
Managing and Communicating Object Identities
in Knowledge Representation

and Information Systems

David Toman‡

(joint work with Alexander Borgida† and Grant Weddell‡)

†Department of Computer Science
Rutgers University, New Brunswick, USA
borgida@cs.rutgers.edu

‡Cheriton School of Computer Science
University of Waterloo, Canada
{david,gweddell}@uwaterloo.ca

David Toman et al. Referring Expressions and Information Systems 1 / 47

REFERING EXPRESSIONS
(INTRO AND BACKGROUND)

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions (Background) 2 / 47

What is an Referring Expression?

Referring Expression

A referring expression in linguistics is any noun phrase identifying an object in
a way that will be useful to interlocutors.

Russell: "On Denoting," Mind, New Series, Vol.14, No.56, pp. 479–493, 1905.

A definite description “the F is a G” is understood to have the form

∃x(F (x) ∧ ∀y(F (y)→ x = y) ∧G(x))

A definite description is a denoting phrase in the form of “the F” where
F is a noun-phrase or a singular common noun. The definite descrip-
tion is proper if F applies to a unique individual or object.

The discussion of definite and indefinite descriptions (in English, phrases of
the form ‘the F ’ and ‘an F ’) has been at the center of analytic philosophy for
over a century now.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions (Background) 3 / 47

What is an Referring Expression?

Referring Expression

A referring expression in linguistics is any noun phrase identifying an object in
a way that will be useful to interlocutors.

Russell: "On Denoting," Mind, New Series, Vol.14, No.56, pp. 479–493, 1905.

A definite description “the F is a G” is understood to have the form

∃x(F (x) ∧ ∀y(F (y)→ x = y) ∧G(x))

A definite description is a denoting phrase in the form of “the F” where
F is a noun-phrase or a singular common noun. The definite descrip-
tion is proper if F applies to a unique individual or object.

The discussion of definite and indefinite descriptions (in English, phrases of
the form ‘the F ’ and ‘an F ’) has been at the center of analytic philosophy for
over a century now.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions (Background) 3 / 47

What is an Referring Expression?

Referring Expression

A referring expression in linguistics is any noun phrase identifying an object in
a way that will be useful to interlocutors.

Russell: "On Denoting," Mind, New Series, Vol.14, No.56, pp. 479–493, 1905.

A definite description “the F is a G” is understood to have the form

∃x(F (x) ∧ ∀y(F (y)→ x = y) ∧G(x))

A definite description is a denoting phrase in the form of “the F” where
F is a noun-phrase or a singular common noun. The definite descrip-
tion is proper if F applies to a unique individual or object.

The discussion of definite and indefinite descriptions (in English, phrases of
the form ‘the F ’ and ‘an F ’) has been at the center of analytic philosophy for
over a century now.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions (Background) 3 / 47

Issues and Criticisms

Referring to Non-existing Object:
“The King of Kentucky (is. . .)” [Strawson]

(object does NOT exist in this interpretation? or in principle?)

Referring to Object in Context:
“The table (is covered with books)”

(non-unique reference without assuming additional context)

Multiple Referrences:
“The Morning Star” vs. “The Evening Star” [Fregge]

(multiple distinct references to the same object)

. . .

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions (Background) 4 / 47

Tutorial Outline

1 Single Models/Interpretations vs. Open World and Certain answers

2 Referring Expressions in Answers to OBDA Queries

3 Referring Expressions and Ground Knowledge

4 Referring Expressions in Conceptual Design

5 Summary

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions (Background) 5 / 47

REFERING EXPRESSIONS

AND (LOGICAL) THEORIES

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions (Background) 6 / 47

Referring to Objects

How do we communicate Results of Queries?

Typical solution: tuples of constant symbols that, when substituted for free
variables, make a query logically implied by the Knowledge Base.

1 only explicitly named objects are returned as certain answers
2 often system-generated ids (that aren’t too user-friendly)

Example (Freebase)

The (object id of the) “Synchronicity” album by “The Police” is
/guid/9202a8c04000641f8000000002f9e349 (as of April, 2015.)

Referring Expressions

More answers (e.g. objects without explicit name), and/or
more informative/preferred answers, e.g.:

ALBUM u (title = “Synchronicity”) u (band = “The Police”)

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions (Background) 7 / 47

Referring to Objects

How do we communicate Results of Queries?

Typical solution: tuples of constant symbols that, when substituted for free
variables, make a query logically implied by the Knowledge Base.

1 only explicitly named objects are returned as certain answers
2 often system-generated ids (that aren’t too user-friendly)

Example (Freebase)

The (object id of the) “Synchronicity” album by “The Police” is
/guid/9202a8c04000641f8000000002f9e349 (as of April, 2015.)

Referring Expressions

More answers (e.g. objects without explicit name), and/or
more informative/preferred answers, e.g.:

ALBUM u (title = “Synchronicity”) u (band = “The Police”)

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions (Background) 7 / 47

Referring to Objects

How do we communicate Results of Queries?

Typical solution: tuples of constant symbols that, when substituted for free
variables, make a query logically implied by the Knowledge Base.

1 only explicitly named objects are returned as certain answers
2 often system-generated ids (that aren’t too user-friendly)

Example (Freebase)

The (object id of the) “Synchronicity” album by “The Police” is
/guid/9202a8c04000641f8000000002f9e349 (as of April, 2015.)

Referring Expressions

More answers (e.g. objects without explicit name), and/or
more informative/preferred answers, e.g.:

ALBUM u (title = “Synchronicity”) u (band = “The Police”)

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions (Background) 7 / 47

Referring to Objects

How do we communicate Results of Queries?

Typical solution: tuples of constant symbols that, when substituted for free
variables, make a query logically implied by the Knowledge Base.

1 only explicitly named objects are returned as certain answers
2 often system-generated ids (that aren’t too user-friendly)

Example (Freebase)

The (object id of the) “Synchronicity” album by “The Police” is
/guid/9202a8c04000641f8000000002f9e349 (as of April, 2015.)

Referring Expressions

More answers (e.g. objects without explicit name), and/or
more informative/preferred answers, e.g.:

ALBUM u (title = “Synchronicity”) u (band = “The Police”)

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions (Background) 7 / 47

Single Interpretations vs. (non-trivial) Logical Theories

Russell’s Definite Descriptions . . . denote exactly one object

What happens if we consider logical theories rather than a particular model?
constant symbols

. . . can be interpreted by different individuals in different models

. . . set of constants may change with evolution of the theory (updates!)
similar issues with other non-logical symbols

⇒ even (standard) conatants don’t quite satisfy Russell’s requirements

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions (Background) 8 / 47

Single Interpretations vs. (non-trivial) Logical Theories

Russell’s Definite Descriptions . . . denote exactly one object

What happens if we consider logical theories rather than a particular model?
constant symbols

. . . can be interpreted by different individuals in different models

. . . set of constants may change with evolution of the theory (updates!)
similar issues with other non-logical symbols

⇒ even (standard) conatants don’t quite satisfy Russell’s requirements

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions (Background) 8 / 47

Single Interpretations vs. (non-trivial) Logical Theories

Russell’s Definite Descriptions . . . denote exactly one object

What happens if we consider logical theories rather than a particular model?
constant symbols

. . . can be interpreted by different individuals in different models

. . . set of constants may change with evolution of the theory (updates!)

similar issues with other non-logical symbols

⇒ even (standard) conatants don’t quite satisfy Russell’s requirements

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions (Background) 8 / 47

Single Interpretations vs. (non-trivial) Logical Theories

Russell’s Definite Descriptions . . . denote exactly one object

What happens if we consider logical theories rather than a particular model?
constant symbols

. . . can be interpreted by different individuals in different models

. . . set of constants may change with evolution of the theory (updates!)
similar issues with other non-logical symbols

⇒ even (standard) conatants don’t quite satisfy Russell’s requirements

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions (Background) 8 / 47

Single Interpretations vs. (non-trivial) Logical Theories

Russell’s Definite Descriptions . . . denote exactly one object

What happens if we consider logical theories rather than a particular model?
constant symbols

. . . can be interpreted by different individuals in different models

. . . set of constants may change with evolution of the theory (updates!)
similar issues with other non-logical symbols

⇒ even (standard) conatants don’t quite satisfy Russell’s requirements

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions (Background) 8 / 47

Rigidity and Genericity: DB Theory Way
Why not require constants to be rigid designators?

⇒ symbols interpreted identically in all models

Database (theory) Approach

Database Instances (aka models) use rigid constants, but
Database Queries are required to be generic

⇒ invariant under permutations of the underlying domain

Certain Answers (to ϕ{x} in K)

1 Logical Definition: {a | K |= ϕ[a/x]}
2 DB Definition:

⋂
I|=K{a | I, [x 7→ a] |= ϕ}

(conflates constants with domain elements)

. . . for generic (and domain-independent) queries the result is the same!

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions (Background) 9 / 47

Rigidity and Genericity: DB Theory Way
Why not require constants to be rigid designators?

⇒ symbols interpreted identically in all models

Database (theory) Approach

Database Instances (aka models) use rigid constants, but
Database Queries are required to be generic

⇒ invariant under permutations of the underlying domain

Certain Answers (to ϕ{x} in K)

1 Logical Definition: {a | K |= ϕ[a/x]}
2 DB Definition:

⋂
I|=K{a | I, [x 7→ a] |= ϕ}

(conflates constants with domain elements)

. . . for generic (and domain-independent) queries the result is the same!

