From Data Independence to Ontology Based Data
Access (and back)

David Toman

D.R. Cheriton School of Computer Science
University of

Waterloo
Y
<D

Joint work with Alexander Hudek and Grant Weddell

David Toman (et al.) Physical Data Independence IJCAI'20

1/35

Knowledge Representation: a Big Picture

query
update Knowledge K

,,,,,,,,,,,

B
&7 David Toman (et al.) Physical Data Independence

Answer

Motivation

2/35

Knowledge Representation: a Big Picture

query
update Knowledge K Answer

What is “Knowledge” (how is it represented, and does the user care?)
= not really as long as the updates and queries “play nicely together”

Structured World:

m K is a (first order) theory,
m queries are (FO) formulae with answers defined by entailment, and
m updates are (variations on) belief revision.

,,,,,,,,,,,,,

Waterloo

|
@ David Toman (et al.) Physical Data Independence Motivation 2/35

Knowledge Representation: a Big Picture

query
update Knowledge K Answer

What is “Knowledge” (how is it represented, and does the user care?)
= not really as long as the updates and queries “play nicely together”

Probabilistic World:

m K is a ML model (e.g., neural net),
m queries are inputs (e.g., photos) and answers are labels
m updates are pairs of, e.g., photos with their labels.

,,,,,,,,,,,,,

Waterloo

|
@ David Toman (et al.) Physical Data Independence Motivation 2/35

Ontology-based Data Access (OBDA) [Calvanese et al.: Mastro, 2011]
R auen

““Conceptual _

Layer
Source Edertes Source
N Layer —
Fig. 1. Ontology-based data access.

Information Integration [Genesereth: Data Integration, 2010]

[cuicat schema ll Ctient Schema | [Crient schema |

Reference Model

I Source Schema II Source Schema ” Source Schema “ Source Schema I

Data Exchange [Arenas et el.: Data Exchange, 2014]

The general setting of data exchange is this:

> >
__mapping 4 _ g ey 0

University

Waterioo

2
& David Toman (et al.) Physical Data Independence Motivation

3/35

Data vs. Metadata

Knowledge

')

update User query s A
P Vocabulary 7 Answer

h 4

Data Raw Data
Repositories Vocabulary

\. J

,,,,,,,,,,,,,

Waterloo

|
& David Toman (et al.) Physical Data Independence Motivation 4/35

Data vs. Metadata

Knowledge

')

update User query s A
P Vocabulary 7 Answer

h 4

Data Raw Data
Repositories Vocabulary

\. J

Metadata: constraints formulated in FOL (static) [called a TBox]
Data: ground tuples (can be “modified”) [called an ABox]
= user queries and updates only about data.

,,,,,,,,,,,,,

Waterloo

|
& David Toman (et al.) Physical Data Independence Motivation 4/35

(Physical) Data Independence

ANSI-SPARC
IDEA: Architecture
Users | for Databases
Separate the users’ view(s) of the data from
the way it is physically represented.

external level .
(View) | multiple user's views

canceptual level | Community view of DB
(Schema) I

Physical representation
internal level I

(Schema)
Database
(Physical level)

[ANSI/X3/SPARC Standards
Planning and Requirements
Committee, Bachman, 1975]

University

Waterioo

|
@ David Toman (et al.) Physical Data Independence Motivation 5/35

(Physical) Data Independence

ANSI-SPARC

IDEA: Architecture

Users for Databases

Separate the users’ view(s) of the data from
the way it is physically represented.

external level
(View) multiple user's views

canceptual level | Community view of DB

m independent customized user views,
m changes to conceptual structure without

affecting users, (Scherma) |
m physical storage details hidden from s
users, internal level I
. . (Schema)
m changes to physical storage without Dalabase
affecting logical view, (Physioetinel)

[ANSI/X3/SPARC Standards
Planning and Requirements
Committee, Bachman, 1975]

,,,,,,,,,,, of

Waterioo

|
& David Toman (et al.) Physical Data Independence Motivation 5/35

(Physical) Data Independence

IDEA:

Separate the users’ view(s) of the data from
the way it is physically represented.

m independent customized user views,

m changes to conceptual structure without
affecting users,

m physical storage details hidden from
users,

m changes to physical storage without
affecting logical view,

|
Originally just two levels: physical
and conceptual/logical [Codd1970].

