
Testing Containment of Conjunctive Queries
Under Functional and Inclusion Dependencies

(Extended Abstract)

D. S. Johnson A. Klug*

Bell Laboratories University of Wisconsin
Murray Hill, NJ 07974 Madison, WI 53706

ABSTRACT. We consider the problem of optimizing conjunc-
tive queries in the presence of inclusion and functional dependen-
cies. We show that the problem of containment (and hence those
of equivalence and non-minimality) is in NP when either (a)
there are no functional dependencies or (b) the set of dependen-
cies is what we call key-bused. These results assume that infinite
databases are allowed. If only finife databases are allowed, new
containments may arise, as we illustrate by an example. We also
prove a “compactness” theorem that shows that no such exam-
ples can exist for case (b).

1. INTRODUCTION

The concept of an inclusion dependency in a relational data-
base is a generalization of the Codd’s notion of a “foreign key,”
as introduced in his seminal paper on the relational data model
161. Together with other types of dependencies, such as func-
tional dependencies, these dependencies provide a formal device
for ensuring that databases model real-world entities and relation-
ships.

Inclusion dependencies have been previously discussed
(under various names) in [7,8,10,12,131 -- we take our terminol-
ogy from Fagin 181. An inclusion dependency (ID) says that
values in columns of one relation must also appear as values in
columns of some other relation. For example, suppose we are
given relations:

EMP (employee number, salary, department)

DEP (department, location)

Then the ID “EMP(department) G DEP(department)” says that
the values in the department column of the EMP relation are all
values in the department column of the DEP relation, i.e., that
every department that has an employee also has a location. In
this paper, we show how ID’s affect the containment,
equivalence, and minimization of conjunctive queries.

Conjunctive queries form a large and well-studied class of
queries, containing a large proportion of those questions one
might wish to ask in practice. When there are no constraints to

*Work of this author prtially rupportcd by US. Army Contract
+ DAAG29.79-C-0165 and NSF Grant IMW102864

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

0 1982 ACM 0-89791-070-2/82/003/0164 $00.75

consider, or when there are only functional dependencies, it has
been shown that the containment, equivalence, and minimization
problems are all NP-complete [51. Such results are usually con-
sidered to be negative, since they show that the problems are as
hard as problems for which it is widely conjectured no polynomial
time algorithms exist. In this paper we shall emphasize a more
positive point of view: Since so many problems in the area of
relational databases are undecidable, provably exponential, or at
least PSPACE-hard (e.g., see [3,41), there is at least a bit of hope
for a problem when it can be shown to be no harder than NP-
complete.

This is especially true for problems concerned with query
optimization, since queries tend to be very much smaller than the
databases to which they are to be applied, and queries may be
applied repeatedly over time. Thus an algorithm whose running
time is exponential in query length may still pay for itself even if
it only yields a relatively small improvement in the query. Furth-
ermore, suppose, say, that the equivalence problem were in NP.
Then it would be possible to give “short proofs” of equivalence,
and a knowledge of the intended meaning of a query might on
occasion help us to find such proofs quickly.

In this paper we consider the extent to which the “NP-
easyness” of the above problems generalizes to the case where
inclusion dependencies are present. It is conceivable that ID’s
make the problems much more difficult. As shown by Casanova,
Fagin, and Papadimitriou 131, the combination of FD’s with ID’s
is not finitely axiomatizable, and the inference problem for ID’s
alone is PSPACE-complete (whereas the inference problem for
FD’s by themselves is solvable in polynomial time). The poten-
tial effect of ID’s on questions of query optimization is easily
illustrated. Consider the following two conjunctive queries
addressed to databases of the form specified above.

Qr = ((e): There exists,d,l such that

EMP (e ,s ,d) and DEP (d ,I))

Qs = {(e): There exists,d such thatEMP(e,s,d)]

These two queries are equivalent if the ID “EMP (department) C
DEP(department)” holds, although they can give quite distinct
answers if it does not.

Thus the presence of ID’s gives rise to new and possibly
more difficult problems. Attempts to extend the techniques and
lemmas of [1,2,51 to handle ID’s run into immediate difficulties
since they seem to require the construction of infinite objects (as
part of “chase” procedures). New methods would seem to be
required.