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions (Background) 9 / 47

Rigidity and Genericity: DB Theory Way
Why not require constants to be rigid designators?

⇒ symbols interpreted identically in all models

Database (theory) Approach

Database Instances (aka models) use rigid constants, but
Database Queries are required to be generic

⇒ invariant under permutations of the underlying domain

Certain Answers (to ϕ{x} in K)

1 Logical Definition: {a | K |= ϕ[a/x]}
2 DB Definition:

⋂
I|=K{a | I, [x 7→ a] |= ϕ}

(conflates constants with domain elements)

. . . for generic (and domain-independent) queries the result is the same!

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions (Background) 9 / 47

Rigidity and Genericity: DB Theory Way
Why not require constants to be rigid designators?

⇒ symbols interpreted identically in all models

Database (theory) Approach

Database Instances (aka models) use rigid constants, but
Database Queries are required to be generic

⇒ invariant under permutations of the underlying domain

Certain Answers (to ϕ{x} in K)

1 Logical Definition: {a | K |= ϕ[a/x]}
2 DB Definition:

⋂
I|=K{a | I, [x 7→ a] |= ϕ}

(conflates constants with domain elements)

. . . for generic (and domain-independent) queries the result is the same!

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions (Background) 9 / 47

Bottom Line

Referring Expressions

Formulæ φ{x} (in the language of the Knowledge Base)
1 with exactly one free variable (x) that are
2 singular with respect to a Knowledge Base K, i.e.,

|{o | I, [x 7→ o] |= φ}| = 1

for all I model of K.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions (Background) 10 / 47

Referring to Objects (fine print)

The rest of the presentation is based on

KR16 Alexander Borgida, David Toman, and Grant E. Weddell: On Referring
Expressions in Query Answering over First Order Knowledge Bases.
Proc. International Conference on Principles of Knowledge
Representation and Reasoning KR 2016, 319-328, 2016.

DL18 David Toman and Grant E. Weddell: Identity Resolution in Conjunctive
Querying over DL-based Knowledge Bases. Proc. Description Logics DL
2018, 2018.

ER16 Alexander Borgida, David Toman, and Grant Weddell: On Referring
Expressions in Information Systems Derived from Conceptual Modelling.
Proc, International Conference on Conceptual Modeling ER 2016,
183-197, 2016.

EKAW18 Weicong Ma, C. Maria Keet, Wayne Oldford, David Toman, and
Grant Weddell: The Utility of the Abstract Relational Model and Attribute
Paths in SQL. Proc. International Conference on Knowledge Engineering
and Knowledge Management, 195-211, EKAW 2018.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions (Background) 11 / 47

ONTOLOGY BASED DATA ACCESS

Borgida, Toman, and Weddell Referring Expressions and Information Systems Query Answering and Ontologies 12 / 47

Queries and Ontologies

Ontology-based Data Access

Enriches (query answers over) explicitly represented data using
background knowledge (captured using an ontology.)

Borgida, Toman, and Weddell Referring Expressions and Information Systems Query Answering and Ontologies 13 / 47

Queries and Ontologies

Ontology-based Data Access

Enriches (query answers over) explicitly represented data using
background knowledge (captured using an ontology.)

Example

Bob is a BOSS (explicit data)
Every BOSS is an EMPloyee (ontology)

List all EMPloyees⇒ {Bob} (query)

Goal: compute all certain answers

⇒ answers common in all models of KB (aka. answers logically implied by KB)

Borgida, Toman, and Weddell Referring Expressions and Information Systems Query Answering and Ontologies 13 / 47

Approaches to Ontology-based Data Access

Main Task
INPUT: Ontology (T), Data (A)︸ ︷︷ ︸

Knowledge Base(K)

, and a Query (Q)

OUTPUT: {a | K |= Q[a]}

1 Reduction to standard reasoning (e.g., satisfiability)
2 Reduction to querying a relational database
⇒ very good at {a | A |= Q[a]} for range restricted Q
⇒ what to do with T ??

1 incorporate into Q (perfect rewriting for DL-Lite et el. (AC0 logics)); or
2 incorporate into A (combined approach for EL (PTIME-complete logics));

or sometimes both (CFDI logics).

Borgida, Toman, and Weddell Referring Expressions and Information Systems Query Answering and Ontologies 14 / 47

Issues with the Standard Definition of Answers
“David is a UWaterloo Employee” and

“every Employee has a Phone”

Question: Does David have a Phone?

Answer: YES

Question: OK, tell me about David’s Phone!

Answer: { }

Better Answers (possibly)

1 it is a phone with phone # +1(519) 888-4567x34447;
2 it is a UWaterloo phone with extension x34447;
3 it is a phone in the Davis Centre, Office 3344;
4 it is a Waterloo phone attached to port 0x0123abcd;
5 it is a Waterloo CS phone with inventory # 100034447;
6 it is David’s phone (??)

Borgida, Toman, and Weddell Referring Expressions and Information Systems Query Answering and Ontologies 15 / 47

Issues with the Standard Definition of Answers
“David is a UWaterloo Employee” and

“every Employee has a Phone”

Question: Does David have a Phone?

Answer: YES

Question: OK, tell me about David’s Phone!

Answer: { }

Better Answers (possibly)

1 it is a phone with phone # +1(519) 888-4567x34447;
2 it is a UWaterloo phone with extension x34447;
3 it is a phone in the Davis Centre, Office 3344;
4 it is a Waterloo phone attached to port 0x0123abcd;
5 it is a Waterloo CS phone with inventory # 100034447;
6 it is David’s phone (??)

Borgida, Toman, and Weddell Referring Expressions and Information Systems Query Answering and Ontologies 15 / 47

Issues with the Standard Definition of Answers
“David is a UWaterloo Employee” and

“every Employee has a Phone”

Question: Does David have a Phone?

Answer: YES

Question: OK, tell me about David’s Phone!

Answer: { }

Better Answers (possibly)

1 it is a phone with phone # +1(519) 888-4567x34447;
2 it is a UWaterloo phone with extension x34447;
3 it is a phone in the Davis Centre, Office 3344;
4 it is a Waterloo phone attached to port 0x0123abcd;
5 it is a Waterloo CS phone with inventory # 100034447;
6 it is David’s phone (??)

Borgida, Toman, and Weddell Referring Expressions and Information Systems Query Answering and Ontologies 15 / 47

Issues with the Standard Definition of Answers
“David is a UWaterloo Employee” and

“every Employee has a Phone”

Question: Does David have a Phone?

Answer: YES

Question: OK, tell me about David’s Phone!

Answer: { }

Better Answers (possibly)

1 it is a phone with phone # +1(519) 888-4567x34447;
2 it is a UWaterloo phone with extension x34447;
3 it is a phone in the Davis Centre, Office 3344;
4 it is a Waterloo phone attached to port 0x0123abcd;
5 it is a Waterloo CS phone with inventory # 100034447;
6 it is David’s phone (??)

Borgida, Toman, and Weddell Referring Expressions and Information Systems Query Answering and Ontologies 15 / 47

Referring Expressions (revisited)

Definition (Singular Referring Expression)

. . . is a noun phrase that, when used as query answer, identifies
a particular object in this query answer.

“David is a UWaterloo Employee” and “every Employee has a Phone”

1 it is a phone ;

X

2 it is ;

X

3 it is ;

X

4 it is ;

X

5 it is ;

X

6 it is ;

×

7 it is the ;

×

Borgida, Toman, and Weddell Referring Expressions and Information Systems Query Answering and Ontologies 16 / 47

Referring Expressions (revisited)

Definition (Singular Referring Expression)

. . . is a noun phrase that, when used as query answer, identifies
a particular object in this query answer.

“David is a UWaterloo Employee” and “every Employee has a Phone”

1 it is a phone with phone # "+1(519) 888-4567x34447" ;

X

2 it is a UWaterloo phone with extension x34447 ;

X

3 it is a phone in the Davis Centre, Office 3344 ;

X

4 it is a Waterloo phone attached to port 0x0123abcd ;

X

5 it is a Waterloo CS phone with inventory # 100034447 ;

X

6 it is David’s phone ;

×

7 it is the red phone ;

×

Borgida, Toman, and Weddell Referring Expressions and Information Systems Query Answering and Ontologies 16 / 47

Referring Expressions (revisited)

Definition (Singular Referring Expression)

. . . is a noun phrase that, when used as query answer, identifies
a particular object in this query answer.

“David is a UWaterloo Employee” and “every Employee has a Phone”

1 it is a phone with phone # "+1(519) 888-4567x34447" ; X
2 it is a UWaterloo phone with extension x34447 ;

X

3 it is a phone in the Davis Centre, Office 3344 ;

X

4 it is a Waterloo phone attached to port 0x0123abcd ;

X

5 it is a Waterloo CS phone with inventory # 100034447 ;

X

6 it is David’s phone ;

×

7 it is the red phone ;

×

Borgida, Toman, and Weddell Referring Expressions and Information Systems Query Answering and Ontologies 16 / 47

Referring Expressions (revisited)

Definition (Singular Referring Expression)

. . . is a noun phrase that, when used as query answer, identifies
a particular object in this query answer.