,,,,,,,,,,,,,

Waterloo

|
& David Toman (et al.) Physical Data Independence

: ANSI-SPARC
Architecture
Users | for Databases
external level
(View) | multiple user's views
canceptual level | Community view of DB
(Schema) I
Physical representation
internal level I
(Schema)

Database
(Physical level)

[ANSI/X3/SPARC Standards
Planning and Requirements
Committee, Bachman, 1975]

Motivation

5/35

Outline

Queries
Updates
How does it Work and (Performance) Bonus

Future Research/Open Issues

&7 David Toman (et al.) Physical Data Independence

Motivation

6/35

QUERIES AND QUERY COMPILATION

Physical Data Independence Motivation 7/35

The Structured/Logical Way (via an OBDA example)

Queries and Ontologies

Queries are answered not only w.r.t. explicit data (A)
but also w.r.t. background knowledge (T)

= Ontology-based Data Access (OBDA)

m Socrates is a MAN (explicit data)

m Every MAN is MORTAL (ontology)

List all MORTALs = {Socrates} (query)
Waterioo

|
& David Toman (et al.) Physical Data Independence OBDA Basics 8/35

The Structured/Logical Way (via an OBDA example)

Queries and Ontologies

Queries are answered not only w.r.t. explicit data (A)
but also w.r.t. background knowledge (T)

= Ontology-based Data Access (OBDA)

m Socrates is a MAN
m Every MAN is MORTAL
List all MORTALs = {Socrates}

How do we answer queries?

Using logical implication (to define certain answers):
Ans(‘)OvAaT) = {90(313 .. ~aak) | TUA ': (:0(317‘ . ‘7ak)}
= answers are ground yp-atoms logically implied by AU T.

vvvvvvvvvvvvv

Waterloo

i
@ David Toman (et al.) Physical Data Independence OBDA Basics 8/35

The Logical Way: Complexity

The Good News

LOGSPACE/PTIME (data complexity) for query answering:
m (U)CQ and
m DL-Lite/EL, /CFDY./“rules™lite (Horn), s-t dependencies,. . .

,,,,,,,,,,,,,

Waterloo

|
& David Toman (et al.) Physical Data Independence OBDA Basics 9/35

The Logical Way: Complexity

The Good News

LOGSPACE/PTIME (data complexity) for query answering:
m (U)CQ and
m DL-Lite/EL, /CFDY./“rules™lite (Horn), s-t dependencies,. . .

The Bad News

B no negative queries/sub-queries
B no negations in ABox

m no closed-world assumption

m counter-intuitive query answers

,,,,,,,,,,,,,

Waterloo

|
& David Toman (et al.) Physical Data Independence OBDA Basics 9/35

The Logical Way: Complexity

The Good News

LOGSPACE/PTIME (data complexity) for query answering:
m (U)CQ and
m DL-Lite/EL, /CFDY./“rules™lite (Horn), s-t dependencies,. . .

The Bad News

B no negative queries/sub-queries
B no negations in ABox

m no closed-world assumption

m counter-intuitive query answers

= the same goes for information integration, data exchange, etc.

,,,,,,,,,,,,,

Waterloo

|
& David Toman (et al.) Physical Data Independence OBDA Basics 9/35

Difficulties: Unintuitive Answers

m EMP(Sue)
m EMP C 3PHONENUM (or ¥x.EMP(x) — 3y.PHONENUM(x. y))

,,,,,,,,,,,,,

Waterloo

|
& David Toman (et al.) Physical Data Independence OBDA Basics 10/35

Difficulties: Unintuitive Answers

m EMP(Sue)
m EMP C 3PHONENUM (or ¥x.EMP(x) — 3y.PHONENUM(x. y))

User: Does Sue have a phone number?
Information System: YES

,,,,,,,,,,,,,

Waterloo

|
& David Toman (et al.) Physical Data Independence OBDA Basics 10/35

Difficulties: Unintuitive Answers

Example

m EMP(Sue)
m EMP C 3PHONENUM (or ¥x.EMP(x) — 3y.PHONENUM(x. y))

User: Does Sue have a phone number?
Information System: YES

User: OK, tell me Sue’s phone number!
Information System: (no answer)

,,,,,,,,,,,,,

Waterloo

|
& David Toman (et al.) Physical Data Independence OBDA Basics 10/35

Difficulties: Unintuitive Answers

m EMP(Sue)
m EMP C 3PHONENUM (or ¥x.EMP(x) — 3y.PHONENUM(x. y))

User: Does Sue have a phone number?
Information System: YES

User: OK, tell me Sue’s phone number!
Information System: (no answer)

User: E

,,,,,,,,,,,,,

Waterloo

¥
& David Toman (et al.) Physical Data Independence OBDA Basics 10/35

Rewritability and Definability

User and System Expectations

Queries range-restricted FOL (a.k.a. SQL)
Data CWA (complete information)
Waterioo

|
& David Toman (et al.) Physical Data Independence Definability/Interpolation 11/35

