
Topics in Database Systems:
Modern Database Systems

CS848 Spring 2022

David Toman

DATABASE IMPLEMENTATION
(UPDATES)

David Toman (University of Waterloo) CS848 Spring 2022 1 / 18



Plan

1 What are updates (how to understand dynamic aspects of instances)?

2 How do we understand updates in our framework?
• updates and logical relations
• updates and constraints
• updates and access paths

3 Difficulties on the way
• sequencing updates
• value invention

David Toman (University of Waterloo) Outline 2 / 18



Plan

1 What are updates (how to understand dynamic aspects of instances)?

2 How do we understand updates in our framework?
• updates and logical relations
• updates and constraints
• updates and access paths

3 Difficulties on the way
• sequencing updates
• value invention

David Toman (University of Waterloo) Outline 2 / 18



Plan

1 What are updates (how to understand dynamic aspects of instances)?

2 How do we understand updates in our framework?
• updates and logical relations
• updates and constraints
• updates and access paths

3 Difficulties on the way
• sequencing updates
• value invention

David Toman (University of Waterloo) Outline 2 / 18



Plan

1 What are updates (how to understand dynamic aspects of instances)?

2 How do we understand updates in our framework?
• updates and logical relations
• updates and constraints
• updates and access paths

3 Difficulties on the way
• sequencing updates
• value invention

David Toman (University of Waterloo) Outline 2 / 18



Physical Design and Query Compilation: Overview

ΣL SL QLoo

ΣLP (query compilation)

��
ΣP SP QPoo

David Toman (University of Waterloo) Outline 3 / 18



UPDATES IN NUTSHELL

David Toman (University of Waterloo) Update in a Nutshell 4 / 18



Physical Design and Updates: Overview

ΣL SL

ΣLP

ΣP SP

user update UL−−−−−−−−−−−−−−−−−−−→

|
(compile to)

↓

physical update UP−−−−−−−−−−−−−−−−−−−→

ΣL SL

ΣLP

ΣP SP

old instance new instance

David Toman (University of Waterloo) Update in a Nutshell 5 / 18



Physical Design and Updates: Overview

ΣL SL

ΣLP

ΣP SP

user update UL−−−−−−−−−−−−−−−−−−−→

|
(compile to)

↓

physical update UP−−−−−−−−−−−−−−−−−−−→

ΣL SL

ΣLP

ΣP SP

old instance new instance

David Toman (University of Waterloo) Update in a Nutshell 5 / 18



Physical Design and Updates: Overview

ΣL SL

ΣLP

ΣP SP

user update UL−−−−−−−−−−−−−−−−−−−→

|
(compile to)

↓

physical update UP−−−−−−−−−−−−−−−−−−−→

ΣL SL

ΣLP

ΣP SP

old instance new instance

David Toman (University of Waterloo) Update in a Nutshell 5 / 18



Physical Design and Updates: Overview

ΣL SL

ΣLP

ΣP SP

user update UL−−−−−−−−−−−−−−−−−−−→

|
(compile to)

↓

physical update UP−−−−−−−−−−−−−−−−−−−→

ΣL SL

ΣLP

ΣP SP

old instance new instance

David Toman (University of Waterloo) Update in a Nutshell 5 / 18



Update Schema

Σo
L So

L

Σo
LP

Σo
P So

P

user update UL
−−−−−−−−−−−−−−−−−−−→

physical update UP−−−−−−−−−−−−−−−−−−−→

Σn
L Sn

L

Σn
LP

Σn
P Sn

P

o(ld instance) n(ew instance)

