
Constructing Craig Interpolation Formulas

Guoxiang Huang

Mathematics Department, University of Hawaii at Manoa
Honolulu, HI 96822 (E-maih huang~math.hawaii.edu)

A b s t r a c t . A Craig interpolant of two inconsistent theories is a formula
which is true in one and false in the other. This paper gives an eifi-
cient method for constructing a Craig interpolant from a refutation proof
which involves binary resolution, paramodulation, and factoring. This
method can solve the machine learning problem of discovering a first
order concept from given examples. It can also be used to find sentences
which distinguish pairs of nonisomorphic finite structures.

1 Background and Introduction

Let 27 and H be two inconsistent first order theories. Then by Craig's Interpo-
lation Theorem, there is a sentence 8, called a Craig interpolant, such that 8 is
t rue in 27 and false in H and every nonlogical symbol occurring in 8 occurs in
bo th 27 and H. Craig interpolants can be used to solve the problem of learning
a first order concept by letting 27 and H be the lists of positive and negative
examples of the concept to be learned.

The s tandard nonconstructive model-theoretic proof of Craig's Theorem is
in [3]. Lyndon showed how to construct an interpolant from a special form of
natural deduction (see [1]). We show how to construct an interpolant from a
refutat ion proof which uses binary resolution, factoring and paramodulation. In
our examples, we use O T T E R (the s tandard text on O T T E R is [4]) to generate
such proofs.

Craig interpolants can be used to find a sentence which distinguishes two
nonisomorphic finite structures. Let 27 and H be the atomic diagrams of the two
structures. Then they are inconsistent and any Craig interpolant for them is a
sentence which is t rue in one s tructure and false in the other.

2 Constructing Interpolation Formulas from Refutations

Let L~: and L ~ be two languages, 27 a theory in L~:, and H a theory in L ~ such
that 27 t9 H is not consistent. In this paper we use <> to represent contradiction,
use O to indicate the end of a proof, and suppose P is a refutation of E U / / ~ <>
involving only binary resolutions, paramodulations, and factorings. The input
clauses (clauses at the top of the refutation) are required to be instances of
clauses from 27 and / / . For convenience, we will assume that different input
clauses have disjoint sets of variables.

182

For any occurrence L in the proof P of a relational symbol in L z U L n , we
define L is from 27 recursively by:

(i). If the occurrence L is in an input clause from 27, we say it is from 27;
otherwise, it is not.

(ii). If the occurrence L is in a non-input clause C, then it is from 27 if the
corresponding occurrence in some parent clause is from 27.

Similarly, we can define L is from 11. Since factoring is allowed in the proof,
several occurrences of some literal may be factored into a single one. So it is
possible that a literal in some clause may be from both 27 and 11.

Let T and F be the t ru th values of "truth" and "falsehood". For a binary
resolution proof P we use the following recursive procedure to assign formulas
to the clauses in P:

I n t e r p o l a t i o n A l g o r i t h m
(i). If C is an input clause from 27, its formula is F; if C is an input clause

.from 11, its .formula is T.
(ii). If r is assigned to L V C and r is assigned to -~L ' V D, and if (C V D)Tr

is the resolvent of L V C and D V "~L' resolving against L~'(= L'~r), then the
formula assigned to (C V D)Tr is:

(a). (r V r if the occurrences of both L and ",L' are from 27 alone;
(b). (~ A r if the occurrences of both L and ",L' are from 1I alone;
(c). (('~L' A r V (L A r if neither (a) nor (b).

Definit ion 1. A formula 0 is a relational interpolant of 27 and 11 relative to a
clause C iff

(1). all relational symbols of 0 are in L z f3 Ln,
(2). ,U ~ 0 V C, and
(3). 11 -0 v c .

Theorem 2. For each clause C of a binary resolution proof P of 27 U FI ~ <>,
the formula assigned by the above algorithm is a relational interpolant of 27 and
1"7 relative to C. In particular, the formula 0 assigned to the final empty clause
of the proof P is a relational interpolant between 27 and -,11.

