Logical Approach to Physical Data Independence

and Query Compilation
Advanced Physical Designs

David Toman

D.R. Cheriton School of Computer Science
University of

Waterloo

E§

1/1

The Story So Far. ..

@ Physical Data Independence (OBDA, Data Exchange, ...)
@ Logic-based formalization (Relational model, constraints)
© Queries and Answers

certr p(¢) = {8| TUD = (@)} = (] {8l 1F «(@)}

I=XUD
© Only queries logically equivalent to range-restricted queries over Sa.

o what does this kind of arrangement allow?
e why is this efficient?
e how to find such equivalent queries

Waterioo

Review Advanced Physical Designs 2/1

ADVANCED PHYSICAL DESIGNS

Universiyot
Waterioo
Review Advanced Physical Designs 3/1

Case Studies

@ Main-memory pointers
@ Hash tables, linked lists, et al.
@ Built-in operations

@ Two-level store

Waterioo

Advanced Physical Designs Advanced Physical Designs 4/1

Main Memory and Pointers

Logical Schema:

employee

number

name

salary

works department
enumber ____///———>‘number
dnumber name
manager

,,,,,,,,,, o

Waterioo

Main memory Pointers

Advanced Physical Designs

5/1

Main Memory and Pointers

Logical Schema:

employee works department
number enumber ____///———9 number
name dnumber name
salary manager

Physical Schema:

record emp of record dept of
integer num integer num
string name string name
integer salary reference manager

reference dept

. and an array holding emp records (called empfile).

Waterloo

Main memory Pointers Advanced Physical Designs

5/1

Main Memory and Pointers: Formalization

Logical Schema&Constraints:
= S = {employee/3,department /3, works/2};
= Y| = {Vxy, X2, y1, Yo.3z.(employee(Z, X1, X2) A employee(Z, y1, ¥2))
= (1 =y1) A (xe = y2)),
Vx,y,Z.(works(z,Xx) Aworks(z,y)) = (X =y),
VX, y,Z.department(y, z,x) — 3u, v.employee(x, u,v),... }

Waterioo

Main memory Pointers Advanced Physical Designs

6/1

Main Memory and Pointers: Formalization

Logical Schema&Constraints:
= S = {employee/3,department /3, works/2};
= Y| = {Vxy, X2, y1, Yo.3z.(employee(Z, X1, X2) A employee(Z, y1, ¥2))
(06 = Y1) A (0 = 32)).
Vx,y,Z.(works(z,Xx) Aworks(z,y)) = (X =y),
VX, y,Z.department(y, z,x) — 3u, v.employee(x, u,v),... }
Physical Schema&Constraints:
= Sp = {empfile/1/0,emp-num/2/1,
emp-name/2/1,emp-salary/2/1, emp—dept/2/1,
dept-num/2/1,dept-name/2/1,dept-manager/2/1},
=Y p = {Vx.(empfile(x) — Jy.emp—num(X,y)),...,
VX, y.(emp-dept(X,y) — deptfile(y)),
Vx.(deptfile(x) — Jy.dept—num(x,y)),...,
Vx,y.(dept-manager(x,y) — empfile(y)),
Vx.y,z.(employee(X,y,2)
— Aw.(empfile(w) A emp-num(w, X))),
Vx,y,z,w.((empfile(w) A emp—num(W, X) A emp—name(Ww, y)
Wi Aemp-salary(w,Zz)) — employee(X,y, 2)),...}

Main memory Pointers Advanced Physical Designs 6/1

Main Memory and Pointers: Queries and Plans

@ Jzemployee(x,y,2):
E?z.Employee (x,y, ?2)
Plan: 26 (15n, 5n)
E?x1. (Empfile (?x1) "Emp-num(?x1, x) "Emp-name (?x1,vy))

Waterioo

Main memory Pointers Advanced Physical Designs 7/1

Main Memory and Pointers: Queries and Plans

@ Jzemployee(x,y,2):
E?z.Employee (x,y, ?2)
Plan: 26 (15n, 5n)
E?x1. (Empfile (?x1) "Emp-num(?x1, x) "Emp-name (?x1,vy))

@ Department(x,y, z):
Department (x,y, z)
Plan: 241 (35n,5n)
E?x2. (Empfile (?x2) "Emp-num (?x2, z) "E?x1. (Emp-dept (?x2, ?x1)
“Dept—-name (?x1,vy) "Dept—num(?x1, x)
“"E?s0. (Dept-manager (?x1, ?s0) “"Cmp (?x2, ?s0))))