David Toman (University of Waterloo) Update in a Nutshell 6 / 18



Update Schema

Σo
L So

L

Σo
LP

Σo
P So

P

user update UL
−−−−−−−−−−−−−−−−−−−→

physical update UP−−−−−−−−−−−−−−−−−−−→

Σn
L Sn

L

Σn
LP

Σn
P Sn

P

David Toman (University of Waterloo) Update in a Nutshell 6 / 18



Update Schema

Σo
L So

L

Σo
LP

Σo
P So

P

S±
L ,Σ±

L←−−−−−−−−−−−−−−−−−−→

physical update UP−−−−−−−−−−−−−−−−−−−→

Σn
L Sn

L

Σn
LP

Σn
P Sn

P

S±
L = {P+,P− | P ∈ SL},

Σ±
L = {∀x̄ .(Po(x̄) ∨ P+(x̄))↔ (Pn(x̄) ∨ P−(x̄)) | P ∈ SL}

David Toman (University of Waterloo) Update in a Nutshell 6 / 18



Update Schema

Σo
L So

L

Σo
LP

Σo
P So

P

S±
L ,Σ±

L←−−−−−−−−−−−−−−−−−−→

S±
P ,Σ±

P−−−−−−−−−−−−−−−−−−−→

Σn
L Sn

L

Σn
LP

Σn
P Sn

P

S±
L = {P+,P− | P ∈ SA},

Σ±
L = {∀x̄ .(Po(x̄) ∨ P+(x̄))↔ (Pn(x̄) ∨ P−(x̄)) | P ∈ SA}

David Toman (University of Waterloo) Update in a Nutshell 6 / 18



Update Schema

Σo
L So

L

Σo
LP

Σo
P So

P

S±
L ,Σ±

L←−−−−−−−−−−−−−−−−−−→

S±
P ,Σ±

P−−−−−−−−−−−−−−−−−−−→

Σn
L Sn

L

Σn
LP

Σn
P Sn

P

David Toman (University of Waterloo) Update in a Nutshell 6 / 18



Update Schema

Σo
L So

L

Σo
LP

Σo
P So

P

S±
L ,Σ±

L←−−−−−−−−−−−−−−−−−−→

S±
P :=Q(So

P,S
±
L ),Σ±

P−−−−−−−−−−−−−−−−−−−→

Σn
L Sn

L

Σn
LP

Σn
P Sn

P

David Toman (University of Waterloo) Update in a Nutshell 6 / 18



Physical Design and Update Compilation

Σ So
L,S

n
L,Sn

P,S
±
P ULoo

Σ (update compilation)

��
Σ So

P,S
±
L UPoo

• UL is a user query P+(x̄) (P−(x̄)) for P ∈ SA;
• UP is a plan for the user query P+(x̄) (P−(x̄)) for P ∈ SA
⇒ w.r.t. the access paths SA ∪ S±

L , and
⇒ aux code that inserts (deletes) the result of the plan into (from) P.

David Toman (University of Waterloo) Update in a Nutshell 7 / 18



Physical Design and Update Compilation

Σ So
L,S

n
L,Sn

P,S
±
P ULoo

Σ (update compilation)

��
Σ So

P,S
±
L UPoo

• UL is a user query P+(x̄) (P−(x̄)) for P ∈ SA;
• UP is a plan for the user query P+(x̄) (P−(x̄)) for P ∈ SA
⇒ w.r.t. the access paths SA ∪ S±

L , and
⇒ aux code that inserts (deletes) the result of the plan into (from) P.

David Toman (University of Waterloo) Update in a Nutshell 7 / 18



Physical Design and Update Compilation

Σ So
L,S

n
L,Sn

P,S
±
P ULoo

Σ (update compilation)

��
Σ So

P,S
±
L UPoo

• UL is a user query P+(x̄) (P−(x̄)) for P ∈ SA;
• UP is a plan for the user query P+(x̄) (P−(x̄)) for P ∈ SA
⇒ w.r.t. the access paths SA ∪ S±

L , and
⇒ aux code that inserts (deletes) the result of the plan into (from) P.

David Toman (University of Waterloo) Update in a Nutshell 7 / 18



Physical Design and Update Compilation

Σ So
L,S

n
L,Sn

P,S
±
P ULoo

Σ (update compilation)

��
Σ So

P,S
±
L UPoo

• UL is a user query P+(x̄) (P−(x̄)) for P ∈ SA;
• UP is a plan for the user query P+(x̄) (P−(x̄)) for P ∈ SA
⇒ w.r.t. the access paths SA ∪ S±

L , and
⇒ aux code that inserts (deletes) the result of the plan into (from) P.

David Toman (University of Waterloo) Update in a Nutshell 7 / 18



Example
Setup: standard relational design for Employee(id,name,salary)
• A base file empfile of emp records (organized by id)
• An emp-name index on employee names (links name to id)

David Toman (University of Waterloo) Update in a Nutshell 8 / 18



Example
Setup: standard relational design for Employee(id,name,salary)
• A base file empfile of emp records (organized by id)
• An emp-name index on employee names (links name to id)

Logical Schema:
SL = {Employee/3},ΣL = {“id is a key”}

Physical Schema:
SP = SA = {empfile/3/0,emp-name/2/1}
ΣLP = { ∀x , y , z.Employee(x , y , z)↔ empfile(x , y , z)

∀x , y , z.Employee(x , y , z)↔ emp-name(y , x) }

Logical Update Schema: (just the signature)
SL = {empfile+/3,empfile−/3,emp-name+/2,emp-name−/2}

Physical Update Schema:
SP = {Employee+/3,Employee−/3,empfileo/3,empfileo/3, . . .}

David Toman (University of Waterloo) Update in a Nutshell 8 / 18



Example
Setup: standard relational design for Employee(id,name,salary)
• A base file empfile of emp records (organized by id)
• An emp-name index on employee names (links name to id)

Logical Update Schema: (just the signature)
SL = {empfile+/3,empfile−/3,emp-name+/2,emp-name−/2}