In this paper we concentrate on the question of contain-
ment, since it is easy to show that whenever the containment
problem is in NP, then so are the equivalence problem and the
problem of determining whether a query is nor minimal. We
show that, assuming that the ID’s and FD’s satisfy certain rea-
sonable conditions, a certain “compactness” result holds and the

164

containment problem for conjunctive queries remains in NP. The
compactness result can fail for sets of dependencies not satisfying
the conditions, as is illustrated by a simple example containing
just one FD and one ID. If one is willing’to settle for the more
restrictive notion of containment for UN databases, including
infinite ones, then the compactness result is not needed, and less
stringent conditions on the dependencies will suffice. For
instance, when there are no FD’s, containment (over all data-
bases) is in NP for any fixed finite set of ID’s (The fact that the
problem is harder when restricted to finite databases is analogous
to results on the inference problem for embedded implicational
dependencies in [4]).

In Section 2 we review the basic definitions of the relational
model, along with those for conjunctive queries, and present for-
mal definitions of inclusion and functional dependencies. In Sec-
tion 3 we show how to test for query containment (over all data-
bases) in nondeterministic polynomial time, if the set of depen-
dencies is fixed and either contains no FD’s or is “key-based.” In
Section 4 we discuss the issue of containment for finite databases
versus containment for all databases, and prove our compactness
result, showing that for key-based dependencies, the two notions
are the same. Section 5 then concludes with a discussion of open
problems and directions for future research.

2. DEFINI,TIONS AND NOTATION

A relation R is a two-dimensional table with columns
labeled by distinct ortributes and a possibly infinite number of
rows (or n&s). Each attribute A has B domain D(A), and
entries in a column labeled by by A must be elements of the
domain D(A). The relation scheme for a relation R is the
sequence of attributes labelling its columns, and may be viewed
as an ordered subset of the set of all attributes. Since the order
of the rows in a relation has no significance, we can view a rela-
tion with scheme (A1,A2,....Ak) as a subset of
D(A,) X D(A,) X . . X D(Ak). A database is a finite
sequence of relations. The relarion schema for a database is the
sequence of relation schemes for the tables it contains.

A query Q can be viewed as a mapping from databases to
relations. Given any database D that satisfies a specified input
relation schema, it produces a set of tuples Q(D) fitting an associ-
ated ourpur scheme. If Q and Q are queries with the same input
schemas and output schemes, we say that Q is inf;nife.‘y contained
in Q’, written Q ~~ Q’, if for all appropriately formatted (and
not necessarily finite) databases D. Q(D) C Q’(D). We say that
Q isfinirely contained in Q, written Q C/ Q. if the above holds
for all appropriately formatted finite databases. It is, of course,
this latter and presumably weaker form of containment that
would be relevant in practice. Two queries Q and Q’ would nor-
mally be considered to be equivalent if Q ~1 Q’ and Q’ Cl Q.

We formalize the way dependencies affect containment as
follows: Suppose Z is a set of dependencies. We then write
Xi= Q c, Q (El= Q cf Q’), if Q(D) C Q(D) for all
appropriately formatted (finite) databases D that obey the depen-
dencies in 2.

Our notation for functional and inclusion dependencies will
be as follows: A functional dependency is a formal statement of the
form R: Z-A, where R is a relation name, Z is a set of attri-
butes of R, and A is an attribute. A database obeys this FD if
there are no tuples in relation R with identical Z-values and
different A-values. An inclusion dependency is a formal statement
of the form R [Xl c S[Y], where R and S are relation names, X
is an ordered list of attributes of R, and Y is an ordered list of
attributes of S of the same length as X. A database obeys the ID
RtJl ,... J,l G S[K,,.... K~] if for every subtuple <aI, . . . , Oj>
that occurs in columns Jt,...,Jj of some tuple in relation R, there
is a tuple of relation S that contains tai,...,Uj> in columns
tK ,,..., Kj>.