“David is a UWaterloo Employee” and “every Employee has a Phone”

1 it is a phone with phone # "+1(519) 888-4567x34447" ; X
2 it is a UWaterloo phone with extension x34447 ; X
3 it is a phone in the Davis Centre, Office 3344 ; X
4 it is a Waterloo phone attached to port 0x0123abcd ; X
5 it is a Waterloo CS phone with inventory # 100034447 ; X
6 it is David’s phone ;

×

7 it is the red phone ;

×

Borgida, Toman, and Weddell Referring Expressions and Information Systems Query Answering and Ontologies 16 / 47

Referring Expressions (revisited)

Definition (Singular Referring Expression)

. . . is a noun phrase that, when used as query answer, identifies
a particular object in this query answer.

“David is a UWaterloo Employee” and “every Employee has a Phone”

1 it is a phone with phone # "+1(519) 888-4567x34447" ; X
2 it is a UWaterloo phone with extension x34447 ; X
3 it is a phone in the Davis Centre, Office 3344 ; X
4 it is a Waterloo phone attached to port 0x0123abcd ; X
5 it is a Waterloo CS phone with inventory # 100034447 ; X
6 it is David’s phone ; ×
7 it is the red phone ;

×

Borgida, Toman, and Weddell Referring Expressions and Information Systems Query Answering and Ontologies 16 / 47

Referring Expressions (revisited)

Definition (Singular Referring Expression)

. . . is a noun phrase that, when used as query answer, identifies
a particular object in this query answer.

“David is a UWaterloo Employee” and “every Employee has a Phone”

1 it is a phone with phone # "+1(519) 888-4567x34447" ; X
2 it is a UWaterloo phone with extension x34447 ; X
3 it is a phone in the Davis Centre, Office 3344 ; X
4 it is a Waterloo phone attached to port 0x0123abcd ; X
5 it is a Waterloo CS phone with inventory # 100034447 ; X
6 it is David’s phone ; ×
7 it is the red phone ; ×

Borgida, Toman, and Weddell Referring Expressions and Information Systems Query Answering and Ontologies 16 / 47

Referring Expressions (revisited)

Definition (Singular Referring Expression)

. . . is an unary formula that, when used as query answer, identifies
a particular object in this query answer.

“David is a UWaterloo Employee” and “every Employee has a Phone”

1 it is a phone x s.t. PhoneNo(x , "+1(519) 888-4567x34447") holds; X
2 it is a phone x s.t. UWPhone(x) ∧ PhoneExt(x , "x34447") holds; X
3 it is a phone x s.t. UWRoom(x , "DC3344") holds; X
4 it is a phone x s.t. UWPhone(x) ∧ PhonePort(x ,0x0123abcd) holds; X
5 it is a phone x s.t. UWCSPhone(x) ∧ InvNo(x , "100034447") holds; X
6 it is a phone x s.t. IsOwner("David", x) holds; ×
7 it is the phone x s.t. Colour(x , "red") holds; ×

Borgida, Toman, and Weddell Referring Expressions and Information Systems Query Answering and Ontologies 16 / 47

From Query Answers to Referring Expressions [KR16]

(Certain) Query Answers

Given a query ψ{x1, . . . , xk} and a KB K;
Classical answers: substitutions

θ = {x1 7→ a1, . . . , xk 7→ ak}

that map free variables of ψ to constants that appear in K and K |= ψθ.

Referring Expression-based answers: R-substitutions

θ = {x1 7→ φ1{x1}, . . . , xk 7→ φk{xk}}

where φi{xi} are unary formulæ in the language of K such that
1 ∀x1, . . . , xk .(φ1 ∧ . . . ∧ φk)→ ψ (soundness)
2 ∃x1, . . . , xk .(φ1 ∧ . . . ∧ φk) ∧ ψ (existence)
3 ∀x1, . . . , xk , yi .φ1 ∧ . . . ∧ φk ∧ ψ ∧ φi [xi/yi] ∧ ψ[xi/yi]→ xi = yi (singularity)

. . . are logically implied by K.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions as Formulæ 17 / 47

From Query Answers to Referring Expressions [KR16]

(Certain) Query Answers

Given a query ψ{x1, . . . , xk} and a KB K;
Classical answers: substitutions

θ = {x1 7→ a1, . . . , xk 7→ ak}

that map free variables of ψ to constants that appear in K and K |= ψθ.

Referring Expression-based answers: R-substitutions

θ = {x1 7→ φ1{x1}, . . . , xk 7→ φk{xk}}

where φi{xi} are unary formulæ in the language of K such that
1 ∀x1, . . . , xk .(φ1 ∧ . . . ∧ φk)→ ψ (soundness)
2 ∃x1, . . . , xk .(φ1 ∧ . . . ∧ φk) ∧ ψ (existence)
3 ∀x1, . . . , xk , yi .φ1 ∧ . . . ∧ φk ∧ ψ ∧ φi [xi/yi] ∧ ψ[xi/yi]→ xi = yi (singularity)

. . . are logically implied by K.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions as Formulæ 17 / 47

More Examples

T = { fatherof(x , y)→ (Father(x) ∧ Person(y)),Father(x)→ Person(x),
Father(x)→ ∃y .fatherof(x , y),Person(x)→ ∃y .fatherof(y , x)

fatherof(x , z) ∧ fatherof(y , z)→ x = y

}
A = { Father(fred),Person(mary) }

query: Father(x)?
answer: x = fred, fatherof(x ,mary), ∃y .fatherof(x , y)∧ fatherof(y ,mary), . . .

query: Person(x)?
answer: x = mary, x = fred, father-of(fred, x) (?!?)

T = { spouse(x , y)→ spouse(y , x),
spouse(x , z) ∧ spouse(y , z)→ x = y }

A = { spouse(mary, fred)}

query: spouse(x ,mary)?
answer: x = fred, spouse(x ,mary), ∃y .spouse(x , y) ∧ spouse(y , fred), . . .

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions as Formulæ 18 / 47

More Examples

T = { fatherof(x , y)→ (Father(x) ∧ Person(y)),Father(x)→ Person(x),
Father(x)→ ∃y .fatherof(x , y),Person(x)→ ∃y .fatherof(y , x)

fatherof(x , z) ∧ fatherof(y , z)→ x = y

}
A = { Father(fred),Person(mary) }

query: Father(x)?

answer: x = fred, fatherof(x ,mary), ∃y .fatherof(x , y)∧ fatherof(y ,mary), . . .

query: Person(x)?
answer: x = mary, x = fred, father-of(fred, x) (?!?)

T = { spouse(x , y)→ spouse(y , x),
spouse(x , z) ∧ spouse(y , z)→ x = y }

A = { spouse(mary, fred)}

query: spouse(x ,mary)?
answer: x = fred, spouse(x ,mary), ∃y .spouse(x , y) ∧ spouse(y , fred), . . .

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions as Formulæ 18 / 47

More Examples

T = { fatherof(x , y)→ (Father(x) ∧ Person(y)),Father(x)→ Person(x),
Father(x)→ ∃y .fatherof(x , y),Person(x)→ ∃y .fatherof(y , x)

fatherof(x , z) ∧ fatherof(y , z)→ x = y

}
A = { Father(fred),Person(mary) }

query: Father(x)?
answer: x = fred

, fatherof(x ,mary), ∃y .fatherof(x , y)∧ fatherof(y ,mary), . . .

query: Person(x)?
answer: x = mary, x = fred, father-of(fred, x) (?!?)

T = { spouse(x , y)→ spouse(y , x),
spouse(x , z) ∧ spouse(y , z)→ x = y }

A = { spouse(mary, fred)}

query: spouse(x ,mary)?
answer: x = fred, spouse(x ,mary), ∃y .spouse(x , y) ∧ spouse(y , fred), . . .

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions as Formulæ 18 / 47

More Examples

T = { fatherof(x , y)→ (Father(x) ∧ Person(y)),Father(x)→ Person(x),
Father(x)→ ∃y .fatherof(x , y),Person(x)→ ∃y .fatherof(y , x)
fatherof(x , z) ∧ fatherof(y , z)→ x = y }

A = { Father(fred),Person(mary) }

query: Father(x)?
answer: x = fred, fatherof(x ,mary)

, ∃y .fatherof(x , y)∧ fatherof(y ,mary), . . .

query: Person(x)?
answer: x = mary, x = fred, father-of(fred, x) (?!?)

T = { spouse(x , y)→ spouse(y , x),
spouse(x , z) ∧ spouse(y , z)→ x = y }

A = { spouse(mary, fred)}

query: spouse(x ,mary)?
answer: x = fred, spouse(x ,mary), ∃y .spouse(x , y) ∧ spouse(y , fred), . . .

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions as Formulæ 18 / 47

More Examples

T = { fatherof(x , y)→ (Father(x) ∧ Person(y)),Father(x)→ Person(x),
Father(x)→ ∃y .fatherof(x , y),Person(x)→ ∃y .fatherof(y , x)
fatherof(x , z) ∧ fatherof(y , z)→ x = y }

A = { Father(fred),Person(mary) }

query: Father(x)?
answer: x = fred, fatherof(x ,mary), ∃y .fatherof(x , y)∧ fatherof(y ,mary), . . .

query: Person(x)?
answer: x = mary, x = fred, father-of(fred, x) (?!?)

T = { spouse(x , y)→ spouse(y , x),
spouse(x , z) ∧ spouse(y , z)→ x = y }

A = { spouse(mary, fred)}

query: spouse(x ,mary)?
answer: x = fred, spouse(x ,mary), ∃y .spouse(x , y) ∧ spouse(y , fred), . . .