Proof. It is obvious tha t any assigned formula contains only relation symbols
from L z f3 Ln. So condition (1) of the definition holds.

For any occurrence of a clause or subclause C in the proof P, let Cz (let
C1r) be C with all occurrences of literals not from 27 (not from 11) deleted. Then

c, c, and CEVCR C Jid and (CVD) = (CE VOw)
and (Cz)~r = (C1r)z for any unifier ~r.

We prove by induction on the depth of C in P the following strengthenings
of (2) and (3):

(2)'. 27 ~ e v c ~ ,
(3)'. 1I ~ ~0 v c~.
Suppose C is an input clause from 27. Then 0 is F and Cz = C. Thus (2)'

and (3)' hold since 27 ~ F V C and 11 ~ T V C. The argument for an input
clause from 11 is similar.

183

Suppose (2)' and (3)' are true for clauses L V C and ~L ' V D of P whose
resolvent in P is (C V D)Ir where lr is a unifier such that L~r -- LPlr. Assume
L V C is assigned the formula r and -~L' V D is assigned r Thus we have

~ ~ CV (LVC)~, ~r
/ / ~ ' , r I I ~ - , r
Case (a). Suppose the occurrences of L and -~L' are both from S alone.

Then (L V C)~ = L V Cj~ and (' ,L ' V D) ~ = -~L' V D~. By resolution we get
(2)': S ~ ((r V CE) V (r V DE))~r = (r V r V (C V D)Ir~. For (3)' we have
(L V C)ir = Ct/ and (--L' V D)/7 = Dlr and s o / / ~ (-~r V Cu) A (-1r V D/r)
a n d / - / ~ --(r V r V (C V D)~'~.

Case (b) for L and ",L' f r o m / / a l o n e is similar.
Case (c). In any model of 27 with any assignment of variables, if both C:vlr

and D~Tr are false, then (r V L)~r and (r V --L')Tr are true. So if L~r --- L ' r is
true, then so is r if L1r is false, then r is true. Either way,

((- ,L' A r V (L A r V (C V D)~) is always true.
S i m i l a r l y , / / k (((n V -~r A (~n ' V r V (C V D)rl)r .
Hence, by induction, the theorem holds. []

Resolution provers often use paramodulation to handle equality. Given clauses
C(r) and s = tVD with no variables in common and a unifier 7r such that rTr = s~r
or rTr = tlr, paramodulation infers the paramodulant (C(t) V D)Ir or (C(s) V D)lr
respectively.

D e f i n i t i o n 3 . For a deduction P in L~ O Lr/, a noneommon term is a term
which begins with a symbol not in LE N Ln . Such a term is called a ,U,-term
if its initial symbol is from S , a H-term if its initial symbol is f rom/1 . An
occurrence of a S (/ /) - term is maximal if this occurrence is not a subterm of a
larger 27 (/ /)- term.

Now we extend the Interpolation Algorithm to proofs with paramodulation
as follows:

5ii). I f r is assigned to C(r) and r is assigned to s = t V D and if 7r is a
unifier such that rlr = s~r, then the .formula assigned to the paramodulant is:

(d). [(r A s ---- t) V (r A s r t)]Ir V (s ----t A h(s) # h(t))Ir provided r occurs
in C(r) as a subterm o.f a m a x i m a l / / - t e r m h(r) and there is more than one
occurrence of h(r) in C(r) V c~.

(e}. [(r A s = t) V (r A s ~ t)]lr A (s ~ t V h(s) = h(t))Tr provided r occurs
in C(r) as a subterm o-f a maximal S - t e rm h(r) and there is more than one
occurrence of h(r) in C(r) V r

(f). ((~b ̂ s = t) V (~b ̂ s ~ t))lr i-f neither (d) nor (e}.

L e m m a 4 . I f ~, r are the interpolants relative to C(r) and s = t V D, re-
spectively, then the above -formula is an interpolant relative to the paramodulant
(C(t) V D)~.

