query

Data
Repositories

update

1 Metadata: constraints formulated in FOL (static)
2 Data: ground tuples (can be “modified”)

⇒ user queries and updates only about data.
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(Physical) Data Independence

IDEA:
Separate the users’ view(s) of the data from
the way it is physically represented.

Originally just two levels: physical
and conceptual/logical [Codd1970].

Physical Data Independence and ADTs

data independence [Bachman, 1969,
Date and Hopewell, 1971] and
[Codd, 1970]
ADTs [Liskov and Zilles, 1974]

[ANSI/X3/SPARC Standards
Planning and Requirements
Committee, Bachman, 1975]

David Toman (et al.) Physical Data Independence Motivation 5 / 41



(Physical) Data Independence

IDEA:
Separate the users’ view(s) of the data from
the way it is physically represented.

Originally just two levels: physical
and conceptual/logical [Codd1970].

Physical Data Independence and ADTs

data independence [Bachman, 1969,
Date and Hopewell, 1971] and
[Codd, 1970]
ADTs [Liskov and Zilles, 1974]

[ANSI/X3/SPARC Standards
Planning and Requirements
Committee, Bachman, 1975]

David Toman (et al.) Physical Data Independence Motivation 5 / 41



(Physical) Data Independence

IDEA:
Separate the users’ view(s) of the data from
the way it is physically represented.

Originally just two levels: physical
and conceptual/logical [Codd1970].

Physical Data Independence and ADTs

data independence [Bachman, 1969,
Date and Hopewell, 1971] and
[Codd, 1970]
ADTs [Liskov and Zilles, 1974]

[ANSI/X3/SPARC Standards
Planning and Requirements
Committee, Bachman, 1975]

David Toman (et al.) Physical Data Independence Motivation 5 / 41



Outline

1 Queries

2 Updates

3 How does it Work and (Performance) Bonus

4 Future Research/Open Issues
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QUERIES AND QUERY COMPILATION
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The Structured/Logical Way (via an OBDA example)
Queries and Ontologies

Queries are answered not only w.r.t. explicit data (A)
but also w.r.t. background knowledge (T )

⇒ Ontology-based Data Access (OBDA)

Example

Socrates is a MAN (explicit data)
Every MAN is MORTAL (ontology)

List all MORTALs ⇒ {Socrates} (query)

How do we answer queries?

Using logical implication (to define certain answers):
Ans(φ,A, T ) := {φ(a1, . . . ,ak ) | T ∪ A |= φ(a1, . . . ,ak )}

⇒ answers are ground φ-atoms logically implied by A ∪ T .
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The Logical Way: Complexity

The Good News

LOGSPACE/PTIME (data complexity) for query answering:
(U)CQ and
DL-Lite/EL⊥/CFD∀

nc/“rules”-lite (Horn), s-t dependencies,. . .

The Bad News

no negative queries/sub-queries
no negations in ABox
no closed-world assumption
counter-intuitive query answers

⇒ the same goes for information integration, data exchange, etc.
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Difficulties: Unintuitive Answers

Example

EMP(Sue)
EMP ⊑ ∃PHONENUM (or ∀x .EMP(x) → ∃y .PHONENUM(x , y))

User: Does Sue have a phone number?
Information System: YES

User: OK, tell me Sue’s phone number!
Information System: (no answer)

User:
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What does a User Want? . . . but is afraid to ask

1 what I know and what I don’t is just a single model (CWA);

2 queries are model-checked against this model;

3 updates change the model into another single model.

YES, BUT:
it better run fast!! (and preferably without having to code algorithms/data
structures by hand)
and performance/data storage-representation/. . . can all be
improved/changed without changing the user queries/updates
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User Queries and Updates – for TODAY

Queries: First-order (open) formulae over the user vocabulary
⇒ only range-restricted formulae

Updates: Instances of Delta-relations (tuples to be inserted/deleted)
for ALL relations in the user vocabulary

⇒ only consistency-preserving transactions allowed

. . . a.k.a. the Relational Model and Relational Calculus [Codd, 1972].
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Rewritability and Definability

User and System Expectations

Queries range-restricted FOL (a.k.a. SQL)
Ontology/Schema range-restricted FOL Σ := ΣL ∪ ΣLP ∪ ΣP

Data CWA (complete information)

ΣL SL φoo Logical Schema
and User Queries

to users it looks like a single model (of the logical schema)
implementation can pick from many models

but definable queries answer the same in each of them

Query (SL)
φ

��

Compile
ψ (Query Plan over SA)

��

Schema (SL ∪ SP)
Σ

OO

Run // Answers

Data (SA ⊆ SP)
(instance of) SA
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Rewritability and Definability

User and System Expectations

Queries range-restricted FOL over SL definable w.r.t. Σ and SA

Ontology/Schema range-restricted FOL Σ := ΣL ∪ ΣLP ∪ ΣP

Data CWA (complete information for SA symbols)

ΣL SL φoo Logical Schema
and User Queries

ΣLP (?)