Waterioo

Main memory Pointers Advanced Physical Designs 7/1

Main Memory and Pointers: Queries and Plans

@ Jzemployee(x,y,2):
E?z.Employee (x,y, ?2)
Plan: 26 (15n, 5n)
E?x1. (Empfile (?x1) "Emp-num(?x1, x) "Emp-name (?x1,vy))

@ Department(x,y, z):
Department (x,y, z)
Plan: 241 (35n,5n)
E?x2. (Empfile (?x2) "Emp-num (?x2, z) "E?x1. (Emp-dept (?x2, ?x1)
“Dept—-name (?x1,vy) "Dept—num(?x1, x)
“"E?s0. (Dept-manager (?x1, ?s0) “"Cmp (?x2, ?s0))))

Is there a shorter plan?

Waterioo

Main memory Pointers Advanced Physical Designs 7/1

Main Memory and Pointers: Queries and Plans

@ Jzemployee(x,y,2):
E?z.Employee (x,y, ?2)
Plan: 26 (15n, 5n)
E?x1. (Empfile (?x1) "Emp-num(?x1, x) "Emp-name (?x1,vy))

@ Department(x,y, z):
Department (x,y, z)
Plan: 241 (35n,5n)
E?x2. (Empfile (?x2) "Emp-num (?x2, z) "E?x1. (Emp-dept (?x2, ?x1)
“Dept—-name (?x1,vy) "Dept—num(?x1, x)
“"E?s0. (Dept-manager (?x1, ?s0) “"Cmp (?x2, ?s0))))

Is there a shorter plan? YES:

E?x2. (Empfile (?x2) "E?x1. (Emp-dept (?x2, ?x1)
“Dept-name (?x1,y) "Dept—num(?x1, x)
~"E?x3. (Dept—-manager (?x1, ?x3) "Emp—num (?x3, z))

Waterioo

Main memory Pointers Advanced Physical Designs 7/1

Main Memory and Pointers: Queries and Plans

@ Jzemployee(x,y,2):
E?z.Employee (x,y, ?2)
Plan: 26 (15n, 5n)
E?x1. (Empfile (?x1) "Emp-num(?x1, x) "Emp-name (?x1,vy))

@ Department(x,y, z):
Department (x,y, z)
Plan: 241 (35n,5n)
E?x2. (Empfile (?x2) "Emp-num (?x2, z) "E?x1. (Emp-dept (?x2, ?x1)
“Dept—-name (?x1,vy) "Dept—num(?x1, x)
“"E?s0. (Dept-manager (?x1, ?s0) “"Cmp (?x2, ?s0))))

Is there a shorter plan? YES:

E?x2. (Empfile (?x2) "E?x1. (Emp-dept (?x2, ?x1)
“Dept-name (?x1,y) "Dept—num(?x1, x)
~"E?x3. (Dept—-manager (?x1, ?x3) "Emp—num (?x3, z))

= is it better?

Waterioo

Main memory Pointers Advanced Physical Designs 7/1

Main Memory and Pointers: Queries and Plans

@ Jzemployee(x,y,2):
E?z.Employee (x,y, ?2)
Plan: 26 (15n, 5n)
E?x1. (Empfile (?x1) "Emp-num(?x1, x) "Emp-name (?x1,vy))

@ Department(x,y, z):
Department (x,y, z)
Plan: 241 (35n,5n)
E?x2. (Empfile (?x2) "Emp-num (?x2, z) "E?x1. (Emp-dept (?x2, ?x1)
“Dept—-name (?x1,vy) "Dept—num(?x1, x)
“"E?s0. (Dept-manager (?x1, ?s0) “"Cmp (?x2, ?s0))))

Is there a shorter plan? YES:

E?x2. (Empfile (?x2) "E?x1. (Emp-dept (?x2, ?x1)
“Dept-name (?x1,y) "Dept—num(?x1, x)
~"E?x3. (Dept—-manager (?x1, ?x3) "Emp—num (?x3, z))

= is it better? NO (duplicate elimination)

Waterioo

Main memory Pointers Advanced Physical Designs 7/1

Main Memory and Pointers: Queries and Plans

@ Jzemployee(x,y,2):
E?z.Employee (x,y, ?2)
Plan: 26 (15n, 5n)
E?x1. (Empfile (?x1) "Emp-num(?x1, x) "Emp-name (?x1,vy))