Proof. We prove case (f). Since 27 ~ (C (r) V r and S ~ (s = t V D V r for
any model A of 27, if s~r = t~r in A, then A ~ (C(t) V r otherwise if s~r # t~r
in A, then A ~ D1r V r Either way, we have A ~ (C(t) V D V 0)Ir.

184

S i m i l a r l y , / / ~ (C($) V D V -,6)7r in the two cases: For s~r = tTr,/I ~ (-~b V
for # u v Thus the si ed formula satisfies the

requirement. El

The final rule of inference we need is factoring. Given a clause L V L' V C and
a unifier ~r such that L r = L i t , factoring infers the clause (L V C) r . We extend
the Interpolation Algorithm to proofs with factoring as follows:

(iv). I] qb is assigned to L V L' V C and lr is a unifier as above, then we assign
q~ to the factor clause (L V C)Ir.

Clearly 27 ~ L V L ' V C V r and II ~ L V L ' V C V ' , r imply 27 ~ (LVC)~rVr
a n d / / ~ (L V C)~r V -,r

Thus for a refutat ion proof P by a series of binary resolutions, factorings, and
paramodulations, applying the above extended algorithm gives a formula, say
0, for the 'empty clause. Since 27 ~ 0 a n d / 7 ~ --0, 8 is a relational interpolant
between ,U and -1//. Though 8 does not contain any non-common relational
symbol, it may contain noncommon terms with constants or function symbols
which are not in L~ N LR. We now show how to get a Craig interpolant by
replacing all noncommon terms in 0 with appropriately quantified variables.

First we define a binary tree deduction to be a deduction in which any clause is
used at most once. Such a deduction involving only binary resolutions, factorings,
and paramodulations forms a binary tree.

L e m m a S . Any refutation P using only binary resolutions, paramodulations,
and fuctorings, lifts to a binary tree deduction Pb with the same conclusion.

Proof. We prove this lemma by induction on the number k(P) of clauses which
are used more than once in the deduction P. If k(P) = O, P is a binary tree de-
duction. Assume the lemma holds for all deductions with k(P) _< n and suppose
k(P) = n + 1. Let C be a clause such that C is used m _> 2 times in P but all
the ancestors of C are used only once. We construct a new deduction P ' from
P such that P ' has m copies of C and its ancestors, and each copy of C and its
ancestors is used exactly once in pr. Finally, variables may be renamed if nec-
essary, so that different input clauses have disjoint sets of variables. Otherwise
P is the same as P ' and has the same conclusion. Since pr is a deduction with
k(P p) <_ n, by induction, P ' lifts to a binary tree deduction Pb with the same
conclusion.

Suppose P is a binary tree deduction whose input clauses have disjoint sets
of variables and whose substitutions are generated by the usual unification al-
gorithm, then the following properties hold in P:

1. Every variable of any noninput clause in P occurs in exactly one parent
clause and thus traces back to a unique ancestral input clause.

2. Any two incomparable (neither is the ancestor of the other) clauses have
disjoint sets of variables.

3. For any substi tution r of P and any variable x, either lr is trivial on x, i.e.,
~r(x) = x, or x does not occur in the term lr(x).

4. If ~ is nontrivial on z , z never appears in any clause below lr.

185

Defin i t ion 6. Given a binary tree deduction P as above, for any variable x
occurring in P, let rtp, the composite substitution for P, be the substitution such
that lrp(x) is the term resulting from applying to x the composition of all the
substitutions along the path from the unique input clause which contains z to
the bottom of P.

L e m m a 7 . For any clause C in such a binary tree deduction P, C1rp is the
clause obtained by applying to C the composition of all the substitutions along
the path from C to the bottom of P.

Proof. Suppose x is a variable of C. Then z traces back to a unique ancestral
input clause D.' All of the substitutions along the path from D to C are trivial
on z since otherwise, x would not occur in C. Hence rt(x) = the composition of
all substitutions from D to the bottom, t3

We say a deduction is propositional if there are no nontrivial unifying sub-
stitutions involved in the deduction.