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions as Formulæ 18 / 47

More Examples

T = { fatherof(x , y)→ (Father(x) ∧ Person(y)),Father(x)→ Person(x),
Father(x)→ ∃y .fatherof(x , y),Person(x)→ ∃y .fatherof(y , x)
fatherof(x , z) ∧ fatherof(y , z)→ x = y }

A = { Father(fred),Person(mary) }

query: Father(x)?
answer: x = fred, fatherof(x ,mary), ∃y .fatherof(x , y)∧ fatherof(y ,mary), . . .

query: Person(x)?

answer: x = mary, x = fred, father-of(fred, x) (?!?)

T = { spouse(x , y)→ spouse(y , x),
spouse(x , z) ∧ spouse(y , z)→ x = y }

A = { spouse(mary, fred)}

query: spouse(x ,mary)?
answer: x = fred, spouse(x ,mary), ∃y .spouse(x , y) ∧ spouse(y , fred), . . .

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions as Formulæ 18 / 47

More Examples

T = { fatherof(x , y)→ (Father(x) ∧ Person(y)),Father(x)→ Person(x),
Father(x)→ ∃y .fatherof(x , y),Person(x)→ ∃y .fatherof(y , x)
fatherof(x , z) ∧ fatherof(y , z)→ x = y }

A = { Father(fred),Person(mary) }

query: Father(x)?
answer: x = fred, fatherof(x ,mary), ∃y .fatherof(x , y)∧ fatherof(y ,mary), . . .

query: Person(x)?
answer: x = mary, x = fred

, father-of(fred, x) (?!?)

T = { spouse(x , y)→ spouse(y , x),
spouse(x , z) ∧ spouse(y , z)→ x = y }

A = { spouse(mary, fred)}

query: spouse(x ,mary)?
answer: x = fred, spouse(x ,mary), ∃y .spouse(x , y) ∧ spouse(y , fred), . . .

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions as Formulæ 18 / 47

More Examples

T = { fatherof(x , y)→ (Father(x) ∧ Person(y)),Father(x)→ Person(x),
Father(x)→ ∃y .fatherof(x , y),Person(x)→ ∃y .fatherof(y , x)
fatherof(x , z) ∧ fatherof(y , z)→ x = y }

A = { Father(fred),Person(mary) }

query: Father(x)?
answer: x = fred, fatherof(x ,mary), ∃y .fatherof(x , y)∧ fatherof(y ,mary), . . .

query: Person(x)?
answer: x = mary, x = fred, father-of(fred, x) (?!?)

T = { spouse(x , y)→ spouse(y , x),
spouse(x , z) ∧ spouse(y , z)→ x = y }

A = { spouse(mary, fred)}

query: spouse(x ,mary)?
answer: x = fred, spouse(x ,mary), ∃y .spouse(x , y) ∧ spouse(y , fred), . . .

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions as Formulæ 18 / 47

More Examples

T = { fatherof(x , y)→ (Father(x) ∧ Person(y)),Father(x)→ Person(x),
Father(x)→ ∃y .fatherof(x , y),Person(x)→ ∃y .fatherof(y , x)
fatherof(x , z) ∧ fatherof(y , z)→ x = y }

A = { Father(fred),Person(mary) }

query: Father(x)?
answer: x = fred, fatherof(x ,mary), ∃y .fatherof(x , y)∧ fatherof(y ,mary), . . .

query: Person(x)?
answer: x = mary, x = fred, father-of(fred, x) (?!?)

T = { spouse(x , y)→ spouse(y , x),
spouse(x , z) ∧ spouse(y , z)→ x = y }

A = { spouse(mary, fred)}

query: spouse(x ,mary)?
answer: x = fred, spouse(x ,mary), ∃y .spouse(x , y) ∧ spouse(y , fred), . . .

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions as Formulæ 18 / 47

More Examples

T = { fatherof(x , y)→ (Father(x) ∧ Person(y)),Father(x)→ Person(x),
Father(x)→ ∃y .fatherof(x , y),Person(x)→ ∃y .fatherof(y , x)
fatherof(x , z) ∧ fatherof(y , z)→ x = y }

A = { Father(fred),Person(mary) }

query: Father(x)?
answer: x = fred, fatherof(x ,mary), ∃y .fatherof(x , y)∧ fatherof(y ,mary), . . .

query: Person(x)?
answer: x = mary, x = fred, father-of(fred, x) (?!?)

T = { spouse(x , y)→ spouse(y , x),
spouse(x , z) ∧ spouse(y , z)→ x = y }

A = { spouse(mary, fred)}

query: spouse(x ,mary)?

answer: x = fred, spouse(x ,mary), ∃y .spouse(x , y) ∧ spouse(y , fred), . . .

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions as Formulæ 18 / 47

More Examples

T = { fatherof(x , y)→ (Father(x) ∧ Person(y)),Father(x)→ Person(x),
Father(x)→ ∃y .fatherof(x , y),Person(x)→ ∃y .fatherof(y , x)
fatherof(x , z) ∧ fatherof(y , z)→ x = y }

A = { Father(fred),Person(mary) }

query: Father(x)?
answer: x = fred, fatherof(x ,mary), ∃y .fatherof(x , y)∧ fatherof(y ,mary), . . .

query: Person(x)?
answer: x = mary, x = fred, father-of(fred, x) (?!?)

T = { spouse(x , y)→ spouse(y , x),
spouse(x , z) ∧ spouse(y , z)→ x = y }

A = { spouse(mary, fred)}

query: spouse(x ,mary)?
answer: x = fred

, spouse(x ,mary), ∃y .spouse(x , y) ∧ spouse(y , fred), . . .

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions as Formulæ 18 / 47

More Examples

T = { fatherof(x , y)→ (Father(x) ∧ Person(y)),Father(x)→ Person(x),
Father(x)→ ∃y .fatherof(x , y),Person(x)→ ∃y .fatherof(y , x)
fatherof(x , z) ∧ fatherof(y , z)→ x = y }

A = { Father(fred),Person(mary) }

query: Father(x)?
answer: x = fred, fatherof(x ,mary), ∃y .fatherof(x , y)∧ fatherof(y ,mary), . . .

query: Person(x)?
answer: x = mary, x = fred, father-of(fred, x) (?!?)

T = { spouse(x , y)→ spouse(y , x),
spouse(x , z) ∧ spouse(y , z)→ x = y }

A = { spouse(mary, fred)}

query: spouse(x ,mary)?
answer: x = fred, spouse(x ,mary)

, ∃y .spouse(x , y) ∧ spouse(y , fred), . . .

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions as Formulæ 18 / 47

More Examples

T = { fatherof(x , y)→ (Father(x) ∧ Person(y)),Father(x)→ Person(x),
Father(x)→ ∃y .fatherof(x , y),Person(x)→ ∃y .fatherof(y , x)
fatherof(x , z) ∧ fatherof(y , z)→ x = y }

A = { Father(fred),Person(mary) }

query: Father(x)?
answer: x = fred, fatherof(x ,mary), ∃y .fatherof(x , y)∧ fatherof(y ,mary), . . .

query: Person(x)?
answer: x = mary, x = fred, father-of(fred, x) (?!?)

T = { spouse(x , y)→ spouse(y , x),
spouse(x , z) ∧ spouse(y , z)→ x = y }

A = { spouse(mary, fred)}

query: spouse(x ,mary)?
answer: x = fred, spouse(x ,mary), ∃y .spouse(x , y) ∧ spouse(y , fred), . . .

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions as Formulæ 18 / 47

Generic Background Knowledge?

How do we deal with multiple referring expression answers/preferences/. . . ?

potentially too many ways to refer to the same object
potentially too many implied answers (infinitely many!)

Desiderata (Referring Expression Types and Weak Identification)

Given 1 a KB K (the “background knowledge”),
2 a query ψ{x1, . . . , xk}, and
3 (specifications of) sets of unary formulæ S1, . . . ,Sk

We ask whether, for every K′ (the “data”) consistent with K and an answer

θ = {x1 7→ φ1{x1}, . . . , xk 7→ φk{xk}}

to ψ with respect to K ∪ K′ such that φi ∈ Si , it is the case that θ is singular.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Types 19 / 47

Generic Background Knowledge?

How do we deal with multiple referring expression answers/preferences/. . . ?

potentially too many ways to refer to the same object
potentially too many implied answers (infinitely many!)

Desiderata (Referring Expression Types and Weak Identification)

Given 1 a KB K (the “background knowledge”),
2 a query ψ{x1, . . . , xk}, and
3 (specifications of) sets of unary formulæ S1, . . . ,Sk

We ask whether, for every K′ (the “data”) consistent with K and an answer

θ = {x1 7→ φ1{x1}, . . . , xk 7→ φk{xk}}

to ψ with respect to K ∪ K′ such that φi ∈ Si , it is the case that θ is singular.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Types 19 / 47

Referring Expression Types

How do we deal with multiple referring expression answers/preferences/. . . ?

Referring Expression Type and Typed Queries

Types: Rt ::= Pd = {?} | Rt1 ∧Rt2 | T→ Rt | Rt1; Rt2

⇒ each type induces a set of unary formulæ;

Queries: select x1 : Rt1, . . . , xk : Rtk where ψ
⇒ x1 : Rt1, . . . , xk : Rtk is called the head, ψ is the body.