Conjunctive queries are discussed in detail in Chandra and
Merlin [s], Aho, Sagiv, and Ullman [1,2], and Johnson and Klug
[9]. In general we shall specify conjunctive queries informally, as

we did for Qi and Qs in the previous section. However, it will
also be useful to be able to view such a query Q as a formal
object, with the following parts: (I) an input schema I@, (2) an
output scheme 0, = (A,. . . ,&I, (3) a set XQ = (x,....,xp] of
diflinguished variables (DVs), (4) a set Yp = b,,...,y,) of non-
distinguished voriubles (NDVs), and (5) a set C, = {c,, . . . ,c,]
of distinct conjuncfs, each conjunct ci being associated with a rela-
tion R(q) of the input schema fe and having the form
(ci]l],...,cr]m]), where m = Length(c) is the number of columns
(attributes) in R(q) and each CiGI is either a DV, an NDV, or a
conslonf, i.e., an element of the domain of the j’* attribute of
R(q). The tuple (xi,...,xp) is called the summaryrow of Q.

As an illustration of these definitions, recall the query Q,
from the previous section:

Q, = ((e): There exists,d,l such that

EMP(e,s,d) and DEP(d,l))

For this query the input schema is <EMP,DEP>, the output
scheme is (employee number), the set of DV’s is (e], the set of
NDV’s is (s,d,l], and the conjuncts are (e.s,d) and (d,l), with
R(e,s,d) = EMP and R(d,l) =DEP. The summary row is
“(e)“. There are no constants in this particular query.

Given a database B and a conjunctive query Q, the relation
constructed when Q is applied to B is

Q(B) = ((x,,....x~) : x, c D(Ai) and there exist y,,...,ys such
that for all ci E C,, the tuple
(c,[ll ,...,ci[m]), with the valuations of
the DVs and NDVs substituted in, is a
row in relation R (c,) of B]

An equivalent definition of Q(B), which will prove useful
in what follows, involves the notion of a homomorphism from a
query Q to a database B. Let Uo be the set of all symbols
(DV’s, NDV’s, and constants) occuring in Q, and let DB be the
union of the domains of all the attributes occurring in B. A
homomorphism from Q to B is a function f: UQ - DB that
sends each constant to itself and induces a well-defined map from
the conjuncts of Q to rows in the corresponding relations of 19.
A tuple a = (at, . . . , up) is in Q(B) if and only if there is a
homomorphism f from Q to B under which the image of the
summary row of Q summary row is 0, i.e., under which
/(xi)=ai, lsisp.

3. CHASES AND CONTAINMENTS

A key concept in our containment algorithm is that of the
chase of a conjunctive query with respect to a set of dependencies
Z Ill]. The conjuncts of a query Q can be viewed as tuples in a
database satisfying the query’s input schema, where each variable
is interpreted as a unique new constant. However, this collection
of tuples may not qualify as a proper database if there is a set Z
of dependencies that proper databases must obey. The idea of
the chase is to convert the conjuncts of a query into a proper
database, possibly by coalescing distinct conjuncts, or adding new
ones.

In the case when there are only FD’s in 2. each step of the
chase consists of an application of the following chase rule for
FD’s:

If R:Z+A is an FD in Z and ci=Csi, .. . ,zn> and
c*=<w,. . . ,w,, > are conjuncts with R (c 1) = R (~1) = R,
c,[Z]=cz[Z], and c,[Al # cJA1, we say that the given FD
is applicable and identify the symbols <,[A1 and cJA1.
wherever they occur in the conjuncts and summary row of
Q. The value for the combined symbol is determined as
follows: If both were constants, delete all conjuncts from Q
and halt (this query cannot be chased to an equivalent query
obeying the given FD). If one is a constant, let the com-
bined symbol be that constant. If both are variables, choose
either variable to represent the combined symbol, except
that a DV is preferred to an NDV.

165

After a finite amount of work, there will be no more applicable
FD’s and the chase will terminate. Depending on the choices
made along the way, any one of a number of syntactically distinct
queries might result from this process (although Maier et. al. [111
have shown that the result is unique up to a renaming of the vari-
ables). In what follows, we shall assume that we have specified
an explicit, deterministic method for making the above choices,
so that the resulting query is well-defined, even up to the names
of its variables. We shall call this query chase,(Q) (Our results
will hold no matter what method is specified).