Rewritability and Definability

User and System Expectations

Queries range-restricted FOL over S definable w.r.t. ~ and Sp
Ontology/Schema range-restricted FOL ¥ =Y, UY,pUXp
Data CWA (complete information for Sp symbols)
Y S, k------- © Logical Schema
‘ and User Queries
Yip (rewriting)
Yp Sy CSpk——--——-——— " Physical Schema

and Query Plans

[Borgida, de Bruijn, Franconi, Seylan, Straccia, Toman, Weddell: On Finding
Query Rewritings under Expressive Constraints. SEBD 2010: 426-437]

,,,,,,,,,,,,,

Waterloo

|
& David Toman (et al.) Physical Data Independence Definability/Interpolation 11/35

Rewritability and Definability

User and System Expectations

Queries range-restricted FOL over S definable w.r.t. ~ and Sp
Ontology/Schema range-restricted FOL ¥ =Y, UY,pUXp
Data CWA (complete information for Sp symbols)

m to users it looks like a single model (of the logical schema)
m implementation can pick from many models
but definable queries answer the same in each of them

’ Query (SL)
Y (Relational Algebra over Sp)
lschema (SLUSp)

(instance of) Sp

| Data(SaC Sp) |

,,,,,,,,,,,,,

Waterloo

|
& David Toman (et al.) Physical Data Independence Definability/Interpolation 11/35

ReWritabi”ty and Definability N & M\'lh't‘\N&‘»—iL'\\‘l””'Lf'”l*LHHEH\‘

Fundamentals of

User and System Expectations Physical Design and
Queries range-restricted FOL over Si Query Compilation
Ontology/Schema range-restricted FOL ¥ := %,

Data CWA (complete information fc | PridToman

m to users it looks like a single model (of the logic
m implementation can pick from many models
but def/nable querleS anSWG SYNTHESIS LECTURES ON DATA MANAGEMENT

’ Query (SL)
Y (Relational Algebra over Sp)
lschema (SLUSp)

‘ (instance of) Sp

| Data(SaC Sp) |

,,,,,,,,,,,,,

Waterloo

|
@ David Toman (et al.) Physical Data Independence Definability/Interpolation 11/35

(First-order) Query Rewritability

Rewritability (Decision Problem)

Given
aTBox 7 and
a Query ¢
decide whether there is a FO query ¢ such that

Ans(p, A, T) = Ans(z, A,)
for every ABox A (optionally where v is over a sub-vocabulary of 7).

[Bienvenu, Lutz, Wolter: First-Order Rewritability of Atomic Queries in Horn
Description Logics. IJCAI 2013. (and many papers followed. ..)]

,,,,,,,,,,,,,

Waterloo

|
@ David Toman (et al.) Physical Data Independence Definability/Interpolation 12/35

What can we do?

GOAL

Generate query plans that compete with hand-written programs in C

standard RDBMS physical designs

linked data structures, pointers, ...

access to search structures (index access and selection),
hash-based access to data (including hash-joins),
multi-level storage (aka disk/remote/distributed files), ...
A materialized views (FO-definable),

...all without having to code (too much) in C/C++ !

,,,,,,,,,,,,,

Waterloo

|
& David Toman (et al.) Physical Data Independence What can it do? 13/35

Standard Physical Designs

scanning (flat) files

primary and secondary indices (via record ids/addresses)
horizontal partitioning/sharding

column store/index-only plans

(disjoint) generalizations

University of

Waterloo

|
@ David Toman (et al.) Physical Data Independence What can it do? 14/35

Example: disjoint subclasses

undergrad(x,y) <-> ex(r,ustudent (r,x,vy))

... with access paths student and gstudent

,,,,,,,,,,, of

Waterioo

|
& David Toman (et al.) Physical Data Independence What can it do? 15/35

Example: disjoint subclasses

undergrad(x,y) <-> ex(r,ustudent (r,x,vy))

o

% coverage
student (r,x,y) —-> (gstudent (r) or ustudent (r,x,vy)),

ustudent (r,x,y) —-> student(r,x,vy),

gstudent (r) -> ex([x,y],student (r,x,v)),

% disjointness

gstudent (r) and ex([x,y],ustudent (r,x,y)) —-> bot,
% key

student (r,x1,yl) and student (r,x2,y2) ->
(x1=x2 and yl=y2)

... with access paths student and gstudent

,,,,,,,,,,, of

Waterioo

|
& David Toman (et al.) Physical Data Independence What can it do? 15/35

Example: disjoint subclasses

undergrad(x,y) <-> ex(r,ustudent (r,x,vy))