Theorem (Weak Identification; paraphrased)

Given a query ψ with a head H and a KB K, the question

“are all answers to ψ conforming to H over any K ∪ K′ singular?”

reduces to logical implication in the underlying logic of K.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Types 20 / 47

Referring Expression Types

How do we deal with multiple referring expression answers/preferences/. . . ?

Referring Expression Type and Typed Queries

Types: Rt ::= Pd = {?} | Rt1 ∧Rt2 | T→ Rt | Rt1; Rt2

⇒ each type induces a set of unary formulæ;

Queries: select x1 : Rt1, . . . , xk : Rtk where ψ
⇒ x1 : Rt1, . . . , xk : Rtk is called the head, ψ is the body.

Theorem (Weak Identification; paraphrased)

Given a query ψ with a head H and a KB K, the question

“are all answers to ψ conforming to H over any K ∪ K′ singular?”

reduces to logical implication in the underlying logic of K.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Types 20 / 47

Referring Expression Types

How do we deal with multiple referring expression answers/preferences/. . . ?

Referring Expression Type and Typed Queries

Types: Rt ::= Pd = {?} | Rt1 ∧Rt2 | T→ Rt | Rt1; Rt2

⇒ each type induces a set of unary formulæ;

Queries: select x1 : Rt1, . . . , xk : Rtk where ψ
⇒ x1 : Rt1, . . . , xk : Rtk is called the head, ψ is the body.

Theorem (Weak Identification; paraphrased)

Given a query ψ with a head H and a KB K, the question

“are all answers to ψ conforming to H over any K ∪ K′ singular?”

reduces to logical implication in the underlying logic of K.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Types 20 / 47

Examples of Typed Queries

Reference via a Single-Attribute Key

“The ssn# of any person with phone 1234567”

select x : ssn# = {?}
where Person(x) ∧ phone#(x ,1234567)

Reference by a Multi-Attribute Key

Choice of Identification in a Heterogeneous Set

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Types 21 / 47

Examples of Typed Queries

Reference via a Single-Attribute Key

Reference by a Multi-Attribute Key

“The title and publisher of any journals”

select x : title = {?} ∧ publishedBy = {?}
where Journal(x)

Choice of Identification in a Heterogeneous Set

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Types 21 / 47

Examples of Typed Queries

Reference via a Single-Attribute Key

Reference by a Multi-Attribute Key

Choice of Identification in a Heterogeneous Set

“Any legal entity”

select x : Person→ ssn# = {?} ;
Company → tickerSymbol = {?}

where LegalEntity(x)

answers: {x 7→ Person(x) ∧ ssn#(x ,7654)}
{x 7→ Company(x) ∧ tickerSymbol(x , “IBM”)}.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Types 21 / 47

Examples of Typed Queries

Reference via a Single-Attribute Key

Reference by a Multi-Attribute Key

Choice of Identification in a Heterogeneous Set

Preferred Identification

“Any publication, identified by its most specific identifier, when available.”

select x : Journal → (title = {?} ∧ publisher = {?});
EditedCollection→ isbn# = {?} ; {?}

where Publication(x)

answers: {x 7→ Journal(x) ∧ title(x , “AIJ”) ∧ publisher(x , “Elsevier”)}
{x 7→ EditedCollection(x) ∧ isbn#(x ,123456789)}
{x 7→ x = /guid/9202a8c04000641f8000000...}.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Types 21 / 47

REQA (Referring Expression-based QA)

GOAL: reduce REQA to standard OBDA (used as an oracle)

Borgida, Toman, and Weddell Referring Expressions and Information Systems Query Answering 22 / 47

REQA (outline, unary queries only)

GOAL: reduce REQA to standard OBDA (used as an oracle)

Input: K (background knowledge), K′ (data), ψ{x} (query), H (query head)

1 Normalize H to H1; . . . ; H`, each of the form

Ti → Pd i,1 = {?} ∧ . . . ∧ Pd i,ki = {?};

2 Create queries ψi{x , y1, . . . , yki} as

ψ ∧ Ti (x) ∧ Pd i,1(x , y1) ∧ . . . ∧ Pd i,ki (x , yki);

3 Create Ki with a witnesses for x when no such witness exists;

4 Evaluate K ∪ K′ ∪ Ki |= ψi (OBDA oracle);

5 Resolve preferences (based on value of x); and

6 Reconstruct a referring expression from the values of y1, . . . , yki .

. . . extends naturally to higher arity queries: (more) messy

Borgida, Toman, and Weddell Referring Expressions and Information Systems Query Answering 22 / 47

The Tractable (practical) Cases
DL-LiteFcore(idc):

Weak identification −→ sequence of KB consistency tests
Query answering −→ REQA

+ Witnesses for x w.r.t. H + Perfect Reformulation

CFDI∀nc:
Weak identification −→ sequence of logical implications
Query answering −→ REQA

+ Combined Combined Approach

Logics with Tree Models (outside an ABox)

The witnesses for anonymous objects (step (3))
−→ last named individual on a path towards the anonymous object

David Toman, and Grant Weddell: On Referring Expressions in Ontology
Based Data Access with Referring Expressions for Logics with the Tree Model
Property. Proc. Australasian Joint Conference on Artificial Intelligence, 2016.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Query Answering 23 / 47

The Tractable (practical) Cases
DL-LiteFcore(idc):

Weak identification −→ sequence of KB consistency tests
Query answering −→ REQA

+ Witnesses for x w.r.t. H + Perfect Reformulation

CFDI∀nc:
Weak identification −→ sequence of logical implications
Query answering −→ REQA

+ Combined Combined Approach

Logics with Tree Models (outside an ABox)

The witnesses for anonymous objects (step (3))
−→ last named individual on a path towards the anonymous object

David Toman, and Grant Weddell: On Referring Expressions in Ontology
Based Data Access with Referring Expressions for Logics with the Tree Model
Property. Proc. Australasian Joint Conference on Artificial Intelligence, 2016.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Query Answering 23 / 47

RECORDING/REPRESENTING FACTUAL DATA

Borgida, Toman, and Weddell Referring Expressions and Information Systems Representing Data 24 / 47

Referring Expressions for Ground Knowledge (CBox)
Standard approach: constant symbols ∼ objects (and values!)

⇒ needs a constant symbol for every individual (Skolems?)

How are external objects identified in a KB?

Two A objects (o1,o2) identified by their f value (such as an employee id)
within A:

A u ∃f .{123} and A u ∃f .{345}.

Role (feature) assertions of the form g(o1) = o2 can then be captured as:

A u ∃f .{123} u ∃g.(A u ∃f .{345}).

Issues:
admissibility: what descriptions qualify here? ⇒ singularity!
minimality: is the description succint? (similar to keys/superkeys issues)

Borgida, Toman, and Weddell Referring Expressions and Information Systems Representing Data 25 / 47

Referring Expressions for Ground Knowledge (CBox)
Standard approach: constant symbols ∼ objects (and values!)

⇒ needs a constant symbol for every individual (Skolems?)

How are external objects identified in a KB?

Two A objects (o1,o2) identified by their f value (such as an employee id)
within A:

A u ∃f .{123} and A u ∃f .{345}.

Role (feature) assertions of the form g(o1) = o2 can then be captured as:

A u ∃f .{123} u ∃g.(A u ∃f .{345}).

Issues:
admissibility: what descriptions qualify here? ⇒ singularity!
minimality: is the description succint? (similar to keys/superkeys issues)

Borgida, Toman, and Weddell Referring Expressions and Information Systems Representing Data 25 / 47

Referring Expressions for Ground Knowledge (CBox)
Standard approach: constant symbols ∼ objects (and values!)

⇒ needs a constant symbol for every individual (Skolems?)

How are external objects identified in a KB?

Two A objects (o1,o2) identified by their f value (such as an employee id)
within A:

A u ∃f .{123} and A u ∃f .{345}.

Role (feature) assertions of the form g(o1) = o2 can then be captured as:

A u ∃f .{123} u ∃g.(A u ∃f .{345}).

Issues:
admissibility: what descriptions qualify here? ⇒ singularity!
minimality: is the description succint? (similar to keys/superkeys issues)

Borgida, Toman, and Weddell Referring Expressions and Information Systems Representing Data 25 / 47

Referring Expressions for Ground Knowledge (CBox)

Example

JSON fragment describing persons, hypothetically occurring in a MongoDB
document source:

{"fname" : "John", "lname" : "Smith", "age" : 25,
"phoneNum" : [

{"loc" : "home", "dialnum" : "212 555-1234"},
{"loc" : "work", "dialnum" : "212 555-4567"}

]}

can be naturally and directly represented as a CBox assertion of the form

PERSON u (∃fname.{“John”}) u (∃lname.{“Smith”}) u ∃age.{25}
u ∃phoneNumFor−1.((∃loc.{“home”}) u (∃dialnum.{“212 555-1234”}))

u ∃phoneNumFor−1.((∃loc.{“work”}) u (∃dialnum.{“212 555-4567”}))

This assertion is admissible, e.g., whenever the combination of fname and
lname identifies PERSONs.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Representing Data 26 / 47

Heterogeneous Data Integration (example)

Example

TBox

{ A v B, C v B,
A v A : f → id , B v B : f ,g → id , C v C : g → id
A v B : f → id ,C v B : g → id },

CBox

{ A u ∃f .{3}, B u ∃f .{3} u ∃g.{5}, C u ∃g.{5} }.