Physical Update Schema:
SP = {Employee+/3,Employee−/3,empfileo/3,empfileo/3, . . .}

ΣLP = {∀x , y , z.(empfileo(x , y , z) ∨ empfile+(x , y , z))
↔ (empfilen(x , y , z) ∨ empfile−(x , y , z)) , . . .}

ΣP = {∀x , y , z.Employee+(x , y , z) ∧ Employee−(x , y , z)→ ⊥, . . .}

Update Queries:
empfile+(x , y , z)

compiles−−−−−→ Employee+(x , y , z) ∧ ¬empfileo(x , y , z)

empfile−(x , y , z)
compiles−−−−−→ Employee−(x , y , z) ∧ empfileo(x , y , z)

. . . similar for emp-name

David Toman (University of Waterloo) Update in a Nutshell 8 / 18



Example
Setup: standard relational design for Employee(id,name,salary)
• A base file empfile of emp records (organized by id)
• An emp-name index on employee names (links name to id)

Logical Update Schema: (just the signature)
SL = {empfile+/3,empfile−/3,emp-name+/2,emp-name−/2}

Physical Update Schema:
SP = {Employee+/3,Employee−/3,empfileo/3,empfileo/3, . . .}

ΣLP = {∀x , y , z.(empfileo(x , y , z) ∨ empfile+(x , y , z))
↔ (empfilen(x , y , z) ∨ empfile−(x , y , z)) , . . .}

ΣP = {∀x , y , z.Employee+(x , y , z) ∧ Employee−(x , y , z)→ ⊥, . . .}

Update Queries:
empfile+(x , y , z)

compiles−−−−−→ Employee+(x , y , z) ∧ ¬empfileo(x , y , z)

empfile−(x , y , z)
compiles−−−−−→ Employee−(x , y , z) ∧ empfileo(x , y , z)

. . . similar for emp-name

David Toman (University of Waterloo) Update in a Nutshell 8 / 18



Example
Setup: standard relational design for Employee(id,name,salary)
• A base file empfile of emp records (organized by id)
• An emp-name index on employee names (links name to id)

Logical Update Schema: (just the signature)
SL = {empfile+/3,empfile−/3,emp-name+/2,emp-name−/2}

Physical Update Schema:
SP = {Employee+/3,Employee−/3,empfileo/3,empfileo/3, . . .}

ΣLP = {∀x , y , z.(empfileo(x , y , z) ∨ empfile+(x , y , z))
↔ (empfilen(x , y , z) ∨ empfile−(x , y , z)) , . . .}

ΣP = {∀x , y , z.Employee+(x , y , z) ∧ Employee−(x , y , z)→ ⊥, . . .}

Update Queries:
empfile+(x , y , z)

compiles−−−−−→ Employee+(x , y , z) ∧ ¬empfileo(x , y , z)

empfile−(x , y , z)
compiles−−−−−→ Employee−(x , y , z) ∧ empfileo(x , y , z)

. . . similar for emp-name

David Toman (University of Waterloo) Update in a Nutshell 8 / 18



Transaction Types

Transactions
A user update (expressed as diffs on logical symbols) that transforms an
consistent instance to another consistent instance.

Additional information about transaction behaviour?
1 transaction only adds tuples to a certain relation,
2 transaction only modifies certain relations,
3 . . .

Additional information⇒ additional constraints:
1 P− = ∅ for the “insert-only” relation P,
2 P+ = P− = ∅ for unmodified relations.
3 . . .

David Toman (University of Waterloo) Update in a Nutshell 9 / 18



Transaction Types

Transactions
A user update (expressed as diffs on logical symbols) that transforms an
consistent instance to another consistent instance.

Additional information about transaction behaviour?
1 transaction only adds tuples to a certain relation,
2 transaction only modifies certain relations,
3 . . .

Additional information⇒ additional constraints:
1 P− = ∅ for the “insert-only” relation P,
2 P+ = P− = ∅ for unmodified relations.
3 . . .

David Toman (University of Waterloo) Update in a Nutshell 9 / 18



Transaction Types

Transactions
A user update (expressed as diffs on logical symbols) that transforms an
consistent instance to another consistent instance.

Additional information about transaction behaviour?
1 transaction only adds tuples to a certain relation,
2 transaction only modifies certain relations,
3 . . .

Additional information⇒ additional constraints:
1 P− = ∅ for the “insert-only” relation P,
2 P+ = P− = ∅ for unmodified relations.
3 . . .

David Toman (University of Waterloo) Update in a Nutshell 9 / 18



The View Update Problem

Classical View Update Problem
Given a relational view

∀x̄ .V (x̄)↔ Q(x̄)

with Q expressed over SL, is it possible to update the content of V by
appropriately modifying the interpretation of the SL symbols?