... with access paths student and gstudent

david$ compile tests/848ex/subclass2.fol
query (undergrad, 2,0, [var(0,0,1,int),var(0,0,2,int)]) <->
ex(var(0,19,4),

and (
student (var(0,19,4),var(0,0,1),var(0,0,2))
not (

gstudent (var (0,19,4))
)))

,,,,,,,,,,, of

Waterioo

|
& David Toman (et al.) Physical Data Independence What can it do? 15/35

Example: disjoint subclasses

undergrad(x,y) <-> ex(r,ustudent (r,x,vy))

... with access paths student and gstudent

david$ compile tests/848ex/subclass2.fol
query (undergrad, 2,0, [var(0,0,1,int),var(0,0,2,int)]) <->
ex(var(0,19,4),

and (
student (var(0,19,4),var(0,0,1),var(0,0,2))
not (

gstudent (var (0,19,4))
)))

or, in C-like syntax:
for (r,x,y) in student do
if r in gstudent skip else return (X,y);

,,,,,,,,,,, of

Waterioo

|
& David Toman (et al.) Physical Data Independence What can it do? 15/35

Lists and Pointers
Logical Schema

employee works department
num ‘ emp | num
name 1 dept J name
manager
Physical Design: a linked list of emp records pointing to dept records.
record emp of record dept of
integer num integer num
string name string name
integer salary reference manager

reference dept

Access Paths: empfile/1/0, emp-num/2/1, ... (but no deptfile)
Integrity Constraints (many), e.g.,

VX,y,Z.employee(X,y,z) — Iw.empfile(w) A emp-num(w, X),
Va,x.empfile(a) A emp-num(a, x) — 3y, Z.employee(X,y, 2),...
Waterioo

2
& David Toman (et al.) Physical Data Independence What can it do?

16/35

What can this do: navigating pointers

List all employee numbers and names (employee(X,y)):
Ja.empfile(a) A emp-num(a, X) A emp-name(a,y)

,,,,,,,,,,,,,

2
& David Toman (et al.) Physical Data Independence What can it do?

17/35

What can this do: navigating pointers

List all employee numbers and names (employee(X,y)):
Ja.empfile(a) A emp-num(a, X) A emp-name(a, y)

or, in C-like syntax: for a in empfile do
X := a—->num,
y := a->name;

University

Waterioo

2
& David Toman (et al.) Physical Data Independence What can it do?

17/35

What can this do: navigating pointers

List all employee numbers and names (employee(X,y)):
Ja.empfile(a) A emp-num(a, X) A emp-name(a, y)

List all department numbers and their names (3z.department(x,y, 2)):

University of

Waterloo

|
@ David Toman (et al.) Physical Data Independence What can it do? 17/35

What can this do: navigating pointers

List all employee numbers and names (employee(X,y)):
Ja.empfile(a) A emp-num(a, X) A emp-name(a, y)

List all department numbers and their names (3z.department(X,y, 2)

Jda,d, e.empfile(a) A emp-dept(a, d)
A dept-num(d, X) A dept-name(d, y)

):

= needs “departments have at least one employee”.

University of

Waterloo

2
& David Toman (et al.) Physical Data Independence What can it do?

17/35

What can this do: navigating pointers

List all employee numbers and names (employee(X,y)):
Ja.empfile(a) A emp-num(a, X) A emp-name(a, y)

List all department numbers and their names (3z.department(X,y, 2)

Jda,d, e.empfile(a) A emp-dept(a, d)
A dept-num(d, X) A dept-name(d, y)

):

= needs “departments have at least one employee”.

Jda, b,d.empfile(a) A emp-dept(a,d)
A dept-num(d, X) A dept—name(d, ¥) A dept-mgr(d, a)

= needs “managers work in their own departments”.

University of

Waterloo

2
& David Toman (et al.) Physical Data Independence What can it do?

17/35

What can this do: navigating pointers

List all employee numbers and names (employee(X,y)):
Ja.empfile(a) A emp-num(a, X) A emp-name(a,y)

List all department numbers and their names (3z.department(x,y, 2)):
Jda,d, e.empfile(a) A emp-dept(a,d)
A dept-num(d, X) A dept-name(d, y)
= needs “departments have at least one employee”.
... needs duplicate elimination during projection.
da, b.d.empfile(a) A emp-dept(a, d)
A dept-num(d, X) A dept—name(d, ¥) A dept-mgr(d, a)
= needs “managers work in their own departments”.
... NO duplicate elimination during projection.