In the case where I: contains only FD’s, it has been shown
that Z I= Q C/ Q if and only if there is a homomorphism of Q
to chaser(Q), i.e., a map h of the symbols of Q’ to the symbols
of chase,(Q) that leaves constants fixed, induces a well-defined
map from the conjuncts of Q to the conjuncts of chasez(Q), and
sends the summary row of Q to the summary row of chasez(Q)
(see [1,2,5,9)). This result relies on the fact that if there is a
homomorphism from Q to a database D, then there is a
homomorphism from chosez(Q) to D. In order to have this
latter fact hold true when ID’s are allowed, we are more-or-less
forced to define the following chase rule for ID’s:

If RR] c SLY] is an ID of Z, c is a conjunct of Q with
R(c) = R , and there is no conjunct c’ such that R (c’) =S
and C[Y]=c[X], we say the ID is applicable and add a new
conjunct c“ to Q where R(cN) =S, c”[Y] =c [XI and where
c”[Al is a distinct new symbol for each attribute A not in
Y.

To construct chasez(Q) when Z contains both FD’s and ID’s,
one applies applicable FD’s and ID’s as follows: (1) If there is an
applicable FD, apply it, (2) If a number of conjuncts have appli-
cable ID’s, choose one of minimum level, where the level of a
conjunct from Q is 0 and the level of a conjunct generated by
applying an ID to a level-i conjunct has level i+l. (Other ties
are less significant and, as before, will be broken according to
some arbitrarily chosen but prespecified rule).

It is easy to see that even such simple Z’s as the single ID
“{R [2I C R [I])” can give rise to infinite chases under the above
rules. However, we do have the desired lemma and theorem
(proofs are left to the reader):

Lemma 1. If D satisfies the dependencies of Z: and f is a
homomorphism from a conjunctive query Q to D, then f can be
extended to a homomorphism from chase,(Q) to D.

Theorem 1. If Q and Q are conjunctive queries, then I: Is
Q c, Q’ if and only if there is a homomorphism from Q’ to
chaseZ(Q).

Note that, since chasep(Q) might be infinite, Theorem 1
does not immediately yield an algorithm for testing containment,
although it does show that the set [(Z,Q,Q’): Z I= Q C, Q’] is
recursively enumerable, Our goal is to show that this set is actu-
ally in NP for fixed values of Z. We have been able to show that
this is true for two important types of Z.

Let us call a set I: of FD’s and ID’s key-based if (a) For a
given relation R, the FD’s R:Z-A all have the same left-hand-
side Z, and every attribute of relation R which is not in Z is the
right-hand-side of some FD for R, and (b) Each ID
R[X] cS[YI has its right-hand-side Y contained in the left-
hand-side of an FD for the relation S, and its left-hand-side X
disjoint from the left-hand-sides of the FD’s for the relation R.
Note that property (a) implies that Z is a key for relation R [6I.

Theorem 2. If Z (i) consists entirely of ID’s or (ii) is a set of
key-based dependencies, then the problem “Given conjunctive
queries Q, Q, does Z I= Q C, Q?” is in NP.

Proof. We shall concentrate on case (i). The result for (ii) fol-
lows from that for (i) because of two easy observations:
(1) If Z[F] is a set of FD’s, then for all conjunctive queries Q,

chosez[p](Q) is equivalent to Q for databases satisfying Z
[III, and

(2) If Z[I] is a set of ID’s and Z=Z[FI U ~111 is key-based,

then for all conjunctive queries Q, chosez(Q) =
chase,~,l(chaser~l(Q)).
Our plan-of-attack for case (i) will be to show that if there

is a homomorphism Q - chasez(Q). then there is also a
homomorphism from Q to some initial segment of chaser(Q)
whose depth is bounded by a polynomial function of the size of
Q, the polynomial itself being determined by Z. A nondeter-
ministic polynomial time algorithm for testing containment would
then consist of (1) Guessing the image of Q’ under this bounded
homomorphism, (2) Guessing enough of chasez(Q) to prove that
the image is indeed part of chase,(Q), and (3) verifying that
there is indeed a homomorphism from Q to the guessed image.