⇒ insertable, deletable, and updatable views

Answer
Define update schema for V and SL (where every symbol is also an access
path). Then V is
• insertable if Pn is definable w.r.t. the update design with V− = ∅,
• deletable if Pn is definable w.r.t. the update design with V + = ∅, and
• updatable if Pn and V− are definable w.r.t. the update design

for all P ∈ SL.
⇒ when the answer is positive, we construct a corresponding update queries.

David Toman (University of Waterloo) Update in a Nutshell 10 / 18



The View Update Problem

Classical View Update Problem
Given a relational view

∀x̄ .V (x̄)↔ Q(x̄)

with Q expressed over SL, is it possible to update the content of V by
appropriately modifying the interpretation of the SL symbols?

⇒ insertable, deletable, and updatable views

Answer
Define update schema for V and SL (where every symbol is also an access
path). Then V is
• insertable if Pn is definable w.r.t. the update design with V− = ∅,
• deletable if Pn is definable w.r.t. the update design with V + = ∅, and
• updatable if Pn and V− are definable w.r.t. the update design

for all P ∈ SL.
⇒ when the answer is positive, we construct a corresponding update queries.

David Toman (University of Waterloo) Update in a Nutshell 10 / 18



ADVANCED ISSUES

IN UPDATE COMPILATION

David Toman (University of Waterloo) Advanced Updates 11 / 18



Progressive Updates
Update Queries:

empfile+(x , y , z)
compiles−−−−−→ Employee+(x , y , z) ∧ ¬empfileo(x , y , z)

empfile−(x , y , z)
compiles−−−−−→ Employee−(x , y , z) ∧ empfileo(x , y , z)

This doesn’t quite work:
after executing the 1st update query we no longer have empfileo!

Possible Solutions:
1 simultaneous relational assignment:

⇒ compute all deltas and store results in temporary storage,
⇒ only then apply all deltas to SA;

2 using independent deltas:
⇒ add constraints to avoid the problem (e.g., P− ⊆ Po);

3 evolving physical schema one AP at a time
⇒ sequence of update schemas with a subset of SA “updated”,
⇒ subsequent updates compiled w.r.t. partially updated schema.

David Toman (University of Waterloo) Advanced Updates 12 / 18



Progressive Updates
Update Queries:

empfile+(x , y , z)
compiles−−−−−→ Employee+(x , y , z) ∧ ¬empfileo(x , y , z)

empfile−(x , y , z)
compiles−−−−−→ Employee−(x , y , z) ∧ empfileo(x , y , z)

This doesn’t quite work:
after executing the 1st update query we no longer have empfileo!

Possible Solutions:
1 simultaneous relational assignment:

⇒ compute all deltas and store results in temporary storage,
⇒ only then apply all deltas to SA;

2 using independent deltas:
⇒ add constraints to avoid the problem (e.g., P− ⊆ Po);

3 evolving physical schema one AP at a time
⇒ sequence of update schemas with a subset of SA “updated”,
⇒ subsequent updates compiled w.r.t. partially updated schema.

David Toman (University of Waterloo) Advanced Updates 12 / 18



Progressive Updates
Update Queries:

empfile+(x , y , z)
compiles−−−−−→ Employee+(x , y , z) ∧ ¬empfileo(x , y , z)

empfile−(x , y , z)
compiles−−−−−→ Employee−(x , y , z) ∧ empfileo(x , y , z)

This doesn’t quite work:
after executing the 1st update query we no longer have empfileo!

Possible Solutions:
1 simultaneous relational assignment:

⇒ compute all deltas and store results in temporary storage,
⇒ only then apply all deltas to SA;

2 using independent deltas:
⇒ add constraints to avoid the problem (e.g., P− ⊆ Po);

3 evolving physical schema one AP at a time
⇒ sequence of update schemas with a subset of SA “updated”,
⇒ subsequent updates compiled w.r.t. partially updated schema.

David Toman (University of Waterloo) Advanced Updates 12 / 18



Value Invention
Setup: advanced relational design for Employee(id,name,salary)
• A base file empfile(r , x , y , z) of emp records with RIds “r ”
• An emp-name(y , r) index on employee names (links name to RIds)

⇒ no update query, e.g., for empfile+(r , x , y , z): no “source” of RIds!

IDEA (Constant Complement [Bancilhon and Spyratos])
An oracle access path that provides the required value

given the values of remaining attributes as parameters.

In practice: a record allocation mechanism
(e.g., malloc+code that initializes fields of the allocated record)

• a separate access path (may need to “remember” all allocated records!)
• a part of the record insertion code (AP+ doesn’t have the attribute)

⇒ update query for emp-name+ must execute after empfile+.