University of

Waterloo

|
@ David Toman (et al.) Physical Data Independence What can it do? 17/35

...and we really can synthesize this!

david$ compile tests/new_fe/book-em-vi-new—query.fol

query (qOdept2,2,0, [var(0,0,1,int),var(0,0,2,int)])
ex (var(0,76,4),
ex (var(0,81,5),
and (
and (
empfile(var (0,76,4))
emp_dept (var (0,76,4),var(0,81,5))
)
and (
and (
dept_num(var (0,81,5),var(0,0,1))
dept_name (var (0,81,5),var(0,0,2))
)
dept_mgr (var (0,81,5),var(0,76,4))

<=>

& David Toman (et al.) Physical Data Independence What can it do?

18/35

What can it do: Hashing, Lists, et al.

Hash Index with (list-based) Separate Chaining

: [@
i e TF—{¢T1]

53]

n: [i 1] ‘ D2 |

Hash Array Separate Chaining Linked Lists Dept Records

,,,,,,,,,,,,,

Waterloo

|
@ David Toman (et al.) Physical Data Independence What can it do? 19/35

What can it do: Hashing, Linked lists, et al.

Hash Index on department’s name:

Access paths:
Sa 2 {hash/2/1,hasharraylookup/2/1,listscan/2/1}.
Physical Constraints:

Yip 2 {Vx,y.((deptfile(x) A dept—name(x,y)) — 3z, w.(hash(y, 2)
Ahasharraylookup(z,w) A listscan(w,Xx))),
VX, y.(hash(x,y) — 3z.hasharraylookup(y, Z)),
Vx,y.(listscan(x,y) — deptfile(y)) }

University of

Waterloo

3
@ David Toman (et al.) Physical Data Independence What can it do? 20/35

What can it do: Hashing, Linked lists, et al.

Hash Index on department’s name:

Access paths:
Sa 2 {hash/2/1,hasharraylookup/2/1,listscan/2/1}.
Physical Constraints:

Yip 2 {Vx,y.((deptfile(x) A dept—name(x,y)) — 3z, w.(hash(y, 2)
Ahasharraylookup(z,w) A listscan(w,Xx))),
VX, y.(hash(x,y) — 3z.hasharraylookup(y, Z)),
Vx,y.(listscan(x,y) — deptfile(y)) }

Query:
Jy.(department(x,p, ¥) A employee(y, x2)){p}.

3h, I, d, e.hash(p, h) A hasharraylookup(h,/) A
listscan(/,d) A dept—name(d,p) A
dept-num(d, X1) A dept-mgr(d, €) A emp-name(e, X2)

,,,,,,,,,,,

Waterloo

|
@ David Toman (et al.) Physical Data Independence What can it do? 20/35

What can this do: two-level store

|
The access path empfile is refined by emppages/1/0 and emprecords/2/1:

emppages returns (sequentially) disk pages containing emp records, and
emprecords given a disc page, returns emp records in that page.

List all employees with the same name
(3z.employee(xy,Z) A employee(Xg, 2)):

dy,z,w, v, p, q.emppages(p) A emppages(q)
A emprecords(p, y) A emp-num(y, X;) A emp-name(y, w)
A emprecords(q,Z) A emp-num(Z, X2) A emp—name(Z, V)
A compare(w, V).

= this plan implements the block nested loops join algorithm.

Waterioo ... Mmore examples in

|
& David Toman (et al.) Physical Data Independence What can it do? 21/35

UPDATES

David Toman (et al.) Physical Data Independence

Updates

Knowledge
™~ User query

update

Vocabulary > Answer
—_—

N

Data .| Raw Data
Repositories “| Vocabulary
| S

,,,,,,,,,,, of

Waterioo

|
& David Toman (et al.) Physical Data Independence What can it do? 23/35

Updates

Knowledge
[User query

update

Vocabulary > Answer
—_—

Data " | Raw Data
Repositories | “| Vocabulary
| S

Katsuno, Mendelzon: On the Difference between Updating a Knowledge
Base and Revising It. KR 1991.

De Giacomo, Lenzerini, Poggi, Rosati: On Instance-level Update and
Erasure in Description Logic Ontologies. J. Log. Comput. 19(5) 2009.

,,,,,,,,,,,,,

Waterloo

|
& David Toman (et al.) Physical Data Independence What can it do? 23/35

Updates

Knowledge
[User query

update

Vocabulary > Answer
—_—

Data " | Raw Data
Repositories | “| Vocabulary
| S

Katsuno, Mendelzon: On the Difference between Updating a Knowledge
Base and Revising It. KR 1991.

De Giacomo, Lenzerini, Poggi, Rosati: On Instance-level Update and
Erasure in Description Logic Ontologies. J. Log. Comput. 19(5) 2009.