��

ΣP SA ⊆ SP ψoo Physical Schema
and Query Plans

[Borgida, de Bruijn, Franconi, Seylan, Straccia, Toman, Weddell: On Finding
Query Rewritings under Expressive Constraints. SEBD 2010: 426-437]
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This is NOT OMQ/OBDA (by example)

SL = {emp/1,wkr/1,mgr/1} and ΣL =

{
mgr(x) ∨ wkr(x) ↔ emp(x)
mgr(x) ∧ wkr(x) → ⊥

}

SA = {emp/1/0,mgr/1/0}

Query {x | wkr(x)} over mgr = {Fred}, and emp = {Fred,Wilma}

Certain Answer under OWA: { }
Answer under CWA: {Wilma}

(obtained by executing the plan {x | emp(x) ∧ ¬mgr(x)}).
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What can we do with this?

Goal #2

Generate query plans that compete with hand-written programs in C

1 standard RDBMS physical designs (and more),
access to search structures (index access and selection),
horizontal partitioning/sharding,
column store/index-only plans,

2 pointer-based data structures (including main mamory),
3 hash-based access to data (including hash-joins),
4 multi-level storage (aka disk/remote/distributed files), . . .
5 materialized views,
6 updates through logical schema
7 . . .

. . . all without having to code (too much) in C/C++ !
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Standard Physical Designs

1 scanning (flat) files
2 primary and secondary indices (via record ids/addresses)
3 horizontal partitioning/sharding
4 column store/index-only plans
5 (disjoint) generalizations
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Pointers in Main Memory-Logical Schema

CREATE TABLE employee ( CREATE TABLE department (
num INTEGER NOT NULL, num INTEGER NOT NULL,
name CHAR(20), name CHAR(50),
worksin INTEGER NOT NULL manager INTEGER NOT NULL,
PRIMARY KEY (num), PRIMARY KEY (num),
FOREIGN KEY (worksin) FOREIGN KEY (manager)

REFERENCES department REFERENCES employee
) )

this corresponds to
SL = {employee/3,department/3} and

ΣL = {employee(x , y1, z1) ∧ employee(x , y2, z2) → y1 = y2 ∧ z1 = z2,
employee(x , y , z) → ∃u, v .department(z, u, v), . . . and many more }.

additional logical constraints (for example):
managers are employees that manage a department (a view)
managers work in their own departnemts (business rule)
workers and managers partition employees (partition), etc.
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Pointers in Main Memory-Physical Design
1 Records:

struct emp { struct dept {
int num; int num;
char[20] name; char[50] name;
dept* dept; }; mgr* emp; };

2 a linked list of emp records.

that corresponds to
Access paths (SA):

empfile/1/0: set (list) of addresses of emp records;
emp-num/2/1: pairs emp record address-emp number (pointer navigation)

same for emp-name/2/1 and emp-dept/2/1;
dept-num/2/1: pairs dept record address-dept number

same for dept-name/2/1 and dept-mgr/2/1.

Integrity constraints (ΣP ∪ ΣLP ):

∀x , y , z.employee(x , y , z) → ∃w .empfile(w) ∧ emp-num(w , x),
∀a, x .empfile(a) ∧ emp-num(a, x) → ∃y , z.employee(x , y , z), . . .
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Query Plans that Navigate Pointers
1 List employee numbers, names, and departments (employee(x , y , z)):

∃e,d .empfile(e) ∧ emp-num(e, x) ∧ emp-name(e, y)
∧ emp-dept(e,d) ∧ dept-num(d , z)

or, in C-like syntax: for e in empfile do
x := e->num;
y := e->name;
d := e->dept;
z := d->num;

2 List worker numbers and names (∃z.worker(x , y , z)):

∃e,d .empfile(e) ∧ emp-num(e, x) ∧ emp-name(e, y)
∧ emp-dept(e,d) ∧ ¬dept-mgr(d ,e)

3 List all department numbers and their names (∃z.department(x , y , z)):

.empfile(e) ∧ emp-dept(e,d)
∧ dept-num(d , x) ∧ dept-name(d , y)

⇒ needs “departments have at least one employee”.
. . . needs duplicate elimination during projection.