TO realize our plan-of-attack, we prove a series of three
lemmas. These lemmas view choseZ(Q) as a directed graph, with
a vertex for each conjunct. The roars of this graph are the or@-
nal conjuncts of Q. If an ID was applied to conjunct c, and gen-
erated cz, there is an ordinary arc from ct to cz. If R(c,) =R but
the ID “Rkl cS[Yl” generated no new conjunct because the
required conjunct was already present in S, there is a cross arc
from cr to the already-present conjunct. In both cases the arc is
Iabelled by the relevant ID. Note that by our chase construction
procedure, all ordinary arcs (c,C) have level(/) = /eve/(c) + 1,
and all cross arcs (c,C) have level(C) 5 level(c) + I. See Figure
I.

Lemma 2. Suppose ci and cs are conjuncts of chosez(Q) and
there is a directed path from cr to cz using only ordinary arcs of
chusez(Q) and having length L. Suppose further that cs is a
conjunct in chusez(Q) with R(c,)=R(cJ and there is a
homomorphism from (cl) to chosep(Q) that sends c, to cs. Then
there is a homomorphism h of {ci,cs) to chasex(Q) that has
h(ci)=csandlevel(h(cs)) 5 level(cs)+L.

Proof of Lemma The proof is by induction on the length of the
path. Suppose the lemma holds for all paths of length N or less,
where N 10, and consider the case where the path from cl to c2
is of length N + 1. Let cl’ be the immediate predecessor of c2 in
the-path (c,‘=ct if N=O). By the lemma for paths of length N,
there is a conjunct cs’ in chasex(Q) with leve/(cs’) I
level(c,) i-N and a homomorphism h’ from [cl,ct’) to chosex(Q)
with h’(c,)=cs and h’(c,‘)=cj. Suppose that the arc from ci’to
c2 is Iabelled with the ID “R[J,, . . . ,J~I CS[K,, . ,Kkl,”
where R =R(c,). By our construction of chosez(Q), there must
be some arc (c,‘,c,) with this ID as its label, although it may be a
cross arc. We thus must have R(c2) = R(cq) = S. Moreover,
we must have /evel(c,) I level(cs’)-tl 5 level(cs)+(Ni-1).
Let h, be the homomorphism from (ci.ci’j to chaser(Q). and let
h2 be the partial homomorphism that sends each symbol of cz to
the corresponding symbol of cd (h2 must exist, as it can be shown
that repeated symbols in c2 must be matched by repeated symbols
in c4, and similarly for constants in cz: all are inherited from cl’).
The only symbols in the domains of both hl and h2 are those in
columns Kt,...,Kk of cz. Consider the symbol z =c2[K,I. By the
definition of chasez(Q), c2[K,l=cl’[J,I and c&I=c{[J~I Thus
h2(s) = hz(cz[K,I) = c~[K,I = c;[/iI 3 hl(cl’[JiI) = h,(Z).
Hence h, and h2 are consistent, and together they yield the
desired homomorphism from {ct,cx) to chusez(Q). [I
Lemma 3. Suppose ct, c2, and c3 are as in Lemma 2. Let Nz be
the maximum number of attributes involved on one side of an
ID from Z. Then there is a homomorphism h from (cr,csj to
chasez(Q) that has h(cl)=c3 and satisfies

fevel(h(c3) I level(c3) + IZI(Nz+l)?”

proo/of Lemma If the len$h N of the path from ci to cz is no
more than M=IZI(Nz+l) .x, we are done by Lemma 2. Gther-
wise, consider the conjuncts along this path. Two of these con-
juncts c and ti will be judged equivalenf if the arc entering each is
labelled by the same ID “R [Jr,...,-rk) C SIKi,...,Kk)” and if, for
each i, 1 pi 5 k, c [K,] =c! [K,] whenever either symbol occurs
in c,. Note that these are the only columns in c and C that con
contain symbols from ct. Note also that if the path is longerthan

166

M, there must be at least two equivalent conjuncts on it.