... we follow a definable updates approach here instead. ..

Waterloo

|
& David Toman (et al.) Physical Data Independence What can it do? 23/35

Updates and Definability

User updates

= supplying “delta” relations (sets of tuples)

m Two copies of the schema: X7 and x"¢%;

m Delta relations: R™ (insertions) and R~ (deletions);

m Constraints: Vx.(R%(x) v R*(X)) = (R"™"(X) v R~ (X)),
vx.(RT(X) AR (X)) — L

old new
ZLP zLP

,,,,,,,,,,,,,

Waterloo

|
& David Toman (et al.) Physical Data Independence What can it do? 24/35

Updates and Definability

User updates

= supplying “delta” relations (sets of tuples)

m Two copies of the schema: ¥°¢ and ¥"e%;

m Delta relations: R™ (insertions) and R~ (deletions);

m Constraints: Vx.(R%(x) v R*(X)) = (R"™"(X) v R~ (X)),
VX.(RT(X)AR= (X)) — L

Update turned into definability question

Is A" (or A+, A~) definable in terms of A%’ < S2° (old access paths)

and U/?L, Uj‘ (user updates) for every access path A € Sp?

,,,,,,,,,,,,,

Waterloo

7
@ David Toman (et al.) Physical Data Independence What can it do? 24/35

Unknown/Anonymous Values?

Example (Add a new Undergraduate student)

INSERT into undergrad values (1234, ’'Wilma’);

= the request then needs to be translated to
INSERT into student values (0xFE1234, 1234, 'Wilma’);
= but where did 0xFE1234 came from? (definability issue!)

,,,,,,,,,,, of

Waterioo

& David Toman (et al.) Physical Data Independence What can it do? 25/35

Unknown/Anonymous Values?

Example (Add a new Undergraduate student)

INSERT into undergrad values (1234, ’'Wilma’);

= the request then needs to be translated to
INSERT into student values (0xFE1234, 1234, 'Wilma’);
= but where did 0xFE1234 came from? (definability issue!)

Constant Complement: [Bancilhon, Spyratos: Update semantics of relational

views. ACM Trans. Database Syst. 6(4), 1981.]
additional access paths that provide such values:

= in our case student-addr (id, adress)
= and where undergrad® = {(1234, Vilma)}

student™t(Xy, X2, X3) = undergrad®(x1, X3) A student-addr(xz, X1)

,,,,,,,,,,,,,

Waterloo

3
@ David Toman (et al.) Physical Data Independence What can it do? 25/35

Unknown/Anonymous Values?

Example (Add a new Undergraduate student)

INSERT into undergrad values (1234, ’'Wilma’);

= the request then needs to be translated to
INSERT into student values (0xFE1234, 1234, 'Wilma’);
= but where did 0xFE1234 came from? (definability issue!)

Constant Complement: [Bancilhon, Spyratos: Update semantics of relational

views. ACM Trans. Database Syst. 6(4), 1981.]

additional access paths that provide such values:

= in our case student-addr (id, adress)
= and where undergrad® = {(1234, Vilma)}

student™t(Xy, X2, X3) = undergrad®(x1, X3) A student-addr(xz, X1)

The additional access path(s) correspond to space allocation
...and cyclic dependencies are broken via reification.

,,,,,,,,,,,,, ... more details and examples in u
Watrloo

3
@ David Toman (et al.) Physical Data Independence What can it do? 25/35

HOw DOES IT ALL WORK?

University.

Waterfoo
EF

=

David Toman (et al.)

o
Physical Data Independence

The Plan

Definability and Rewriting

Queries range-restricted FOL over S| definable w.r.t. © and Sp
Ontology/Schema range-restricted FOL
Data CWA (complete information for Sy symbols)
L S, -—-——-—---- © (Logical Schema)
Yip (rewriting)
Yp SACSp————-—-—-~— (U (Physical Schema)
Waterioo

|
& David Toman (et al.) Physical Data Independence How does it work? 27/35

Query Plans via Interpolation

IDEA #1: Plans as Formulas

Represent query plans as (annotated) range-restricted formulas) over Sa:

atomic formula — access path (get-first—get-next iterator)
conjunction — nested loops join

existential quantifier — projection (annotated w/duplicate info)
disjunction — concatenation

negation — simple complement

,,,,,,,,,,,,,

Waterloo

|
& David Toman (et al.) Physical Data Independence How does it work? 28/35

Query Plans via Interpolation

IDEA #1: Plans as Formulas

Represent query plans as (annotated) range-restricted formulas) over Sa:

atomic formula —
conjunction —
existential quantifier —
disjunction —

negation —

access path (get-first—get-next iterator)
nested loops join

projection (annotated w/duplicate info)
concatenation

simple complement

= reduces correctness of « to logical implication X = ¢ « ¢

,,,,,,,,,,,,,

Waterloo

|
< David Toman (et al.)