.empfile(e) ∧ emp-dept(e,d)
∧ dept-num(d , x) ∧ dept-name(d , y) ∧ dept-mgr(d ,e)

⇒ needs “managers work in their own departments”.
. . . NO duplicate elimination during projection.
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. . . and we can actually synthesize this!
david$ compile tests/new_fe/book-em-v4-new-query.fol
query(q0dept2,2,0,[var(0,0,1,int),var(0,0,2,int)]) <->
ex(var(0,76,4),

ex(var(0,81,5),
and (

and (
empfile(var(0,76,4))
emp_dept(var(0,76,4),var(0,81,5))

)
and (

and (
dept_num(var(0,81,5),var(0,0,1))
dept_name(var(0,81,5),var(0,0,2))

)
dept_mgr(var(0,81,5),var(0,76,4))

)
)

)
)

David Toman (et al.) Physical Data Independence What can it do? 20 / 41



What can it do: Hashing, Lists, et al.

Hash Index with (list-based) Separate Chaining

... D1

i : • // •

//

• // •

//

⊥

... D3

j : ⊥

...

n : • // •

//

⊥ D2

Hash Array Separate Chaining Linked Lists Dept Records
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What can it do: Hashing, Linked lists, et al.

Hash Index on department’s name:

Access paths:
SA ⊇ {hash/2/1,hasharraylookup/2/1,listscan/2/1}.

Physical Constraints:
ΣLP ⊇ {∀x , y .((deptfile(x) ∧ dept-name(x , y)) → ∃z,w .(hash(y , z)

∧ hasharraylookup(z,w) ∧ listscan(w , x))),
∀x , y .(hash(x , y) → ∃z.hasharraylookup(y , z)),
∀x , y .(listscan(x , y) → deptfile(y)) }

Query:
∃y .(department(x1,p, y) ∧ employee(y , x2)){p}.

∃h, l ,d ,e.hash(p,h) ∧ hasharraylookup(h, l) ∧
listscan(l ,d) ∧ dept-name(d ,p) ∧
dept-num(d , x1) ∧ dept-mgr(d ,e) ∧ emp-name(e, x2)
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What can this do: two-level store

The access path empfile is refined by emppages/1/0 and emprecords/2/1:

emppages returns (sequentially) disk pages containing emp records, and
emprecords given a disc page, returns emp records in that page.

5 List all employees with the same name
(∃z.employee(x1, z) ∧ employee(x2, z)):

∃y , z,w , v ,p,q.emppages(p) ∧ emppages(q)
∧ emprecords(p, y) ∧ emp-num(y , x1) ∧ emp-name(y ,w)
∧ emprecords(q, z) ∧ emp-num(z, x2) ∧ emp-name(z, v)

∧ compare(w , v).

⇒ this plan implements the block nested loops join algorithm.
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Updates

Raw Data
Vocabulary

User
Vocabulary

Knowledge

Answer
query

Data
Repositories

update

1 Katsuno, Mendelzon: On the Difference between Updating a Knowledge
Base and Revising It. KR 1991.

2 De Giacomo, Lenzerini, Poggi, Rosati: On Instance-level Update and
Erasure in Description Logic Ontologies. J. Log. Comput. 19(5) 2009.

. . . we follow a definable updates approach here instead. . .
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Updates and Definability

User updates through logical schema ONLY:
⇒ supplying “delta” relations (sets of tuples)

Delta relations: R+ (insertions) and R− (deletions);

ΣL SL Zb U+, U−

compile





ΣLP

ΣP SA ⊆ SPZb A+, A−

Update turned into definability question

Is An (or A+,A−) definable in terms of Ao
i ∈ So

A (old access paths)
and U+

j , U−
j (user updates) for every access path A ∈ SA?
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Unknown/Anonymous Values?

Example (Add a new Undergraduate student)

INSERT into undergrad values (1234, ’Wilma’);

⇒ the request then needs to be translated to
INSERT into student values (0xFE1234, 1234, ’Wilma’);

⇒ but where did 0xFE1234 came from? (definability issue!)

Constant Complement: [Bancilhon, Spyratos: Update semantics of relational
views. ACM Trans. Database Syst. 6(4), 1981.]

additional access paths that provide such values:

⇒ in our case student-addr(id,adress)
⇒ and where undergrad+ = {(1234,Vilma)}

student+(x1, x2, x3) = undergrad+(x1, x3) ∧ student-addr(x2, x1)

The additional access path(s) correspond to space allocation
. . . and cyclic dependencies are broken via reification.
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Unknown/Anonymous Values?