The idea of the proof is to excise the portions of the path
between equivalent conjuncts, using Lemma 2 to glue the end-
pieces together. For instance, suppose c is the first occurrence of
a conjunct that has an equivalent conjunct later in the path, and
suppose that C is the last conjunct in the path that is equivalent
to c. Let Lt. Ls, and Lj be the lengths of the paths from c, to
c, c to 8, and C to cl, respectively (so that L =Lt+.Ls+L,),
and let “R[JI,...,J~I c S[K,,...,&]” be the ID labelling the arcs
entering c and 8. By Lemma 2, there is a homomorphism h,
from (ct,c) to chasez(Q) that has h,(c,)=cj and has
ZeveZ(h,(c)) 22 ZeveZ(c3)+L,. By the equivalence of c and C,
there must also be a homomorphism hs from {ct,Z) to
chasez(Q) that has h2(c1)=cj and h*(&)=h,(c). By Lemma 2
we can now construct a homomorphism h, from (c’,cs) to
chase .dQ 1 with h,(C)=h,(c) and level(h,(cJ) d
level(h,(c))+L3 5 /evel(cs)+Lt+L,. Homomorphisms h2 and
hg must be consistent, because they agree on the one conjunct
(8) in both domains, and all symbols common to c, and cs must
occur in C. Thus we get an induced homomorphism h from
(cr.cs} to chase,(Q) that leaves the symbols in c,Lul fixed and
has lever(h(cs)) I level(cs)+(l--Ls).

By performing repeated excisions of the above form we can
obtain the desired result. [I

Lemma 4. If Z: is a set if ID’s, Q is a conjunctive query, and C
is a set of conjuncts in chase,(Q), then there is a homomorphism
of C to chosez(Q) that preserves the summary row of chases(Q)
and such that no conjunct in the image has level exceeding

Prwf of Lemma.

For each conjunct c in C there is a unique path made up of
ordinary arcs in chasez(Q) connecting c to a conjunct from Q.
Let H be the subgraph of chasez(Q) made up of the union of
these paths for all c in C. and let C be the union of C with all
those conjuncts in H that belong to Q or have out-degree two or
more in H. We then can derive an induced forest F with the
conjuncts in C for vertices and an arc from c to C if there is a
path in H from c to C all of whose interior vertices have out-
degree equal to one, and are not members of C. See Figure 2.

Note that the maximum length of a path in F from a root
to a leaf is simply C. W.e prove Lemma 4 by induction on this
maximum length, using Lemma 3 and the fact that if c E C, the
only symbols shared by descendants of c in F are symbols occur-
ing in c. Details omitted. 11

The Theorem is derived from Lemma 4 as follows: Suppose
there is a homomorphism h from Q’ to chase,(Q). Let h’ be the
homomorphism derived from Lemma 4 by taking C=h(Q’).
Our desired “bounded-depth” homomorphism from Q to
choseZ(Q) is then simply the composition of h with h’. [I

4. CONTAINMENT FOR FINITE DATABASES

While the last section dealt with containment with respect to
arbitrary databases, in practice we are concerned only with finite
databases, and hence in C, rather than c,. It would be nice if
the two notions were equivalent, but they are not. Consider the
set 2: consisting of the FD R: (2)- 1 and the ID R[21 C R(11.
The following two conjunctive queries are equivalent for all finite
databases obeying Z but not for all infinite ones:

Q, = I(x) : @y)Rbv~))

Qz= I(x) : (~~ly(%)(R(xv~)& RVJ)))

Thus cm implies C,, but C/ does not imply C,. Our
final result shows that for the class of key-based dependencies,
the two notions ore equivalent.

Theorem 3. If Z is a set of key-based dependencies and Q and
Q’ are conjunctive queries, then Z I- Q ‘;f Q’ implies Z I=
Q LQ’.

Proof: Suppose Z l=Q CJ Q’. By the definition of L/, this
means that for each finite database B satisfying the input schema
for Q and Q, and each tuple t in B, if there exists a homomor-
phism from Q to E that sends the summary row of Q to t, then
there exists a homomorphism of Q’ to B that sends the summary
row of Q’ to I. By Theorem 1, we must show that there is a
homomorphism of Q’ to chases(Q) that sends the summary row
of Q’ to that of chasez(Q).

We shall rely on two properties of key-based dependencies.
Property (Pl) was mentioned in the previous section: If the set of
FD’s in Z is Z[Fl and the set of ID’s is ~111, then chosez(Q) =
cboserrrl(chase~~fl(Q)). Because of (Pl) we may assume without
loss of generality that Z[Fl = 0. Property (P2) follows from part
(b) of the definition of key-based and provides a limit on the pro-
pagation of symbols in chosex(Q): For all i 2 0, if z is a symbol
occurring in a conjunct at level i of chasez(Q), then z occurs in
no conjunct with level exceeding ii- 1.