David Toman (University of Waterloo) Advanced Updates 13 / 18



Value Invention
Setup: advanced relational design for Employee(id,name,salary)
• A base file empfile(r , x , y , z) of emp records with RIds “r ”
• An emp-name(y , r) index on employee names (links name to RIds)

⇒ no update query, e.g., for empfile+(r , x , y , z): no “source” of RIds!
(due to: ∀x , y , z.Employee(x , y , z)↔ (∃r .empfile(r , x , y , z))

IDEA (Constant Complement [Bancilhon and Spyratos])
An oracle access path that provides the required value

given the values of remaining attributes as parameters.

In practice: a record allocation mechanism
(e.g., malloc+code that initializes fields of the allocated record)

• a separate access path (may need to “remember” all allocated records!)
• a part of the record insertion code (AP+ doesn’t have the attribute)

⇒ update query for emp-name+ must execute after empfile+.

David Toman (University of Waterloo) Advanced Updates 13 / 18



Value Invention
Setup: advanced relational design for Employee(id,name,salary)
• A base file empfile(r , x , y , z) of emp records with RIds “r ”
• An emp-name(y , r) index on employee names (links name to RIds)

⇒ no update query, e.g., for empfile+(r , x , y , z): no “source” of RIds!

IDEA (Constant Complement [Bancilhon and Spyratos])
An oracle access path that provides the required value

given the values of remaining attributes as parameters.

In practice: a record allocation mechanism
(e.g., malloc+code that initializes fields of the allocated record)

• a separate access path (may need to “remember” all allocated records!)
• a part of the record insertion code (AP+ doesn’t have the attribute)

⇒ update query for emp-name+ must execute after empfile+.

David Toman (University of Waterloo) Advanced Updates 13 / 18



Value Invention
Setup: advanced relational design for Employee(id,name,salary)
• A base file empfile(r , x , y , z) of emp records with RIds “r ”
• An emp-name(y , r) index on employee names (links name to RIds)

⇒ no update query, e.g., for empfile+(r , x , y , z): no “source” of RIds!

IDEA (Constant Complement [Bancilhon and Spyratos])
An oracle access path that provides the required value

given the values of remaining attributes as parameters.

In practice: a record allocation mechanism
(e.g., malloc+code that initializes fields of the allocated record)

• a separate access path (may need to “remember” all allocated records!)
• a part of the record insertion code (AP+ doesn’t have the attribute)

⇒ update query for emp-name+ must execute after empfile+.

David Toman (University of Waterloo) Advanced Updates 13 / 18



Value Invention
Setup: advanced relational design for Employee(id,name,salary)
• A base file empfile(r , x , y , z) of emp records with RIds “r ”
• An emp-name(y , r) index on employee names (links name to RIds)

⇒ no update query, e.g., for empfile+(r , x , y , z): no “source” of RIds!

IDEA (Constant Complement [Bancilhon and Spyratos])
An oracle access path that provides the required value

given the values of remaining attributes as parameters.

In practice: a record allocation mechanism
(e.g., malloc+code that initializes fields of the allocated record)

• a separate access path (may need to “remember” all allocated records!)
• a part of the record insertion code (AP+ doesn’t have the attribute)

⇒ update query for emp-name+ must execute after empfile+.

David Toman (University of Waterloo) Advanced Updates 13 / 18



Value Invention and Schematic Cycles

Can we always schedule the updates of record IDs before using
these as values (e.g., in an index)?
NO: recall our Employee-Works-Department physical schema in which
• emp records have a pointer to a dept record (for the Works relationship),
• dept records have a pointer to an emp record (to the “manager”).

⇒ impossible to insert the 1st employee and 1st department!

IDEA: reify (one of) the AP (we have done that already in our example) and
then interleave updates to the reified relations.

1 insert an employee’s Id into emp-id AP (yields address of emp);
2 insert department record (the above value used for the manager field;

yields address of dept);
3 insert the same employee into emp-dept AP using the dept address.

David Toman (University of Waterloo) Advanced Updates 14 / 18



Value Invention and Schematic Cycles

Can we always schedule the updates of record IDs before using
these as values (e.g., in an index)?
NO: recall our Employee-Works-Department physical schema in which
• emp records have a pointer to a dept record (for the Works relationship),
• dept records have a pointer to an emp record (to the “manager”).

⇒ impossible to insert the 1st employee and 1st department!

IDEA: reify (one of) the AP (we have done that already in our example) and
then interleave updates to the reified relations.

1 insert an employee’s Id into emp-id AP (yields address of emp);
2 insert department record (the above value used for the manager field;

yields address of dept);
3 insert the same employee into emp-dept AP using the dept address.

David Toman (University of Waterloo) Advanced Updates 14 / 18



Value Invention and Schematic Cycles

Can we always schedule the updates of record IDs before using
these as values (e.g., in an index)?
NO: recall our Employee-Works-Department physical schema in which
• emp records have a pointer to a dept record (for the Works relationship),
• dept records have a pointer to an emp record (to the “manager”).