L e m m a 8 . The Boolean operations V, ̂ ,-~ and propositional binary resolution,
faetoring, and paramodulation commute with substitution. That is, if ~r is a sub-
stitution, then (A V B)~r = A~r V B~r, (A ^ B)rt = Ar ^ Brt, (-A)~r = -~(A~r);
and for any propositional binary resolution {A V L, B V -~L} ~ A V B, we have
{Art V Lrt, Blr V -~Lrt} ~ Art V B~r; and for any propositional paramodulation
{C(s), s = t V D} ~= C(t) V D, we have {C(s)~r, (s = t)rt V D~r} ~ C(t)rt V Dlr.

L e m m a 9. Every binary tree proof Pb projects to a propositional proof Pp.

Proof. Given a binary tree proof Pb, rename the variables if necessary so that
the above four properties hold and let rtp be the composite substitution for P.
Let Pp be the result of replacing each clause C of Pb with C1rp and replacing
each substitution with the trivial identity substitution. Then by Lemma 8 Pp is
a projection of Pb and Pp is a propositional binary tree deduction. D

L e m m a 10. Assume Pb projects to Pp as in Lemma 9. I f we apply the Interpo-
lation Algorithm to the propositional deduction Pp, and if a clause C ~ in Pp is
assigned formula q5 l, and if its corresponding clause C in Pb is assigned formula
r then r = dprtp. In particular, the assignments to ~ from both deductions are
the same.

Proof. Any occurrence of a literal L in a clause C' of Pp is from ,U or H or
both iff its corresponding occurrence in Pb is from ~, H, or both. So the corre-
sponding clauses of Pb and Pp are assigned interpolants by the same case of the
Interpolation Algorithra. Lemma 8 gives the result. 13

186

Let Pp be a propositional deduction in L~: U L~, and tt,...,tn be all the
//-terms with maximal occurrences in Pp. Let xl, ..., x , be a set of new variables
which do not occur in Pp. For any term or formula 0 in Pp, define 0(xl, . . . ,z ,)
to be the term or formula obtained by simultaneously replacing all maximal
occurrences of the / / - t e rms tj 's by the new variables xj's. We call 0 the lifted
formula of 0 from//-terms.

Lemma 1 I.

(AV B)(:~I, ...,xn)
(A ^ . . . ,

(s =

0

4 = , v

A

r =

= t ,)

L e m m a 12. If 0 is the relational interpolant of 27 and II relative to C by the
Interpolation Algorithm for the propositional deduction Pp, then we have

Z I= (C V 0)(:~1, ..., x ,) .

Proof. We prove this lemma by induction on Pp. If O(tl, ...,in) is an instance of
an input clause from 27, then all the / / - te rms in C come from free variables by
the unifying substitutions in the original deduction. So by the construction of
Pp we know that C(xl , ..., z ,) is an instance of some input clause in 27, and F is
assigned to this clause. Thus 27 ~ C(xt , .., xn) V F. If ~(t l , .., tn) is an instance
of input clause from H, then it has assigned formula T and 27 ~ C(xt, .., xn) VT
holds.

Now assume that 27 ~ (C V L V ~b)(xl, .., x ,) and 27 ~ (D V -~L V tb)(xl, .., xn)
and that C V L and D V -~L resolving against L gives C V D with interpolant 0.
We show that 27 ~ (CVDVO)(zl,..,zn).