@ Department(x,y, z):
Department (x,y, z)
Plan: 241 (35n,5n)
E?x2. (Empfile (?x2) "Emp-num (?x2, z) "E?x1. (Emp-dept (?x2, ?x1)
“Dept—-name (?x1,vy) "Dept—num(?x1, x)
“"E?s0. (Dept-manager (?x1, ?s0) “"Cmp (?x2, ?s0))))

Q Jy,v,w.employee(x1,x2,y) Aworks(x1,v) A department (v, x3, w):
E?y, ?v, ?w.Employee (x1,x2, ?y) “"Works (x1, ?v) "Department (?v, x3, ?w)
Plan: 50 (40n, 5n)

E?x5. (Empfile (?x5) "Emp—num (?x5, x1) "Emp—name (?x5, x2)
“"E?x4. (Emp-dept (?x5, ?x4) "Dept—-name (?x4,x3)))

,,,,,,,,,,,,,

Main memory Pointers Advanced Physical Designs 7/1

Hashing, Lists, et al.

Hashing with (list-based) Separate Chaining

(D1
I . T 1> l 1
D3
J 1
n . s 1 D2
Hash Array Separate Chaining Linked Lists DeptFile
Waterioo

Hashing and Lists Advanced Physical Designs 8/1

Hashing, Lists, et al.

Access paths:
= Sp D {hash/2/1,hasharraylookup/2/1,1istscan/2/1}.
Physical Constraints:
= Y 1p 2 {Vx,y.((deptfile(x) A dept—-name(x,y)) — 3z, w.(hash(y, 2)
Ahasharraylookup(z, w) A listscan(w, x))),
Vx,y.(hash(x,y) — 3z.hasharraylookup(y, 2)),
Vx,y.(listscan(x,y) — deptfile(y)) }

Waterioo

Hashing and Lists Advanced Physical Designs 9/1

Hashing, Lists, et al.

Access paths:
= Sp D {hash/2/1,hasharraylookup/2/1,1istscan/2/1}.
Physical Constraints:
= Y 1p 2 {Vx,y.((deptfile(x) A dept—-name(x,y)) — 3z, w.(hash(y, 2)
Ahasharraylookup(z, w) A listscan(w, x))),
Vx,y.(hash(x,y) — 3z.hasharraylookup(y, 2)),
Vx,y.(listscan(x,y) — deptfile(y)) }
Queries:

= 3y, z.(department(xy,p,) A employee(y, X2, 2)){p}-

E?y, ?z.Department (x1,p, ?y) "Employee (?y,x2,?z) [p]
Plan: 497 (10,1)
E?x6. (Hash (p, ?x6) "E?x5. (Hasharraylookup (?x6, ?x5)
"E?x4. (Listscan (?x5, ?x4)
~"E?s0. (Dept-name (?x4, ?s0) “Cmp (p, ?s0))
"Dept-num(?x4,x1)
"E?x3. (Dept—-manager (?x4, ?x3) "Emp—name (?x3,x2))) |

,,,,,,,,,,,,,

Hashing and Lists Advanced Physical Designs 9/1

Built-in Operations

How do we introduce built-in functions/operations
such as comparisons, arithmetic, string manipulation, etc.?

Waterioo

Built-in Operators Advanced Physical Designs 10/1

Built-in Operations

How do we introduce built-in functions/operations
such as comparisons, arithmetic, string manipulation, etc.?

Make built in functions into access paths with appropriate binding pattern. \

,,,,,,,,,,,,,

Built-in Operators Advanced Physical Designs 10/1

Built-in Operations

How do we introduce built-in functions/operations
such as comparisons, arithmetic, string manipulation, etc.?

Make built in functions into access paths with appropriate binding pattern. \

Example (Integer Inequalities)
Logical Schema: < /2, < /2 C S (written conventionally in infix)

Waterioo

Built-in Operators Advanced Physical Designs 10/1

Built-in Operations

How do we introduce built-in functions/operations
such as comparisons, arithmetic, string manipulation, etc.?

Make built in functions into access paths with appropriate binding pattern.

Example (Integer Inequalities)

Logical Schema: < /2, < /2 C S (written conventionally in infix)
Physical Schema: 1less/2/2 € Sp
= Xip 2 {Vx,y.(x <y) < less(x,y)
Vx,y.(x < y)+ —less(y, X)}

Waterioo

Built-in Operators Advanced Physical Designs 10/1

Built-in Operations

How do we introduce built-in functions/operations
such as comparisons, arithmetic, string manipulation, etc.?