The idea of the proof is to construct a finite database E*
that contains all of Q and yet obeys the dependencies in 2. The
identity homomorphism sends Q to E*. and so there must be a
homomorphism h from Q to B*. If B* is chosen so as to look
like chaser(Q). at least locally, then perhaps h can be modified
slightly so that it becomes our desired homomorphism from Q to
chosez(Q).

Consider the graph Gg that has a vertex for the summary
row and each conjunct in Q, and an edge between two vertices if
the corresponding conjuncts and/or summary row share a symbol.
If Gq is connected, the construction of E* is easy:

Let d be the diameter of Gg, and construct the first d + 1
levels of &sex(Q). Then choose a new special symbol z, for
each attribute A and modify the chase rule for ID’s so that when-
ever a new conjunct c is created because of an ID
“R Ix] c S[Yl,” the entry in each column of c labelled by an
attribute A nor in I’ is the special symbol zA. This will insure
that the chase procedure will terminate: After one more level the
only symbols left will be the special symbols, and thereafter the
chase can only proceed until a conjunct CR, completely filled with
special symbols, has been constructed for each relation R that
occurs on the right-hand-side of some ID.

We claim that if there is a homomorphism h from Q’ to B*
that sends summary row to suinmary row, then the conjuncts of
h (Q’) must all lie within the first d + 1 levels of B*, and since
these levels are identical to the first d + 1 levels of chaseZ(Q), h
gives us our desired homomorphism of Q’ to chose,(Q). First of
all, since h sends summary row to summary row, each DV of Q
must go to a symbol of Q. Since GQ is connected, some con-
junct of Q must contain a DV. Thus, by (PZ), some conjunct c
of G’ must satisfy level(h (c)) I 1. Now observe that if c and c’
are adjacent in GQ, we must, again by (PZ), have
Ileve/(h (c)) -leveZ(h (rY)I I 1. Thus, by definition of diamerer,
we must have, for all pairs c,Z of conjuncts in Gg,
Ilevel(h(c))-level(h(d))l 5 d, and the claim follows.

The problem of constructing the desired database B*
becomes a bit trickier when Gg is nor connected. This
corresponds to the case when the query Q’ has a boolean part,
i.e., when & is of the form “If Q,(B) is true, return es(B), else
return nothing.” If GQ is not connected, it may have a com-
ponent C that contains no occurences of DV’s. and whose image
under h is hence not constrained to lie close to level 0. The pal-
icy used above, that is, constructing B* by generating the first
few levels of chasex(Q) and then “closing off” the structure into
a finite database, might not work because C might map to the
special structure used for the closing off. This could happen no
matter how deep we go in mimicking chasez(Q) before closing it
Off.

The above dilemma is what keeps us from proving Theorem
3 for more general classes of dependencies than just the key-
based ones. However, for the case at hand we are still in luck,
because of (P2). The idea is to do the closing off, not with new

167

special symbols, but with symbols that have already been used at
a level at least d + 1 earlier, where d is the maximum diameter of
any connected component of Cr. Thus the image of a connected
component C might look as schematized in Figure 3a if it were to
straddle the closing-off portion of B*, but the two parts of this
image can be put back together and mapped tbchosez(Q), using
techniques similar to those used for proving Theorem 2. Since
distinct connected components share no common symbols, we
can change the homomorphism for one component without
affecting any of the others, so each component can be handled
separately in this way and an overall homomorphism constructed
that has the desired properties.

We omit the remaining details. [I

5. CONCLUDING REMARKS

Theorems 2 and 3 can be slightly generalized. By our argu-
ment used at the beginning of the proof of Theorem 2 to reduce
the case of key-based dependencies to that of a L: consisting only
of ID’s, we can see that Theorem 2 will in fact hold for any set of
FD’s and ID’s satisfying property (P2) of the previous section, a
considerably more general class than just those Z that are key-
based (It includes, for instance, any Z in which all ID’s involve
only one attribute per side).