Notice that by propositional deduction and Lemma 11 we have

{CV LV r DV'~LV~b)~CVDV('~ -LAr162
Using Lemma 1 1 again proves the Lemma for case (a) and case (c) of the

Interpolation Algorithm definition of 0. For case (b), 0 = r h tb, and the occur-
rences of L and -~L are not from ~7. By the proof of Theorem 2 we know that
27 ~ C V r and 27 ~ D V r respectively. Thus we have 27 ~ C V D V (r A r

Next assume C(s) and s = t V D gives C(t) V D by paramodulation. As-
sume 27 ~ (C(s) V r ..., xn) and 27 ~ (s = t V D V r Xn). Here we
consider case (d) of the assignment for paramodulation in which s occurs in
C(s) as a subterm of a maximal //-term h(s) which occurs more than once
in C(s) V ~b. Then since h(s), h(t)are distinct//-terms, they will be replaced
by distinct new variables h(s), h(t) in C(t) V r For any model of 27 and any
assignment of all free variables in the lifted paramodulant and its assigned
formula, if C(s) and $ = t are true but C(t) is false, then we must have
h(s) ~ h(t). So in this case we have: 27 ~ (s = tA h(s) # h(t))(~l, . . . ,x,). And
hence, ,~ ~ (C(t) V D V 0)(Zl, ..., x ,) .

187

The arguments for the other cases are straightforward. 13

We now assign a dual formula to each clause in the proof P as follows:
(i). If C is an input clause from `U, its formula is T; if C is an input clause

from H, its formula is F.
(ii). If r is assigned to L V C and r is assigned to -~L'VD, and if (CV D)~r is

the resolvent of L V C and D V --L r against L~ - Lrlr, then the formula assigned
to (C V D)lr is:

(a). (r A r if the occurrences of both L and --L' are from `U alone;
(b). (r V r if the occurrences of both L and --L' are f r o m / / a l o n e ;
(c). ((L A r V (-~L' A r if neither (a) nor (b).
(iii). If (C(t) V D)Tr is the paramodulant from above described paramodula-

tion, its formula is
(d). [(r V s ~ t) A (r V s = t)]~r ̂ (s # t V h(s) = h(t))~ provided the r is

a subterm of a maximal/- / - term h(r) and there is more than one occurrence of
h(r) in C(r) V r

(e). [(r Y s # t) A (r V s = t)]lr V (s = t Y h(s) # h(t))lr provided the r is
a subterm of a maximal ~- te rm h(r) and there is more than one occurrence of
h(r) in C(r) V r

(f). ((r A s ----- t) V (r A s # t))lr if neither (d) nor (e).
(iv). If r is assigned to L V L t V C and lr is a unifier such that L~r = L t l r ,

then we assign r to the factor clause (L V C)~r.
By induction on the depth of a clause in the deduction we can show

L e m m a 13. The formula assigned by the dual method is the logical negation of
that assigned by the original Interpolation Algorithm.

C o r o l l a r y l 4 . Assume that ~(sx,..., s~) is the dual formula assigned to C in
Pp by the dual assignment algorithm, where sl, ..., sk are all the E-terms with
maximal occurrences in Pp. If we let 0(Yx,...,yk) be the formula obtained by
simultaneously replacing all maximal occurrences of the `u-terms Sx, ..., sk by the
new variables YI, ...,Yk, then we have 1I ~ ~(Yl,...,Yk).

Now we are ready to quantify all the variables for noncommon terms in the
relational interpolant 8 of `U a n d / / r e l a t i v e to the empty clause. Assume that
all the maximal ~U-terms a n d / / - t e r m s are {tl, ..., t , } , ordered by their lengths.
Assume {tl, ..., tn } = {rl , r~ } U {Sk+l, ..., sn } where the ri's are the maximal
H-terms and the sj 's are the maximal ,U-terms. If lifting 8 from H-terms gives
0(xl, ..., xk), and lifting ~(xl, ..., xk) from the `u-terms gives 8"(zl, ..., zn) where
the z~'s are new variables for the t~'s, then we have

T h e o r e m 15. Ql Zx...Qnz, O*(zl, ..., z ,) is a Craig interpolant separating ,U and
I'I, where Qi is V if ti is a I.i-term, otherwise Qi is 3.

Proo I. Clearly QlZl...Q,z,O*(zl, ..., zn) is a formula in Lv N L~ . By Lemma 12
we have ,U ~ Vxl...xhS(xl...xk).