Example (Add a new Undergraduate student)

INSERT into undergrad values (1234, ’Wilma’);

⇒ the request then needs to be translated to
INSERT into student values (0xFE1234, 1234, ’Wilma’);

⇒ but where did 0xFE1234 came from? (definability issue!)

Constant Complement: [Bancilhon, Spyratos: Update semantics of relational
views. ACM Trans. Database Syst. 6(4), 1981.]

additional access paths that provide such values:

⇒ in our case student-addr(id,adress)
⇒ and where undergrad+ = {(1234,Vilma)}

student+(x1, x2, x3) = undergrad+(x1, x3) ∧ student-addr(x2, x1)

The additional access path(s) correspond to space allocation
. . . and cyclic dependencies are broken via reification.
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HOW DOES IT ALL WORK?
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The Plan

Definability and Rewriting
Queries range-restricted FOL over SL definable w.r.t. Σ and SA
Ontology/Schema range-restricted FOL
Data CWA (complete information for SA symbols)

ΣL SL φoo (Logical Schema)

ΣLP (rewriting)

��
ΣP SA ⊆ SP ψoo (Physical Schema)
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Query Plans via Interpolation

IDEA #1: Plans as Formulas

Represent query plans as (annotated) range-restricted formulas ψ over SA:

atomic formula 7→ access path (get-first–get-next iterator)
conjunction 7→ nested loops join
existential quantifier 7→ projection (annotated w/duplicate info)
disjunction 7→ concatenation
negation 7→ simple complement

⇒ reduces correctness of ψ to logical implication Σ |= φ↔ ψ

Non-logical (but necessary) Add-ons

1 Non-logical properties/operators
binding patterns
duplication of data and duplicate-preserving/eliminating projections
sortedness of data (with respect to the iterator semantics) and sorting

2 Cost model
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Beth Definability and Craig Interpolation

IDEA #2: What Queries do we allow?

We only allow queries that have the same answer in every model of Σ
for a fixed interpretation of the signature SA (i.e., where the actual data is).

How do we test for this?

φ is Beth definable [Beth’56] if

Σ ∪ Σ′ |= φ→ φ′

where Σ′ (φ′) is Σ (φ) in which symbols NOT in SA are primed, respectively.

How do we find ψ?

If Σ∪Σ′ |= φ→ φ′ then there is ψ s.t. Σ∪Σ′ |= φ→ ψ → φ′ with L(ψ) ⊆ L(SA).

. . . ψ is called the Craig Interpolant [Craig’57].

. . . we extract an interpolant ψ from a (TABLEAU) proof of Σ ∪ Σ′ |= φ→ φ′
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Issues with TABLEAU

Dealing with the subformula property of Tableau
⇒ analytic tableau explores formulas structurally
⇒ (to large degree ) the structure of interpolant

depends on where access paths are present in queries/constraints.

IDEA #3:

Separate general constraints from physical rules in the formulation of
the definability question (and the subsequent interpolant extraction):

ΣL ∪ ΣR ∪ ΣLR |= φL → φR where ΣLR = {∀x̄ .PL ↔ P ↔ PR | P ∈ SA}

Factoring logical reasoning from plan enumeration
⇒ backtracking tableau to get alternative plans: too slow, too few plans

IDEA #4:
Define conditional tableau exploration (using general constraints)

and separate it from plan generation (using physical rules)
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Conditional Tableau through (a simple) Example

Example Schema

Rules: q(x) → a(x), q(x) → c(x), a(x) ∧ c(x) → q(x), c(x) → ∃y .b(x , y)

Plans

Query plan 1: a(x) ∧ c(x)
Query plan 2: a(x) ∧ (∃y .b(x , y)) ∧ c(x)
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CONDITIONAL TABLEAU AND CLOSING SETS

1 Byte code generation for q/2
q(x,y) <-> ex(z,table(x,x,z) and table(z,y,y)

and not table(x,x,x))

2 Conditional Tableau Construction
L { -p0basetable(sl19:7,sl14:3,sl0:2,sl0:2) }
L { -p0basetable(sl19:5,sl0:1,sl0:1,sl14:3) }
L { +p0basetable(sr19:8,sl0:1,sl0:1,sl0:1) }
R { -p0basetable(sr19:8,sl0:1,sl0:1,sl0:1),

+p0basetable(sl19:7,sl14:3,sl0:2,sl0:2),
+p0basetable(sl19:5,sl0:1,sl0:1,sl14:3) }