Physical Data Independence How does it work? 28/35

Query Plans via Interpolation

IDEA #1: Plans as Formulas

Represent query plans as (annotated) range-restricted formulas) over Sa:

atomic formula — access path (get-first—get-next iterator)
conjunction — nested loops join

existential quantifier — projection (annotated w/duplicate info)
disjunction — concatenation

negation — simple complement

= reduces correctness of ¢ to logical implication ¥ = ¢ < ¢

Non-logical (but necessary) Add-ons

Non-logical properties/operators
m binding patterns
m duplication of data and duplicate-preserving/eliminating projections
m sortedness of data (with respect to the iterator semantics) and sorting

Cost model

»»»»»»»»»»»»»»

Waterloo

7
@ David Toman (et al.) Physical Data Independence How does it work? 28/35

Beth Definability and Craig Interpolation

IDEA #2: What Queries do we allow?

We only allow queries that have the same answer in every model of ©
... for a fixed signature S, (i.e., where the actual data is).

,,,,,,,,,,,,,

Waterloo

|
&2 David Toman (et al.) Physical Data Independence How does it work? 29/35

Beth Definability and Craig Interpolation

IDEA #2: What Queries do we allow?

We only allow queries that have the same answer in every model of ©
... for a fixed signature S, (i.e., where the actual data is).

How do we test for this?

p is Beth definable [Beth’56] if
YU Ep— ¢
where ¥’ (¢') is T () in which symbols NOT in Sp are primed, respectively.

,,,,,,,,,,,,,

Waterloo

|
& David Toman (et al.) Physical Data Independence How does it work? 29/35

Beth Definability and Craig Interpolation

IDEA #2: What Queries do we allow?
We only allow queries that have the same answer in every model of ©
... for a fixed signature S, (i.e., where the actual data is).

How do we test for this?
p is Beth definable [Beth’56] if
YU Ep— ¢
where ¥’ (¢') is T () in which symbols NOT in Sp are primed, respectively.

How do we find ?

If UL = p — ¢’ then there is ¢ s.t. TUY' |= o — ¢ — ¢ with L(0) C L(Sh).
. 1 is called the Craig Interpolant [Craig’57].

... we extract an interpolant) from a (TABLEAU) proof of YUY = ¢ — ¢

Waterloo

|
@ David Toman (et al.) Physical Data Independence How does it work? 29/35

Issues with TABLEAU

Dealing with the subformula property of Tableau
= analytic tableau explores formulas structurally
= (to large degree) the structure of interpolant
depends on where access paths are present in queries/constraints.

Factoring logical reasoning from plan enumeration
= backtracking tableau to get alternative plans: too slow, too few plans

University of

Waterloo

|
@ David Toman (et al.) Physical Data Independence How does it work? 30/35

Issues with TABLEAU

Dealing with the subformula property of Tableau
= analytic tableau explores formulas structurally

= (to large degree) the structure of interpolant
depends on where access paths are present in queries/constraints.

IDEA #3:

Separate general constraints from physical rules in the formulation of
the definability question (and the subsequent interpolant extraction):

YLUTRUTHA E b — o where 1R = {Vx.P- & P < PR | P € Sp}

Factoring logical reasoning from plan enumeration
= backtracking tableau to get alternative plans: too slow, too few plans

IDEA #4:

Define conditional tableau exploration (using general constraints)
and separate it from plan generation (using physical rules)

,,,,,,,,,,,,,

Waterloo

{7
& David Toman (et al.) How does itwork? 30/35

Physical Data Independence

CONDITIONAL TABLEAU AND CLOSING SETS

Byte code generation for g/ 2

g(x,y) <> ex(z,table(x,x,z) and table(z,vy,vy)
and not table(x,x,Xx))
Split Tableau Construction

L { -pObasetable(s119:7,s114:3,s10:2,s10:2) }
L { -pObasetable(s119:5,s10:1,s10:1,s114:3) }
L { +t+pObasetable(sr19:8,s10:1,s10:1,s10:1) }
R { -pObasetable(srl19:8,s10:1,s10:1,s10:1),
+pObasetable (s119:7,s114:3,s10:2,s10:2),
+pObasetable(s119:5,s10:1,s10:1,s114:3)

Cost-based Optimization (A*)

C code Generation (+ compilation/linking w/runtime library)

—~ e~~~

}

[Hudek, Toman, Weddell: On Enumerating Query Plans Using Analytic
Tableau. TABLEAUX 2015.]
[Toman, Weddell: An Interpolation-based Compiler and Optimizer for

,,,,,,,,,,,,,

Waterloo

|
&7 David Toman (et al.) Physical Data Independence How does it work?