188

Each maximal 27-term of O(zz,...,=k) is a lifting ~j(xt,...,xk) of one of
the maximal 27-terms Sk+l,...,sn of 0. If xi occurs in ~j(Xl,. . . ,xk) then the
term ri which xl replaces is a subterm of sj and thus rl occurs before sj
in the list {tl, . . . , tn} and the variable for ri occurs before the variable for
sj in the prefix Qazl...Qnz,. Hence ~j is a witness for the quantifier 3yj in
Qlzz...QnznO*(zl, ..., zn). Hence, 27 ~ QlZl...QnznO*(zl, ..., Zn).

On the other side, for the dual formula -~0, using the same order among the
noncommon terms and by the corollary above and the fact that 0* is also the
lifting f r o m / / - t e r m s of the lifting 0 of 0 from 27-terms, we also have

1-1 ~ -QlZX...-Qnzn,O*(zl, ..., Zn) where Q-"j = V (:1) iff Qj = -~ (V). Moving
the negation symbol out we finally have H ~ "-,Qlzl...QnznO*(za, ..., zn). []

The formula 0* may contain free variables other than z,, ..., zn. We get a Craig
interpolant sentence by quantifying these extra variables with the quantifier Q1
or any other sequence of quantifiers.

Ezamplel. Let 27 = (R(x,a) V R(x ,b) } , H ---- { ' - ,R(c,y)}, where a, b and c are
distinct constants. An O T T E R resolution refutation for 27 U / - / ~ ~ is:

1 R(z, a) V R(x, b).
2 -R(c,u).
3 [binar ,I, l Me, b).
4 [bi,aru, S,e].
The Interpolation Algorithm gives the formula 0 = R(c, a) V R(c, b). Since a

and b are 27-terms and c is a / / - t e r m , we replace a and b by the existentially
quantified variables x and Y, and replace c by the universally quantified variable
z. Since the lengths of a, b, c are all 1, the order among the quantifiers does not
mat ter . Thus the following three formulas are all Craig interpolants between 27
a n d / / :

vz3=u(R(z, =) v R(z,u)), 3.W3u(R(z,) v v

Ezample~. Let 27 = {x # f (x) , x # f (f (x)) } , H = {1/= x Vy = 9(z)}, where
bo th f and g are functions. Any model of 27 has a universe of size at least 3, while
any model of H has a universe of size at most 2. So 27 and H are inconsistent.
An O T T E R resolution refutation for 27 U H ~ ~ is:

1
z~f(f(x).

3 y=xVy=g(z).
[bina~,3.1,~.l] x=g(I(f(=))).

5 [binary,3.1,I.I] :c=g(l(=)).
,o .=I(*).
11 [binary, 0.1,1.1] .

The formula 0 the Interpolation Algorithm gives is

189

[(x r f (f (x)) ^ x # g(f (f (x)))) V (x = g (f (f (x))) ^ f (x) • f (f (x)))] ^ x #
f (x) .

The noncommon terms, when sorted according to lengths, are f (x) , l(l(z)),
g(f(l(x))), where g(f(l(x))) is a//-term and the others are 27-terms. Replacing
these terms with the variables u, v, w and quantifying them gives the formula

0* = ~ . v ~ [(~ # . ^ 9 # ~) v (~ = ~ ^ ~ r ,)] ^ (x # ~).
Note tha t any model for O* contains at least three elements: It can not con-

tain only one or two elements, for x, u, v must be distinct. Thus 0" is a Craig
interpolant separating ,U a n d / / .

3 A p p l i c a t i o n s of Craig In terpo lants

Given two finite structures, to show they are isomorphic, one finds an isomor-
phism. To show they are not, one gives a statement that separates them, i.e., a
sentence which is true in one structure but false in the other. The Interpolation
Algorithm can be used to find such a sentence.