⇒ impossible to insert the 1st employee and 1st department!

IDEA: reify (one of) the AP (we have done that already in our example) and
then interleave updates to the reified relations.

1 insert an employee’s Id into emp-id AP (yields address of emp);
2 insert department record (the above value used for the manager field;

yields address of dept);
3 insert the same employee into emp-dept AP using the dept address.

David Toman (University of Waterloo) Advanced Updates 14 / 18



Value Invention and Schematic Cycles

Can we always schedule the updates of record IDs before using
these as values (e.g., in an index)?
NO: recall our Employee-Works-Department physical schema in which
• emp records have a pointer to a dept record (for the Works relationship),
• dept records have a pointer to an emp record (to the “manager”).

⇒ impossible to insert the 1st employee and 1st department!

IDEA: reify (one of) the AP (we have done that already in our example) and
then interleave updates to the reified relations.

1 insert an employee’s Id into emp-id AP (yields address of emp);
2 insert department record (the above value used for the manager field;

yields address of dept);
3 insert the same employee into emp-dept AP using the dept address.

David Toman (University of Waterloo) Advanced Updates 14 / 18



Value Invention and Schematic Cycles

Can we always schedule the updates of record IDs before using
these as values (e.g., in an index)?
NO: recall our Employee-Works-Department physical schema in which
• emp records have a pointer to a dept record (for the Works relationship),
• dept records have a pointer to an emp record (to the “manager”).

⇒ impossible to insert the 1st employee and 1st department!

IDEA: reify (one of) the AP (we have done that already in our example) and
then interleave updates to the reified relations.

1 insert an employee’s Id into emp-id AP (yields address of emp);
2 insert department record (the above value used for the manager field;

yields address of dept);
3 insert the same employee into emp-dept AP using the dept address.

David Toman (University of Waterloo) Advanced Updates 14 / 18



Updates and 2-level Store (open problem)

Example
• Design: employees stored in emppages/1/0 and emprecords/2/1;
• Update: every employee (making <100k) gets 10% salary increase

David Toman (University of Waterloo) Advanced Updates 15 / 18



Updates and 2-level Store (open problem)

Example
• Design: employees stored in emppages/1/0 and emprecords/2/1;
• Update: every employee (making <100k) gets 10% salary increase

Hand-crafted Solution
while ¬end-of(emppages) do

read emppages to p;
while ¬end-of(emprecords(p)) do

read emprecords(p) to r ;
if r → salary < 100k then

r → salary ∗ = 1.1;
write r to emprecords(p);

write p to emppages;

David Toman (University of Waterloo) Advanced Updates 15 / 18



Updates and 2-level Store (open problem)

Example
• Design: employees stored in emppages/1/0 and emprecords/2/1;
• Update: every employee (making <100k) gets 10% salary increase

Hand-crafted Solution
while ¬end-of(emppages) do

read emppages to p;
while ¬end-of(emprecords(p)) do

read emprecords(p) to r ;
if r → salary < 100k then

r → salary ∗ = 1.1;
write r to emprecords(p);

write p to emppages; // only if p is "dirty"?

David Toman (University of Waterloo) Advanced Updates 15 / 18



Updates and 2-level Store (open problem)

Example
• Design: employees stored in emppages/1/0 and emprecords/2/1;
• Update: every employee (making <100k) gets 10% salary increase

Current Situation
• Our (current) solution–behaves as if pages were just pointers:
⇒ emprecords− becomes “all old records”

emprecords+ becomes “all changed records”
⇒ we completely miss the need to write emppages. . .

Project Idea
How do we deal with temporarily replicated data and intermediate results?

David Toman (University of Waterloo) Advanced Updates 15 / 18



Updates and 2-level Store (open problem)

Example
• Design: employees stored in emppages/1/0 and emprecords/2/1;
• Update: every employee (making <100k) gets 10% salary increase

Current Situation
• Our (current) solution–behaves as if pages were just pointers:
⇒ emprecords− becomes “all old records”

emprecords+ becomes “all changed records”
⇒ we completely miss the need to write emppages. . .

Project Idea
How do we deal with temporarily replicated data and intermediate results?

David Toman (University of Waterloo) Advanced Updates 15 / 18



Updates and 2-level Store (open problem)

Example
• Design: employees stored in emppages/1/0 and emprecords/2/1;
• Update: every employee (making <100k) gets 10% salary increase

Current Situation
• Our (current) solution–behaves as if pages were just pointers:
⇒ emprecords− becomes “all old records”

emprecords+ becomes “all changed records”
⇒ we completely miss the need to write emppages. . .

Project Idea
How do we deal with temporarily replicated data and intermediate results?