Heterogeneous Identification

“A u ∃f .{3}” identifies the same object as “B u ∃f .{3} u ∃g.{5}”,
and in turn as “C u ∃g.{5}”

. . . and thus is an answer to { x | ∃y .A(x) ∧ C(y) ∧ x = y }

Borgida, Toman, and Weddell Referring Expressions and Information Systems Representing Data 27 / 47

Heterogeneous Data Integration (example)

Example

TBox

{ A v B, C v B,
A v A : f → id , B v B : f ,g → id , C v C : g → id
A v B : f → id ,C v B : g → id },

CBox

{ A u ∃f .{3}, B u ∃f .{3} u ∃g.{5}, C u ∃g.{5} }.

Heterogeneous Identification

“A u ∃f .{3}” identifies the same object as “B u ∃f .{3} u ∃g.{5}”,
and in turn as “C u ∃g.{5}”

. . . and thus is an answer to { x | ∃y .A(x) ∧ C(y) ∧ x = y }

Borgida, Toman, and Weddell Referring Expressions and Information Systems Representing Data 27 / 47

Heterogeneous Data Integration (example)

Example

TBox

{ A v B, C v B,
A v A : f → id , B v B : f ,g → id , C v C : g → id
A v B : f → id ,C v B : g → id },

CBox

{ A u ∃f .{3}, B u ∃f .{3} u ∃g.{5}, C u ∃g.{5} }.

Heterogeneous Identification

“A u ∃f .{3}” identifies the same object as “B u ∃f .{3} u ∃g.{5}”,
and in turn as “C u ∃g.{5}”

. . . and thus is an answer to { x | ∃y .A(x) ∧ C(y) ∧ x = y }

Borgida, Toman, and Weddell Referring Expressions and Information Systems Representing Data 27 / 47

Minimality

IDEA: minimal referring expressions (ala Candidate Keys)

C is a referring expression singular w.r.t. a TBox T (e.g., a superkey)

C’s subconcepts A, {a}, ∃f .>, ∃f −1..>, and > u > are leaves of C.
C[L 7→ >] is a description C in which a leaf L was replaced by >.
“first-leaf” and “next-leaf” successively enumerate all leaves of C.

1. L := first-leaf(C);
2. while C[L 7→ >] is singular w.r.t. T do
3. C := C[L 7→ >]; L := next-leaf(C);
4. done
5. return C;

⇒ computes a syntactically-minimal co-referring expression for C.
⇒ order of enumeration→ variant minimal co-referring expressions.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Representing Data 28 / 47

Minimality

IDEA: minimal referring expressions (ala Candidate Keys)

C is a referring expression singular w.r.t. a TBox T (e.g., a superkey)

C’s subconcepts A, {a}, ∃f .>, ∃f −1..>, and > u > are leaves of C.
C[L 7→ >] is a description C in which a leaf L was replaced by >.
“first-leaf” and “next-leaf” successively enumerate all leaves of C.

1. L := first-leaf(C);
2. while C[L 7→ >] is singular w.r.t. T do
3. C := C[L 7→ >]; L := next-leaf(C);
4. done
5. return C;

⇒ computes a syntactically-minimal co-referring expression for C.
⇒ order of enumeration→ variant minimal co-referring expressions.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Representing Data 28 / 47

Reasoning and QA with CBoxes [DL18]

Theorem (CBox Admissibility)

Let T be a CFDI∀nc TBox and C a concept description. Then C is a singular
referring expression w.r.t. T if and only if the knowledge base

(T ∪ {A v ¬B},Simp(a : C) ∪ Simp(b : C) ∪ {a : A,b : B})

is inconsistent, where A and B are primitive concepts not occurring in T and
C and a and b are distinct constant symbols.

Theorem (Satisfiability of KBs with CBoxes)

Let K = (T , C) be a knowledge base with an admissible CBox C. Then K is
consistent if (T ,Simp(C)) is consistent.

Theorem (Query Answering)

Let K = (T , C) be a consistent knowledge base and Q = {(x1, . . . , xk) : ϕ} a
conjunctive query over K. Then (C1, . . . ,Ck) is a certain answer to Q in K if
and only if (aC1 , . . . ,aCk) is a certain answer to Q over (T ,Simp(C)).

Borgida, Toman, and Weddell Referring Expressions and Information Systems Representing Data 29 / 47

CONCEPTUAL MODELLING

(Decoupling modelling from identification issues)

Borgida, Toman, and Weddell Referring Expressions and Information Systems Conceptual Modelling 30 / 47

Conceptual Modeling and Identification [ER16]
Thesis:

Modeling of Entities and their Relationships should be decoupled from
issues of managing the identity of such entities.

Weak Entities and dominant entity identification

Preferred Identification in sub/super-classes

Generalizations and heterogeneity

Contributions

1 Methodology that allows decoupling identification from modeling;
2 Referring Expressions that subsequently resolve identity issues; and
3 Compilation-based technology that makes further translation to

a pure relational model seamless.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Conceptual Modelling 31 / 47

Conceptual Modeling and Identification [ER16]
Thesis:

Modeling of Entities and their Relationships should be decoupled from
issues of managing the identity of such entities.

Weak Entities and dominant entity identification

Example (ROOM within BUILDING)

For the entity set ROOM with attributes room-number and capacity

⇒ natural attributes are insufficient to identify ROOMs
⇒ need for a key of dominant set, such as BUILDING

Preferred Identification in sub/super-classes

Generalizations and heterogeneity

Contributions

1 Methodology that allows decoupling identification from modeling;
2 Referring Expressions that subsequently resolve identity issues; and
3 Compilation-based technology that makes further translation to

a pure relational model seamless.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Conceptual Modelling 31 / 47

Conceptual Modeling and Identification [ER16]
Thesis:

Modeling of Entities and their Relationships should be decoupled from
issues of managing the identity of such entities.

Weak Entities and dominant entity identification

Preferred Identification in sub/super-classes

Example (PERSON and FAMOUS-PERSON)

For the entity set FAMOUS-PERSON a sub-entity of PERSON
⇒ choice of key (ssn) for PERSON forces the same key for FAMOUS-PERSON
⇒ we may prefer to use name in this case (e.g., Eric Clapton or The Edge)

Generalizations and heterogeneity

Contributions

1 Methodology that allows decoupling identification from modeling;
2 Referring Expressions that subsequently resolve identity issues; and
3 Compilation-based technology that makes further translation to

a pure relational model seamless.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Conceptual Modelling 31 / 47

Conceptual Modeling and Identification [ER16]
Thesis:

Modeling of Entities and their Relationships should be decoupled from
issues of managing the identity of such entities.

Weak Entities and dominant entity identification

Preferred Identification in sub/super-classes

Generalizations and heterogeneity

Example (LEGAL-ENTITY: PERSON or COMPANY)

For the entity set LEGAL-ENTITY a generalization of PERSON and COMPANY

⇒ commonly required to create an artificial attribute le-num
⇒ despite the fact that all entities are already identified

by the (more) natural ssn and (name,city) identifiers.

Contributions

1 Methodology that allows decoupling identification from modeling;
2 Referring Expressions that subsequently resolve identity issues; and
3 Compilation-based technology that makes further translation to

a pure relational model seamless.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Conceptual Modelling 31 / 47

Conceptual Modeling and Identification [ER16]
Thesis:

Modeling of Entities and their Relationships should be decoupled from
issues of managing the identity of such entities.

Weak Entities and dominant entity identification

Preferred Identification in sub/super-classes

Generalizations and heterogeneity

Contributions

1 Methodology that allows decoupling identification from modeling;
2 Referring Expressions that subsequently resolve identity issues; and
3 Compilation-based technology that makes further translation to

a pure relational model seamless.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Conceptual Modelling 31 / 47

Abstract (Relational) Model ARM

A simple conceptual model C

Common features of so-called “attribute-based” semantic models
⇒ class hierarchies, disjointness, coverage, attributes and typing,

functional dependencies, . . .

Example (DMV)
class PERSON (ssn: INT, name: STRING,

isa LEGAL-ENTITY, disjoint with VEHICLE)
class COMPANY (name: STRING, city: STRING,

isa LEGAL-ENTITY)
class LEGAL-ENTITY (covered by PERSON, COMPANY)
class VEHICLE (vin: INT, make: STRING,

owned-by: LEGAL-ENTITY)
class CAN-DRIVE (driver: PERSON, driven: VEHICLE)

Borgida, Toman, and Weddell Referring Expressions and Information Systems Abstract Models 32 / 47

Abstract (Relational) Model ARM

A simple conceptual model CAR

Common features of so-called “attribute-based” semantic models
⇒ class hierarchies, disjointness, coverage, attributes and typing,

functional dependencies, . . .