31/35

CONDITIONAL TABLEAU: RESULT

query(q,2,0, [var(0,0,1,int),var(0,0,2,1int)]) <->
ex (var (0,14, 3),
ex(var(0,19,5),
ex (var(0,19,7),
and (
and (
pObasetable(var(0,19,7),var (0,14, 3),
var (0,0,2),var(0,0,2))
pObasetable (var(0,19,5),var(0,0,1),
var(0,0,1),var(0,14,3))
)
not (
ex(var(1,19,8),
pObasetable (var(1,19,8),var(0,0,1),
var (0,0,1),var(0,0,1))

University

Waterioo

|
@ David Toman (et al.) Physical Data Independence How does it work? 32/35

Postprocessing: Duplicate Elimination Elimination

IDEA:

Separate the projection operation (3x.) to

m a duplicate preserving projection (3) and
m an explicit (idempotent) duplicate elimination operator ({-}).

,,,,,,,,,,,,,

Waterloo

|
& David Toman (et al.) Physical Data Independence How does it work? 33/35

Postprocessing: Duplicate Elimination Elimination

Separate the projection operation (3x.) to

m a duplicate preserving projection (3) and
m an explicit (idempotent) duplicate elimination operator ({-}).

Use the following rewrites to eliminate/minimize the use of {-}:

Q[{R(X1 e ,Xk)}] <~ Q[R(X1 . ,Xk)]
Q{1 A Qo}] < Q[{Q1} N {Q2}]
Q{~Qi}]+ Q-]
Q-{Qi}]+ Q-]
QHQIV Qe}] < Q{1 V{Qe}] HZU{Q[}FQANQ — L
Q[{3x.Q1}] < Q[Ex.{Q}] if
Tu{QA Q) /XIA (Q)ly2/X] E v = y2

,,,,,,,,,,,,,

Waterloo

@ David Toman (et al.) Physical Data Independence How does it work? 33/35

Postprocessing: Duplicate Elimination Elimination

Separate the projection operation (3x.) to

m a duplicate preserving projection (3) and
m an explicit (idempotent) duplicate elimination operator ({-}).

Use the following rewrites to eliminate/minimize the use of {-}:

Q[{R(X1 e ,Xk)}] <~ Q[R(X1 . ,Xk)]
Q{1 A Qo}] < Q[{Q1} N {Q2}]
Q{~Qi}]+ Q-]
Q-{Qi}]+ Q-]
QHQIV Qe}] < Q{1 V{Qe}] HZU{Q[}FQANQ — L
Q[{3x.Q1}] < Q[Ex.{Q}] if
Tu{QA Q) /XIA (Q)ly2/X] E v = y2

. reasoning abstracted: a DL C]-"DXC‘ (a PTIME fragment)

[Toman, Weddell: Using Feature-Based Description Logics to avoid Duplicate

,,,,,,,,,,,,,

Waterloo

K David Toman (et al.) Physical Data Independence How does it work? 33/35

Summary

While in theory interpolation essentially solves the query rewriting over FO
schemas/views problem, the devil is (as usual) in the details.

[Borgida, de Bruijn, Franconi, Seylan, Straccia, Toman, Weddell: On Finding
Query Rewritings under Expressive Constraints. SEBD 2010: 426-437

... but an (almost) working system only this year.

FO tableau based interpolation algorithm
= enumeration of plans factored from of tableau reasoning
= extra-logical binding patterns and cost model
Post processing (using CFDZnc approximation)
= duplicate elimination elimination
= cut insertion
Run time

= library of common data/legacy structures+schema constraints

= finger data structures to simulate merge joins et al.
Waterioo

i
@ David Toman (et al.) Physical Data Independence Summary 34/35

Research Directions and Open Issues

Dealing with ordered data? (merge-joins etc.: we have a partial solution)
Decidable schema languages (decidable interpolation problem)?

More powerful schema languages (inductive types, etc.)?

Beyond FO Queries/Views (e.g., count/sum aggregates)?

Coding extra-logical bits (e.g., binding patterns, postprocessing, etc.)
in the schema itself?

@ Standard Designs (a plan can always be found as in SQL)?
Explanation(s) of non-definability?

B Fine(r)-grained updates?

...and, as always, performance, performance, performance!

,,,,,,,,,,,,,

Waterloo

i
& David Toman (et al.) Physical Data Independence Summary 35/35