David Toman (University of Waterloo) Advanced Updates 15 / 18



Updates and 2-level Store (open problem)

Example
• Design: employees stored in emppages/1/0 and emprecords/2/1;
• Update: every employee (making <100k) gets 10% salary increase

Ideas for Solution(s)
• extensions with updates-in-place

• modified operators (NLJ) so that it writes data back

⇒ NLJ(emppages(p),NLJ(emprecords(p, r),modify r))

• or more schema design??

⇒ separate “access paths” for reading/writing
⇒ sequencing, e.g., via union, etc.

David Toman (University of Waterloo) Advanced Updates 15 / 18



Updates and 2-level Store (open problem)

Example
• Design: employees stored in emppages/1/0 and emprecords/2/1;
• Update: every employee (making <100k) gets 10% salary increase

Ideas for Solution(s)
• extensions with updates-in-place

• modified operators (NLJ) so that it writes data back

⇒ NLJ(emppages(p),NLJ(emprecords(p, r),modify r))

• or more schema design??

⇒ separate “access paths” for reading/writing
⇒ sequencing, e.g., via union, etc.

David Toman (University of Waterloo) Advanced Updates 15 / 18



Updates and 2-level Store (open problem)

Example
• Design: employees stored in emppages/1/0 and emprecords/2/1;
• Update: every employee (making <100k) gets 10% salary increase

Ideas for Solution(s)
• extensions with updates-in-place

• modified operators (NLJ) so that it writes data back

⇒ NLJ(emppages(p),NLJ(emprecords(p, r),modify r))

• or more schema design??

⇒ separate “access paths” for reading/writing
⇒ sequencing, e.g., via union, etc.

David Toman (University of Waterloo) Advanced Updates 15 / 18



The Halloween Problem (open problem)

Example
• Design: employees stored in a list emplist/2/0 ordered by salary
• Update: every employee (making <100k) gets 10k salary increase

Project Idea
Detecting and rectifying the Halloween problem
⇒ what is the correct semantics anyway? (this alone is a project topic)

David Toman (University of Waterloo) Advanced Updates 16 / 18



The Halloween Problem (open problem)

Example
• Design: employees stored in a list emplist/2/0 ordered by salary
• Update: every employee (making <100k) gets 10k salary increase

(Naive) Hand-crafted Solution
while ¬end-of(emplist) do

read emplist to r ;
if r → salary < 100k then

r → salary + = 10k ;
write r to emprecords(p);

Project Idea
Detecting and rectifying the Halloween problem
⇒ what is the correct semantics anyway? (this alone is a project topic)

David Toman (University of Waterloo) Advanced Updates 16 / 18



The Halloween Problem (open problem)

Example
• Design: employees stored in a list emplist/2/0 ordered by salary
• Update: every employee (making <100k) gets 10k salary increase

(Naive) Hand-crafted Solution
while ¬end-of(emplist) do

read emplist to r ;
if r → salary < 100k then

r → salary + = 10k ;
write r to emprecords(p);

Does this work?? NO!!!
⇒ consider emplist = [(Fred,10k), (Wilma,15k)] to start with;
⇒ result emplist = [(Fred,100k), (Wilma,105k)] at the end. . .

Project Idea
Detecting and rectifying the Halloween problem
⇒ what is the correct semantics anyway? (this alone is a project topic)

David Toman (University of Waterloo) Advanced Updates 16 / 18



The Halloween Problem (open problem)

Example
• Design: employees stored in a list emplist/2/0 ordered by salary
• Update: every employee (making <100k) gets 10k salary increase

(Naive) Hand-crafted Solution
while ¬end-of(emplist) do

read emplist to r ;
if r → salary < 100k then

r → salary + = 10k ;
write r to emprecords(p); // insert into ordered list

Does this work?? NO!!!
⇒ consider emplist = [(Fred,10k), (Wilma,15k)] to start with;
⇒ result emplist = [(Fred,100k), (Wilma,105k)] at the end. . .

Project Idea
Detecting and rectifying the Halloween problem
⇒ what is the correct semantics anyway? (this alone is a project topic)

David Toman (University of Waterloo) Advanced Updates 16 / 18



The Halloween Problem (open problem)

Example
• Design: employees stored in a list emplist/2/0 ordered by salary
• Update: every employee (making <100k) gets 10k salary increase

(Naive) Hand-crafted Solution
while ¬end-of(emplist) do

read emplist to r ;
if r → salary < 100k then

r → salary + = 10k ;
write r to emprecords(p); // insert into ordered list

Does this work?? NO!!!
⇒ consider emplist = [(Fred,10k), (Wilma,15k)] to start with;
⇒ result emplist = [(Fred,100k), (Wilma,105k)] at the end. . .