Example (DMV and Relational Understanding)
table PERSON (self: OID, ssn: INT, name: STRING,

isa LEGAL-ENTITY, disjoint with VEHICLE)
table COMPANY (self: OID, name: STRING, city: STRING,

isa LEGAL-ENTITY)
table LEGAL-ENTITY (covered by PERSON, COMPANY)
table VEHICLE (self: OID, vin: INT, make: STRING,

owned-by: LEGAL-ENTITY)
table CAN-DRIVE (self: OID, driver: PERSON, driven: VEHICLE)

Borgida, Toman, and Weddell Referring Expressions and Information Systems Abstract Models 32 / 47

Abstract Relational Queries

SQLP

(pretty) standard select-from-where-union-except SQL syntax
. . . with extensions to CAR: abstract attributes and attribute paths

The name of anyone who can drive a vehicle made by Honda:

select d.driver.name from CAN-DRIVE d
where d.driven.make = ’Honda’

attribute paths in the select and where clauses

The owners of Mitsubishi vehicles:
select v.owned-by from VEHICLE
where v.make = ’Mitsubishi’

retrieving abstract attributes may yield
heterogeneous results (PERSONs and COMPANies)

Borgida, Toman, and Weddell Referring Expressions and Information Systems Abstract Models 33 / 47

Abstract Relational Queries

SQLP

(pretty) standard select-from-where-union-except SQL syntax
. . . with extensions to CAR: abstract attributes and attribute paths

The name of anyone who can drive a vehicle made by Honda:

select d.driver.name from CAN-DRIVE d
where d.driven.make = ’Honda’

attribute paths in the select and where clauses
The owners of Mitsubishi vehicles:
select v.owned-by from VEHICLE
where v.make = ’Mitsubishi’

retrieving abstract attributes may yield
heterogeneous results (PERSONs and COMPANies)

Borgida, Toman, and Weddell Referring Expressions and Information Systems Abstract Models 33 / 47

Abstract Relational Queries

SQLP

(pretty) standard select-from-where-union-except SQL syntax
. . . with extensions to CAR: abstract attributes and attribute paths

The name of anyone who can drive a vehicle made by Honda:

select d.driver.name from CAN-DRIVE d
where d.driven.make = ’Honda’

attribute paths in the select and where clauses
The owners of Mitsubishi vehicles:
select v.owned-by from VEHICLE
where v.make = ’Mitsubishi’

retrieving abstract attributes may yield
heterogeneous results (PERSONs and COMPANies)

Note that queries do NOT rely on (external) identification of entities/objects.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Abstract Models 33 / 47

How to Make the Approach/Technology Succeed?
[EKAW18]

1 ARM/SQLP Helps Users (User Study)

2 ARM/SQLP Can be Efficiently Implemented

Mapping to standard relational model with the help of referring expressions

Reverse-Engineering ARM from Legacy Relational Schemata

Borgida, Toman, and Weddell Referring Expressions and Information Systems Abstract Models 34 / 47

Experimental Design (HCI experiments)

Hypotheses

Ht : no difference between RM/SQL and ARM/SQLP in the mean time taken
Hc : no difference between RM/SQL and ARM/SQLP in the mean correctness

Methods

Undergraduate (9) and Graduate (15) UW students
Protocol

1 Instructions (5”) and Examples of SQL/SQLP (10”)
2 Six Questions (Q1–Q6), no time limit
3 Subjects recorded start/end times for each Question

Performance Assessment
1 3 assessors
2 agreed upon grading scale

Borgida, Toman, and Weddell Referring Expressions and Information Systems Experiments 35 / 47

Experimental Design (HCI experiments)

Hypotheses

Ht : no difference between RM/SQL and ARM/SQLP in the mean time taken
Hc : no difference between RM/SQL and ARM/SQLP in the mean correctness

Methods

Undergraduate (9) and Graduate (15) UW students
Protocol

1 Instructions (5”) and Examples of SQL/SQLP (10”)
2 Six Questions (Q1–Q6), no time limit
3 Subjects recorded start/end times for each Question

Performance Assessment
1 3 assessors
2 agreed upon grading scale

Borgida, Toman, and Weddell Referring Expressions and Information Systems Experiments 35 / 47

Course Enrollment as an RM Schema

Borgida, Toman, and Weddell Referring Expressions and Information Systems Experiments 36 / 47

Course Enrollment as an ARM Schema

ARM completely frees domain experts/users from the need to understand
how entities are identified in an information system.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Experiments 37 / 47

Course Enrollment as an ARM Schema

ARM completely frees domain experts/users from the need to understand
how entities are identified in an information system.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Experiments 37 / 47

Example Queries

Query: Names of students who have been taught by ‘Prof. Alan John’

RM/SQL:

select distinct s.sname as name
from STUDENT s, ENROLLMENT e, CLASS c, PROFESSOR p
where e.snum = s.snum
and e.deptcode = c.deptcode and e.cnum = c.cnum
and e.term = c.term and e.section = c.section
and c.pnum = p.pnum and p.pname = ’Alan John’

Domain expert needs to understand structure of PK/FKs: BAD!!

ARM/SQLP:

select distinct e.student.sname as name
from ENROLLMENT e
where e.class.professor.pname = ’Alan John’

Borgida, Toman, and Weddell Referring Expressions and Information Systems Experiments 38 / 47

Example Queries

Query: Names of students who have been taught by ‘Prof. Alan John’

RM/SQL:

select distinct s.sname as name
from STUDENT s, ENROLLMENT e, CLASS c, PROFESSOR p
where e.snum = s.snum
and e.deptcode = c.deptcode and e.cnum = c.cnum
and e.term = c.term and e.section = c.section
and c.pnum = p.pnum and p.pname = ’Alan John’

Domain expert needs to understand structure of PK/FKs: BAD!!

ARM/SQLP:

select distinct e.student.sname as name
from ENROLLMENT e
where e.class.professor.pname = ’Alan John’

Borgida, Toman, and Weddell Referring Expressions and Information Systems Experiments 38 / 47

Example Queries

Query: Names of students who have been taught by ‘Prof. Alan John’

RM/SQL:

select distinct s.sname as name
from STUDENT s, ENROLLMENT e, CLASS c, PROFESSOR p
where e.snum = s.snum
and e.deptcode = c.deptcode and e.cnum = c.cnum
and e.term = c.term and e.section = c.section
and c.pnum = p.pnum and p.pname = ’Alan John’

Domain expert needs to understand structure of PK/FKs: BAD!!

ARM/SQLP:

select distinct e.student.sname as name
from ENROLLMENT e
where e.class.professor.pname = ’Alan John’

Borgida, Toman, and Weddell Referring Expressions and Information Systems Experiments 38 / 47

ARM Schema and Path Navigation

select distinct e.student.sname as name
from ENROLLMENT e
where e.class.professor.pname = ’Alan John’

Borgida, Toman, and Weddell Referring Expressions and Information Systems Experiments 39 / 47

Experiments: Results

Mean performance for all subjects: SQL solid; SQLP dashed.

SQLP outperforms SQL in time taken
No significant difference in correctness (Q3, Q5 almost significant)

Borgida, Toman, and Weddell Referring Expressions and Information Systems Experiments 40 / 47

Experiments: Results

Mean performance for all subjects: SQL solid; SQLP dashed.

SQLP outperforms SQL in time taken
No significant difference in correctness (Q3, Q5 almost significant)

Borgida, Toman, and Weddell Referring Expressions and Information Systems Experiments 40 / 47

Referring to Abstract Entities

Example (How to refer to LEGAL-ENTITY)

invent a new attribute for this purpose (will be inherited by subclasses)

use (a combination of) the identities of generalized entities, e.g.,
ssn for PERSON and (name, city) for COMPANY.

⇒ but what happens to objects that are both a PERSON and a COMPANY??

⇒ we need to resolve the preferred identification:
PERSON → ssn=?; COMPANY → (name=?, city=?).

Goal(s)

1 Flexible assignment of Referring Expression Types to classes,
2 Automatic check(s) for sanity of such an assignment, and
3 Compilation of queries (updates) over CAR to ones over concrete tables.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions 41 / 47

Referring to Abstract Entities

Example (How to refer to LEGAL-ENTITY)

invent a new attribute for this purpose (will be inherited by subclasses)
use (a combination of) the identities of generalized entities, e.g.,

ssn for PERSON and (name, city) for COMPANY.

⇒ but what happens to objects that are both a PERSON and a COMPANY??

⇒ we need to resolve the preferred identification:
PERSON → ssn=?; COMPANY → (name=?, city=?).

Goal(s)

1 Flexible assignment of Referring Expression Types to classes,
2 Automatic check(s) for sanity of such an assignment, and
3 Compilation of queries (updates) over CAR to ones over concrete tables.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions 41 / 47

Referring to Abstract Entities

Example (How to refer to LEGAL-ENTITY)

invent a new attribute for this purpose (will be inherited by subclasses)
use (a combination of) the identities of generalized entities, e.g.,

ssn for PERSON and (name, city) for COMPANY.
⇒ but what happens to objects that are both a PERSON and a COMPANY??

⇒ we need to resolve the preferred identification:
PERSON → ssn=?; COMPANY → (name=?, city=?).

Goal(s)

1 Flexible assignment of Referring Expression Types to classes,
2 Automatic check(s) for sanity of such an assignment, and
3 Compilation of queries (updates) over CAR to ones over concrete tables.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions 41 / 47

Referring to Abstract Entities

Example (How to refer to LEGAL-ENTITY)

invent a new attribute for this purpose (will be inherited by subclasses)
use (a combination of) the identities of generalized entities, e.g.,

ssn for PERSON and (name, city) for COMPANY.
⇒ but what happens to objects that are both a PERSON and a COMPANY??
⇒ we need to resolve the preferred identification:

PERSON → ssn=?; COMPANY → (name=?, city=?).