3 Cost-based Optimization (A*)
4 C code Generation (+ compilation/linking w/runtime library)

[Hudek, Toman, Weddell: On Enumerating Query Plans Using Analytic
Tableau. TABLEAUX 2015.]
[Toman, Weddell: An Interpolation-based Compiler and Optimizer for
Relational Queries (System design Report). IWIL-LPAR 2017.]
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CONDITIONAL TABLEAU: RESULT

query(q,2,0,[var(0,0,1,int),var(0,0,2,int)]) <->
ex(var(0,14,3),
ex(var(0,19,5),
ex(var(0,19,7),

and (
and (

p0basetable(var(0,19,7),var(0,14,3),
var(0,0,2),var(0,0,2))

p0basetable(var(0,19,5),var(0,0,1),
var(0,0,1),var(0,14,3))

)
not (

ex(var(1,19,8),
p0basetable(var(1,19,8),var(0,0,1),

var(0,0,1),var(0,0,1))
)

) ) ) ) )
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Postprocessing: Duplicate Elimination Elimination

IDEA:
Separate the projection operation (∃x̄ .) to

a duplicate preserving projection (∃) and
an explicit (idempotent) duplicate elimination operator ({·}).

Use the following rewrites to eliminate/minimize the use of {·}:

Q[{R(x1, . . . , xk )}]↔Q[R(x1, . . . , xk )]
Q[{Q1 ∧ Q2}]↔Q[{Q1} ∧ {Q2}]

Q[{¬Q1}]↔Q[¬Q1]
Q[¬{Q1}]↔Q[¬Q1]

Q[{Q1 ∨ Q2}]↔Q[{Q1} ∨ {Q2}] if Σ ∪ {Q[]} |= Q1 ∧ Q2 → ⊥
Q[{∃x .Q1}]↔Q[∃x .{Q1}] if

Σ ∪ {Q[] ∧ (Q1)[y1/x ] ∧ (Q1)[y2/x ] |= y1 ≈ y2

. . . reasoning abstracted: a DL CFD∀−
nc (a PTIME fragment)

[Toman, Weddell: Using Feature-Based Description Logics to avoid Duplicate
Elimination in Object-Relational Query Languages. Künstliche Intell. 34(3): 2020]
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Interpolation (in practice)

Difficulties with naive implementation/Obstacles

1 Structural properties of proofs (e.g., subformula property)
2 Alternative interpolants/plans (can we just backtrack the proof system?)

(A) solution: a conditional tableau:

1 reformulate the interpolation problem to
ΣL ∪ ΣR ∪ ΣLR |= φL → φR where ΣLR = {∀x̄ .PL ↔ P ↔ PR | P ∈ SA}

2 use conditional (ground) atoms and
closing sets: sets of SA literals that (fully) close a tableaau

3 separate general reasoning from interpolant enumeration
VM-driven conditional tableau for ΣL ∪ {φL} and for ΣR ∪ {φR → ⊥}
A∗-based interpolant generator w.r.t. closing sets and ΣLR

Details: [Hudek et al., 2015, Toman and Weddell, 2017]
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Compiler Architecture

Query //
Duplicate,
Compile to
Bytecode

//
Split

Tableau
VM //

oo
Planner

(A*)

��
OO

// Code
Generator

��

Schema //
Compile to
Bytecode
(optimize)

OO

Postproc.
and Cost

Estimation

C(lang)
and

Linker
//

Execu-
table
Code

Cost
model

OO

Access Path
Libraries

OO
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Summary

Take Home

While in theory interpolation essentially solves the query rewriting over FO
schemas/views problem, the devil is (as usual) in the details.

[Borgida, de Bruijn, Franconi, Seylan, Straccia, Toman, Weddell: On Finding
Query Rewritings under Expressive Constraints. SEBD 2010: 426-437

. . . but an (almost) working system only this year.

1 FO tableau based interpolation algorithm
⇒ enumeration of plans factored from of tableau reasoning
⇒ extra-logical binding patterns and cost model

2 Post processing (using CFDInc approximation)
⇒ duplicate elimination elimination
⇒ cut insertion

3 Run time
⇒ library of common data/legacy structures+schema constraints
⇒ finger data structures to simulate merge joins et al.
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Research Directions and Open Issues

1 Dealing with ordered data? (merge-joins etc.: we have a partial solution)

2 Decidable schema languages (decidable interpolation problem)?

3 More powerful schema languages (inductive types, etc.)?

4 Beyond FO Queries/Views (e.g., count/sum aggregates)?

5 Coding extra-logical bits (e.g., binding patterns, postprocessing, etc. )
in the schema itself?

6 Standard Designs (a plan can always be found as in SQL)?

7 Explanation(s) of non-definability?

8 Fine(r)-grained updates?

9 . . .

. . . and, as always, performance, performance, performance!
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