Make built in functions into access paths with appropriate binding pattern.

Example (Integer Inequalities)
Logical Schema: < /2, < /2 C S (written conventionally in infix)

Physical Schema: 1less/2/2 € Sp
= Xip 2 {Vx,y.(x <y) < less(x,y)
Vx,y.(x < y)+ —less(y, X)}

Code:

function less—-first function less—-next
return (x1 < x2) return false

Universiy ot
Waterioo
Built-in Operators Advanced Physical Designs 10/1

Built-in Operations

How do we introduce built-in functions/operations
such as comparisons, arithmetic, string manipulation, etc.?

Make built in functions into access paths with appropriate binding pattern.

Example (Integer Inequalities)

Logical Schema: < /2, < /2 C S (written conventionally in infix)
Physical Schema: 1less/2/2 € Sp
= Xip 2 {Vx,y.(x <y) < less(x,y)
Vx,y.(x < y)+ —less(y, X)}

Code:

function less—-first function less—-next
return (x1 < x2) return false

= we already have cmp/2/2 for equality!
Waterloo

Built-in Operators Advanced Physical Designs 10/1

Two-level Store

Problem with Disks

Data is accessed in blocks (for efficiency)

= NLJ accesses the inner relation number of tuples in the outer relation-times

,,,,,,,,,,,,,

Two-level Store Advanced Physical Designs 1/1

Two-level Store

Problem with Disks
Data is accessed in blocks (for efficiency)
= NLJ accesses the inner relation number of tuples in the outer relation-times

Standard Solution: Block-based Operators
Block-NLJ operator:
@ read as big block of outer tuples in a memory buffer as possible
@ read a block from inner into a memory buffer
@ join the two buffers (producing output)
@ if inner not exhausted goto (2)
@ if outer not exhausted goto (1)

Waterioo

Two-level Store Advanced Physical Designs 1/1

Two-level Store

Problem with Disks

Data is accessed in blocks (for efficiency)
= NLJ accesses the inner relation number of tuples in the outer relation-times

Standard Solution: Block-based Operators
Block-NLJ operator:
@ read as big block of outer tuples in a memory buffer as possible
@ read a block from inner into a memory buffer
@ join the two buffers (producing output)
@ if inner not exhausted goto (2)
@ if outer not exhausted goto (1)

. is this extra code really necessary?
Waterioo

Two-level Store Advanced Physical Designs 1/1

Two-level Store

Split the access paths to a page reader and
a record reader (that expects to be given a page already in memory).

Physical Schema:
= Sa 2 {emp-pgscan/1/0,emp-recscan/2/1}

= Y 1p 2 {Vx,y.(emp-recscan(y, X) — emp-pgscan(y)),
VX, y1, Yo.((emp-recscan(y1, X) A emp-recscan(yz, X))

= (y1 = y2)),
Vx.(empfile(x) = Jy.emp-recscan(y, X)) }

,,,,,,,,,,,,,

Two-level Store Advanced Physical Designs 12/1

Two-level Store Example

Query:
Jy,z,w.(employee(Xq,y,Z) A employee(Xs, ¥, w))

Waterioo

Two-level Store Advanced Physical Designs 13/1

Two-level Store Example

Query:
Jy,z,w.(employee(Xq,y,Z) A employee(Xs, ¥, w))

Plan

E?y,?z,?w. (Employee (x1,?y, ?z) "Employee (x2, ?y, ?w))

Plan: 803 (2n”2 + 50201,10000)

E?x6. (Emp-pgscan (?x6) "E?x4. (Emp-pgscan (?x4) "

E?x5. (Emp-recscan (?x6, ?x5) "Emp—num (?x5, x1) "

E?x3. (Emp-recscan (?x4, ?x3) "Emp—num (?x3, x2) "

E?x2. (Emp—name (?x3, ?x2) "E?s0. (Emp—name (?x5, ?s0) “"Cmp (?x2, ?s0)))))

,,,,,,,,,,,,,

Two-level Store Advanced Physical Designs 13/1

Summary

@ Flexible modeling framework
= new features = new access paths + constraints

@ Efficient query plans (comparable to hand-written code)

Waterioo

Two-level Store Advanced Physical Designs 14/1

Summary

@ Flexible modeling framework
= new features = new access paths + constraints

@ Efficient query plans (comparable to hand-written code)

Next time: HOW TO FIND REWRITINGS

Waterioo

Two-level Store Advanced Physical Designs 14/1