Goal(s)

1 Flexible assignment of Referring Expression Types to classes,
2 Automatic check(s) for sanity of such an assignment, and
3 Compilation of queries (updates) over CAR to ones over concrete tables.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions 41 / 47

Referring to Abstract Entities

Example (How to refer to LEGAL-ENTITY)

invent a new attribute for this purpose (will be inherited by subclasses)
use (a combination of) the identities of generalized entities, e.g.,

ssn for PERSON and (name, city) for COMPANY.
⇒ but what happens to objects that are both a PERSON and a COMPANY??
⇒ we need to resolve the preferred identification:

PERSON → ssn=?; COMPANY → (name=?, city=?).

Goal(s)

1 Flexible assignment of Referring Expression Types to classes,
2 Automatic check(s) for sanity of such an assignment, and
3 Compilation of queries (updates) over CAR to ones over concrete tables.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions 41 / 47

Assignment of Referring Types
IDEA
Assign a referring expression type RTA(T) to each table T in Σ.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions 42 / 47

Assignment of Referring Types
IDEA
Assign a referring expression type RTA(T) to each table T in Σ.

Example

Is every RTA(.) assignment “good”? Consider the SQLP query

select x .self from PERSON x ,COMPANY y where x .self = y .self

1 assignment: RTA(PERSON) = (ssn = ?),
RTA(COMPANY) = (name = ?,city = ?)

⇒ the ability to compare the OID values is lost;

2 assignment:
RTA(COMPANY) = (PERSON→ ssn = ?); (name = ?,city = ?)

⇒ the ability to compare the OID values is preserved as COMPANY
objects are identified by ssn values when also residing in PERSON.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions 42 / 47

Assignment of Referring Types
IDEA
Assign a referring expression type RTA(T) to each table T in Σ.

Example

Is every RTA(.) assignment “good”? Consider the SQLP query

select x .self from PERSON x ,COMPANY y where x .self = y .self

1 assignment: RTA(PERSON) = (ssn = ?),
RTA(COMPANY) = (name = ?,city = ?)

⇒ the ability to compare the OID values is lost;

2 assignment:
RTA(COMPANY) = (PERSON→ ssn = ?); (name = ?,city = ?)

⇒ the ability to compare the OID values is preserved as COMPANY
objects are identified by ssn values when also residing in PERSON.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions 42 / 47

Assignment of Referring Types
IDEA
Assign a referring expression type RTA(T) to each table T in Σ.

Definition (Identity-resolving RTA(.))

Let Σ be a CAR schema and RTA a referring type assignment for Σ. Given a
linear order O = (Ti1 , . . . ,Tin) on the set Tables(Σ), define O(RTA) as the
referring expression type RTA(Ti1); . . . ; RTA(Tik).

We say that RTA is identity resolving if there is some linear order O such that
the following conditions hold for each T ∈ Tables(Σ):

1 RTA(T) = Prune(O(RTA),T),
2 Σ |= (covered by {T1, ...,Tn}) ∈ T , and
3 for each component Tj → (Pfj,1 = ?, . . . ,Pfj,kj = ?) of RTA(T), the

following also holds:
(i) Pfj,i is well defined for Tj , for 1 ≤ i ≤ kj , and
(ii) Σ |= (pathfd Pfj,1, . . . ,Pfj,kj → id) ∈ Tj .

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions 42 / 47

Assignment of Referring Types
IDEA
Assign a referring expression type RTA(T) to each table T in Σ.

Definition (Identity-resolving RTA(.))

The definition achieves the following:
1 Referring expression types assigned to classes (tables) that can share

objects must guarantee that a particular object is uniquely identified;
2 Referring expression types for disjoint classes/tables can be assigned

independently;

Consequences:

Referring expressions serve as a sound&complete proxy
for entity/object (OID) equality;

Referring expression can be coerced to a least common supertype.

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions 42 / 47

Course Enrollment as an ARM Schema

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions 43 / 47

RM2ARM Algorithm (highlights)

For every table in RM:

1 add “self OID” (as a new primary key)

2 replace foreign keys with unary ones and discard original FK attributes

⇒ what if original FK overlaps with primary key attributes?
⇒ how about cycles between (overlapping) PKs and FKs?

3 add ISA constraints (and remove corresponding FKs)
⇒ from PK to PK foreign keys in RM

4 add disjointness constraints
⇒ for tables with different PKs

5 generate referring expressions (so the ARM2RM mapping works)

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions 44 / 47

RM2ARM Algorithm (highlights)

For every table in RM:

1 add “self OID” (as a new primary key)

2 replace foreign keys with unary ones and discard original FK attributes
⇒ what if original FK overlaps with primary key attributes?

⇒ how about cycles between (overlapping) PKs and FKs?

3 add ISA constraints (and remove corresponding FKs)
⇒ from PK to PK foreign keys in RM

4 add disjointness constraints
⇒ for tables with different PKs

5 generate referring expressions (so the ARM2RM mapping works)

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions 44 / 47

RM2ARM Algorithm (highlights)

For every table in RM:

1 add “self OID” (as a new primary key)

2 replace foreign keys with unary ones and discard original FK attributes
⇒ what if original FK overlaps with primary key attributes?
⇒ how about cycles between (overlapping) PKs and FKs?

3 add ISA constraints (and remove corresponding FKs)
⇒ from PK to PK foreign keys in RM

4 add disjointness constraints
⇒ for tables with different PKs

5 generate referring expressions (so the ARM2RM mapping works)

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions 44 / 47

RM2ARM Algorithm (highlights)

For every table in RM:

1 add “self OID” (as a new primary key)

2 replace foreign keys with unary ones and discard original FK attributes
⇒ what if original FK overlaps with primary key attributes?
⇒ how about cycles between (overlapping) PKs and FKs?

3 add ISA constraints (and remove corresponding FKs)
⇒ from PK to PK foreign keys in RM

4 add disjointness constraints
⇒ for tables with different PKs

5 generate referring expressions (so the ARM2RM mapping works)

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions 44 / 47

RM2ARM Algorithm (highlights)

For every table in RM:

1 add “self OID” (as a new primary key)

2 replace foreign keys with unary ones and discard original FK attributes
⇒ what if original FK overlaps with primary key attributes?
⇒ how about cycles between (overlapping) PKs and FKs?

3 add ISA constraints (and remove corresponding FKs)
⇒ from PK to PK foreign keys in RM

4 add disjointness constraints
⇒ for tables with different PKs

5 generate referring expressions (so the ARM2RM mapping works)

Borgida, Toman, and Weddell Referring Expressions and Information Systems Referring Expressions 44 / 47

Concrete Relational Back-end
1 Every abstract attribute and its referring expression type
⇒ a concrete relational representation (denoted by Rep(.)):

essentially a discriminated variant record;
2 (distinct) Representations can be coerced to a common supertype
⇒ the ability to compare the representations

a sound and complete proxy for comparing object ids;
3 A SQLP query is then compiled to a standard SQL query over the

concrete representation of an abstract instance in such a way that:

Borgida, Toman, and Weddell Referring Expressions and Information Systems Relational Representation 45 / 47

Concrete Relational Back-end
1 Every abstract attribute and its referring expression type
⇒ a concrete relational representation (denoted by Rep(.)):

essentially a discriminated variant record;
2 (distinct) Representations can be coerced to a common supertype
⇒ the ability to compare the representations

a sound and complete proxy for comparing object ids;
3 A SQLP query is then compiled to a standard SQL query over the

concrete representation of an abstract instance in such a way that:

Theorem

Let Σ be a CAR schema and let RTA an identity resolving type assignment for
Σ. For any SQLP query Q over Σ

Rep(Q(I),Σ) = (CΣ,RTA(Q))(Rep(I,Σ))

for every database instance I of Σ. 2

Borgida, Toman, and Weddell Referring Expressions and Information Systems Relational Representation 45 / 47

Summary

Contributions

Referring expressions allow one to get more/better (certain) answers . . .

1 General approach to OBDA-style query answering;
2 Methodology that allows decoupling identification from modeling;
3 Referring Expressions that subsequently resolve identity issues; and
4 Compilation-based technology translation to pure relational model.

Future work&Extensions

1 Strong Identification (distinct referring expr’s refer to distinct objects);
2 More complex referring expression types;
3 Replacing types by other preferred way to chose among referring

expressions (e.g., length/formula complexity/. . . measure);
4 Alternatives to concrete representations;
5 More general/axiomatic definition of identity resolving RTA(.)s;

Borgida, Toman, and Weddell Referring Expressions and Information Systems 46 / 47

Message from our Sponsors
Data Systems Group at the University of Waterloo

10 professors, affiliated faculty, postdocs, 40+ graduate students, . . .
Wide range of research interests

Advanced query processing/Knowledge representation
System aspects of database systems and Distributed data management
Data quality/Managing uncertain data/Data mining
Information Retrieval and “big data”
New(-ish) domains (text, streaming, graph data/RDF, OLAP)

Research sponsored by governments, and local/global companies
NSERC/CFI/OIT and Google, IBM, SAP, OpenText, . . .

Part of a School of CS with 75+ professors, 300+ grad students, etc.
AI&ML, Algorithms&Data Structures, PL, Theory, Systems, . . .

Cheriton School of Computer Science has been ranked #18 in CS by
the world by US News and World Report (#1 in Canada).

. . . and we are always looking for good graduate students (MMath/PhD)

Borgida, Toman, and Weddell Referring Expressions and Information Systems 47 / 47

	Refering Epressions (Background)
	Queries and Ontologies