For structures $1 with elements {al, .., an} and $2 with elements {bl, ..., bn},
assume tha t the universes for $1 and $2 are disjoint, and all the elements ai,b i
are named by new distinct constant symbols. I~urthermore assume the diagrams
(the collection of all atomic sentences and negations of atomic sentences which
hold in the structure) for the structures are ,41 and ,42 respectively. Then each
of the diagrams is a theory in some language. If the two structures are not
isomorphic, then ~ = ,41 U Vx(x = al V ... V x = a,,) and H = ,42 U Vy(y =
bl V ... V y = bn) are inconsistent, and by completeness there exists a refutation
proof for 27 U H ~ O. Applying the Interpolation Algorithm to this proof gives
a first order sentence which separates the structures.

For example, let Sz and $2 be directed graphs. $1 has vertices {a, b, c} with
edges {(a,b), (a,c)}. $2 has vertices {a',b',c'} with edges {(a',b'), (c' ,a')}. We
use binary relation p to represent the edges of the graphs. Then the diagram for
$1 is

A1 = {p(a, b),p(a, c), "rip(b, a),-.p(b, c),-~p(c, a),-~p(c, b), a # b, a # c, b # c}.

And the diagram for $2 is
A2 = {p(a', b'),p(c', a'), "~p(a', c'), ".p(b', a'), -~p(b', c'), -~p(c', b'),
a' # b', a' # c', b' # c'}.
So .U = ,410Vx(x = a V x = b V x = c) a n d / / = ,42 UVz(x = a ' V x =

b' V z = d) .
A refutation proof by OTTER is the following:

1 p(a,b).

7 (a# b).
S (ar c).
w (= = a) v (= = b) v (~ = c).
14 -p(bI,~l).

190

15 -p (c I , b l } .
Ie -plaI,~1).
1 9 k = al) V k = bl} V (x = cl).

3o /~,~.~m,~o,7] (~ # # v (~ = ~) v (~ = ~).

e74 [r~-~,~,sO, sl (~ # ~) v (~ = a).
507 [pa~-~m,S~,el p(a,# V (~ = a).
699 [para-from,44,14] -p(x, cl} V (x = cl).
711 [binary,699,507] (a = cl) V {cl = a).
7s3 [binary,711,e741 (ci = 4 .
794 [p ~ - ~ m , TS3,2~] (bl # a).
797 [para-from, 783,15] -p (a, bl).
sl ~ [binary, 794,a07] p(a, b O.
817 [binary, 816, 797].

Applying the Interpolation Algorithm, and using some trivial logic rules such
as AV-~A r T, (AA--,B)VB r A V B , A A A r A, AA'-,A < :-
F, A V --A ~ T, to simplify the formula, we get the following relational
interpolant

O: (c ' = a V p (a , c ')) A (b ' = a V p (a , b ')) .
Note that a is a S-term, while b' and c' are/ / - terms. If we replace a, b', c'

by x, y, z, respectively, by Theorem 15, we get the following formulas. They all
separate the two graphs:

3~VUz[(z = 9 Vp(~, z)) A (U = 9 Vp(~,y))],
v y 3 ~ w [(~ = 9 v p (= , ~)) A (y = 9 v p(:~, y))] ,
v y , ~ = I (z = :~ v p (= , ~)) ^ (~ = = v p(=, y))] .
Note that there is a shorter formula 3xVU(X = y V p(x, U)) which separates

the two given structures. The generation of minimal length separating sentences
is an open problem. We also need more efficient proof strategies for such prob-
lems since current resolution provers can not find refutation proof for pairs of
structures with more than 6 elements.

Acknowledgements : The author thanks Dale Myers for his numerous
suggestions and corrections to earlier versions of this paper.

References

1. Roger Lyndon, Notes on Logic , D. Van Nostrand Company, Princeton, 1966.
2. Chin-Liang Chang, Richard Char-Tung Lee, Symbolic Logic and Mechanical Theo-

rem Proving, Academic Press, 1973.
3. C C. Chang, H. Jerome Keisler, Model Theory, North Holland, 1990.
4. Larry Wos, Overbeek, Lusk, Boyle, Automated Reasonin#: Introduction and Appli-

cations, McGraw-Hill, 1992.