Project Idea
Detecting and rectifying the Halloween problem
⇒ what is the correct semantics anyway? (this alone is a project topic)

David Toman (University of Waterloo) Advanced Updates 16 / 18



The Halloween Problem (open problem)

Example
• Design: employees stored in a list emplist/2/0 ordered by salary
• Update: every employee (making <100k) gets 10k salary increase

(Naive) Hand-crafted Solution
while ¬end-of(emplist) do

read emplist to r ;
if r → salary < 100k then

r → salary + = 10k ;
write r to emprecords(p); // insert into ordered list

Project Idea
Detecting and rectifying the Halloween problem
⇒ what is the correct semantics anyway? (this alone is a project topic)

David Toman (University of Waterloo) Advanced Updates 16 / 18



Concurrency and Durability (open problem)
Isolation: what if others access the data too??

⇒ schematic description of CC rather that lock manager et al.
e.g., the RCU style approach (used by the Linux kernel)

⇒ deadlock-free solutions (why?)
⇒ compile-time (just what one really needs)

Durability: what if a permanent record is needed??

⇒ additional physical design for LOGs (or for COW?)
⇒ how to deal with (lazy) replication? (see 2-level store)
⇒ transactions, rollbacks, and recovery?

Project Ideas
Each of the above (alone) can be a project
⇒ even just analyzing the problems without a clear/favourite solution!

David Toman (University of Waterloo) Advanced Updates 17 / 18



Concurrency and Durability (open problem)
Isolation: what if others access the data too??

⇒ schematic description of CC rather that lock manager et al.
e.g., the RCU style approach (used by the Linux kernel)

⇒ deadlock-free solutions (why?)
⇒ compile-time (just what one really needs)

Durability: what if a permanent record is needed??

⇒ additional physical design for LOGs (or for COW?)
⇒ how to deal with (lazy) replication? (see 2-level store)
⇒ transactions, rollbacks, and recovery?

Project Ideas
Each of the above (alone) can be a project
⇒ even just analyzing the problems without a clear/favourite solution!

David Toman (University of Waterloo) Advanced Updates 17 / 18



Concurrency and Durability (open problem)
Isolation: what if others access the data too??

⇒ schematic description of CC rather that lock manager et al.
e.g., the RCU style approach (used by the Linux kernel)

⇒ deadlock-free solutions (why?)
⇒ compile-time (just what one really needs)

Durability: what if a permanent record is needed??

⇒ additional physical design for LOGs (or for COW?)
⇒ how to deal with (lazy) replication? (see 2-level store)
⇒ transactions, rollbacks, and recovery?

Project Ideas
Each of the above (alone) can be a project
⇒ even just analyzing the problems without a clear/favourite solution!

David Toman (University of Waterloo) Advanced Updates 17 / 18



More Issues

• How do we know what APs to update? (so we don’t miss emppages!)

• How to know when an constant complement is needed?

• How to determine the ordering of the individual AP updates?
⇒ what about interleaving??

• How to identify cycles and when reification is needed?

• How to determine if the user update preserves consistency?

⇒ guaranteed by the user (e.g., extra user queries to make sure)
⇒ system-generated checks—HARD!

David Toman (University of Waterloo) Advanced Updates 18 / 18



More Issues

• How do we know what APs to update? (so we don’t miss emppages!)

• How to know when an constant complement is needed?

• How to determine the ordering of the individual AP updates?
⇒ what about interleaving??

• How to identify cycles and when reification is needed?

• How to determine if the user update preserves consistency?

⇒ guaranteed by the user (e.g., extra user queries to make sure)
⇒ system-generated checks—HARD!

David Toman (University of Waterloo) Advanced Updates 18 / 18



More Issues

• How do we know what APs to update? (so we don’t miss emppages!)

• How to know when an constant complement is needed?

• How to determine the ordering of the individual AP updates?
⇒ what about interleaving??

• How to identify cycles and when reification is needed?

• How to determine if the user update preserves consistency?

⇒ guaranteed by the user (e.g., extra user queries to make sure)
⇒ system-generated checks—HARD!

David Toman (University of Waterloo) Advanced Updates 18 / 18



More Issues

• How do we know what APs to update? (so we don’t miss emppages!)

• How to know when an constant complement is needed?

• How to determine the ordering of the individual AP updates?
⇒ what about interleaving??

• How to identify cycles and when reification is needed?

• How to determine if the user update preserves consistency?

⇒ guaranteed by the user (e.g., extra user queries to make sure)
⇒ system-generated checks—HARD!

David Toman (University of Waterloo) Advanced Updates 18 / 18



More Issues

• How do we know what APs to update? (so we don’t miss emppages!)

• How to know when an constant complement is needed?

• How to determine the ordering of the individual AP updates?
⇒ what about interleaving??

• How to identify cycles and when reification is needed?

• How to determine if the user update preserves consistency?

⇒ guaranteed by the user (e.g., extra user queries to make sure)
⇒ system-generated checks—HARD!

David Toman (University of Waterloo) Advanced Updates 18 / 18