Similarly, Theorem 3 will hold for any set of FD’s and ID’s
satisfying both (Pl) and (P2). (Theorem 3 can also be general-
ized to handle any I: in which all ID’s involve only one attribute
per side, since these can be guaranteed to satisfy a weakened ver-
sion of (PZ): if a symbol occurs in a conjunct c of chasez(Q). it
cannot occur in any conjuncts with level exceeding
&vel(c)+]Z]). We suspect that Theorem 3 may well also hold
for any L: that contains only ID’s This is because if a database B
must not only obey a set of ID’s but also be finite, the finiteness
condition only seems to have the effect of forcing cycles (perhaps
arbitrarily long ones) to occur in the graph Gs, which has a ver-
tex for each tuple in B and an edge between to vertices if the
corresponding tuples share a symbol. Conjunctive queries seem
only to be able to talk about cycles of bounded length, and SO if
there is some infinite database that distinguishes between two
queries, there is probably some very large finite one that also
makes the distinction.

The above intuitive argument is, however, a long way from
a formal proof, and it appears that the techniques in our proof of
Theorem 3 do not readily extend to this case. Thus the question
of whether our “compactness” theorem extends to the case
where Z contains only ID’s might well be a good topic for further
research. We also wonder whether Theorem 2 might not extend
to 011 sets Z made up of FD’s and ID’s (or is there, say, a Z con-
taining only FD’s and ID’s for which the containment problem
for conjunctive queries is PSPACE-hard, or worse?).

Another possible direction for further work is to try our
approach on problems involving embedded multivalued depen-
dencies (EMVD’s) [II]. Chases involving EMVD’s also intro-
duce new symbols and so do not terminate. Which sets of
EMVD’s give rise to containment problems that are “only” as
hard as NP? And what about arbitrary first-order queries? Here
the containment problem is PSPACE-easy when there are no
dependencies [5]. What happens when ID’s are introduced?

1

REFERENCES

1. A. V. Aho, Y. Sagiv, and J. D. Ullman, “Equivalences among
relational expressions,” SIAM J. Cornput. 8 (1979), 218~
246.

2. A. V. Aho, Y. Sa@v, and J. D. Ullman, “Efficient optimim-
tion of a class of relational expressions,” ACM Trmrs.
Database Syst. 4 (1979)) 435-454.

3. M. A. Casanova, R. Fagin, and C. H. Papadimitriou, “Inclu-
sion dependencies and their interaction with functional
dependencies,” this proceedings.

4. A. K. Chandra, H. R. Lewis, and J. A. Makowsky, “Embed-
ded implicational dependencies and their inference prob-
lem,” Proc. 13th Ann. ACM $vnp. an Theory of Comput-
ing, Assoc. Comp. Mach., New York, 1981, 342-354.

5. A. K. Chandra and P. M. Merlin, “Optimal implementation
of conjunctive queries in relational data bases,” Proc. 9th
Ann. ACM Symp. on Theory of Computing, Assoc. Comput.
Mach., New York, 1977, 77-90.

6. E. F. Codd, “A relational model of data for large shared data
banks,” Commun. ACM 13 (1970). 377-387.

7. E. F. Codd, “Extending the database relational model to
obtain more meaning,” ACM Trans. Database Sysf. 4
(1979), 397-434.

8. R. Fagin, “A normal form for relational databases that is
based on domains and keys,” ACM Trans. Database Syst.
6 (l981), 387-415.

9. D. S. Johnson and A. Klug, “Optimizing conjunctive queries
when attribute domains are not disjoint,” Prac. Z2nd Ann.
Symp. on Foundations of Computer Science, IEEE Com-
puter Society, Long Beach, CA, 1981.

10. A. Klug, “Entity relationship .views over uninterpreted enter-
urise schemes.” in P. P. Chen (cd.) Entity-Relationship
&roach to S$tems Analysis and Design, North-Holland,
Amsterdam, 1980, 35-59.

Il. D.

12. J.

13. c.

Maier, A. 0. Mendelzon, and Y. Sagiv, “Testing implica-
tions of data dependencies,” ACM Trans. Dutabase Syst. 4
(1979), 455-469.

M. Smith and D. C. P. Smith, “Database abstractions:
aggregation,” Commum. ACM 20 (1977). 405-413.

Zaniolo, “Design of relational views over network sche-
mas.” Proc. ACM SIGMOD COI$, Assoc. Comp. Mach.,
1979. 179-180.

I

169

