Topics in Database Systems:

Modern Database Systems
CS848 Spring 2022

David Toman

DATABASE IMPLEMENTATION
(UPDATES)

David Toman (University of Waterloo) CS848 Spring 2022 1/18

Plan

©@ What are updates (how to understand dynamic aspects of instances)?

=} F = = DA
David Toman (University of Waterloo) Outline

Plan

©@ What are updates (how to understand dynamic aspects of instances)?

® How do we understand updates in our framework?

David Toman (University of Waterloo) Outline 2/18

Plan

©@ What are updates (how to understand dynamic aspects of instances)?

® How do we understand updates in our framework?

® updates and logical relations
® updates and constraints
® updates and access paths

David Toman (University of Waterloo) Outline 2/18

Plan

©@ What are updates (how to understand dynamic aspects of instances)?

® How do we understand updates in our framework?

® updates and logical relations
® updates and constraints
® updates and access paths

® Difficulties on the way

® sequencing updates
® value invention

David Toman (University of Waterloo) Outline 2/18

Physical Design and Query Compilation: Overview

L |Syk-———--- QL
Yip (query compilation)
p |Spr-———---—-— Qp

David Toman (University of Waterloo)

Outline

UPDATES IN NUTSHELL

=} F = = DA
David Toman (University of Waterloo) Update in a Nutshell

Physical Design and Updates: Overview

ZL
Lip
old instance

David Toman (University of Waterloo)

Update in a Nutshell

Physical Design and Updates: Overview

user update U_

old instance new instance

David Toman (University of Waterloo) Update in a Nutshell 5/18

Physical Design and Updates: Overview

user update U_

physical update Up

old instance

David Toman (University of Waterloo)

Update in a Nutshell

new instance

5/18

Physical Design and Updates: Overview

user update U_

(compile to)

1

physical update Up

old instance

David Toman (University of Waterloo)

Update in a Nutshell

new instance

5/18

Update Schema

user update U_

physical update Up

o(ld instance)

David Toman (University of Waterloo)

Update in a Nutshell

n(ew instance)

6/18

Update Schema

user update U_

physical update Up

David Toman (University of Waterloo)

Update in a Nutshell

Update Schema

S:I: Z:t

[o L>~L N n n
ZL SL ZL SL
o n

zLP zLP

physical update Up

o o n n
¥9 S8 i S

SLi:{P+7P7 | P €S},
):Li ={Vx.(P°(X) VvV P*(X)) ++ (P"(X) v P~ (X)) | P € S_}

David Toman (University of Waterloo) Update in a Nutshell 6/18

Update Schema

St xt
(st L SR = O
PR PR{S

Si,Zi
pX S? P 7P x4 Sp

SLi:{P+7P7 | P € Sal,
):Li ={VXx.(P°(X) VvV P*(Xx)) ++ (P"(x) vV P~ (X)) | P € Sa}

David Toman (University of Waterloo) Update in a Nutshell 6/18

Update Schema

+ +
50 Si, 2
LP
Sz, T

David Toman (University of Waterloo)

Update in a Nutshell

Update Schema

St i

SF=Q(s8.8).xF

David Toman (University of Waterloo)

Update in a Nutshell

Physical Design and Update Compilation

Y |S,S,SpSp<—-—----- U
x (update compilation)
% SPSLf -~~~ Ue

David Toman (University of Waterloo) Update in a Nutshell 7/18

Physical Design and Update Compilation

______ U
x (update compilation)
% SpSLj<— -~ Ue

David Toman (University of Waterloo)

Update in a Nutshell

Physical Design and Update Compilation

Y |S,S.,SpSp<—-—----- U
x (update compilation)
% SpSLj<— -~ Ue

e U, is a user query Pt (X) (P~ (X)) for P € Sa;

David Toman (University of Waterloo) Update in a Nutshell 7/18

Physical Design and Update Compilation

Y |S,S,SESpk-———-—--- U
r (update compilation)
2 B S - Up

e U, is a user query Pt (X) (P~ (X)) for P € Sa;

e Up is a plan for the user query P+ (x) (P~ (X)) for P € Sa
= w.r.t. the access paths Sp U S;t, and
=- aux code that inserts (deletes) the result of the plan into (from) P.

David Toman (University of Waterloo) Update in a Nutshell 7/18

Example

Setup: standard relational design for Employee (id, name, salary)
e A base file empfile of emp records (organized by id)
® An emp-name index on employee names (links name to id)

David Toman (University of Waterloo) Update in a Nutshell 8/18

Example

Setup: standard relational design for Employee (id, name, salary)
e A base file empfile of emp records (organized by id)
® An emp-name index on employee names (links name to id)

Logical Schema:
S = {Employee/3}, X = {"idis a key"}
Physical Schema:
Sp = Sp = {empfile/3/0,emp-name/2/1}
Yip= { VXx,y,zEmployee(X,y,Z) <> empfile(X,y,2)
Vx,y,z.Employee(X,y,Z) <> emp—-name(y,Xx) }
Logical Update Schema: (just the signature)
S, = {empfile’/3,empfile™ /3,emp-name’ /2 emp-name~/2}
Physical Update Schema:
Sp = {Employee™/3,Employee™ /3,empfile®/3,empfile?/3,...}

David Toman (University of Waterloo) Update in a Nutshell 8/18

Example

Setup: standard relational design for Employee (id, name, salary)
e A base file empfile of emp records (organized by id)
® An emp-name index on employee names (links name to id)

Logical Update Schema: (just the signature)
S. = {empfile’/3,empfile™ /3,emp-name’ /2 emp-name~/2}
Physical Update Schema:
Sp = {Employee™/3,Employee™ /3,empfile®/3, empfile?/3,...}
Yip ={Vx,y,z.(empfile®(x,y,z) Vempfilet(x,y, 2))
+ (empfile”(x,y,z) Vempfile (X,y,2)),...}
Yp = {Vx,y,z.Employee™(X,y,2) AEmployee™ (X,¥,2) — L,...}
Update Queries:
empfile®(x,y,2)
empfile™(X,y,2)

David Toman (University of Waterloo) Update in a Nutshell 8/18

Example

Setup: standard relational design for Employee (id, name, salary)
e A base file empfile of emp records (organized by id)
® An emp-name index on employee names (links name to id)

Logical Update Schema: (just the signature)
S. = {empfile’/3,empfile™ /3,emp-name’ /2 emp-name~/2}
Physical Update Schema:
Sp = {Employee™/3,Employee™ /3,empfile®/3, empfile?/3,...}
Yip ={Vx,y,z.(empfile®(x,y,2z) Vempfile™(x,y, 2))
+ (empfile”(x,y,z) Vempfile (X,y,2)),...}
Yp = {Vx,y,z.Employee™(X,y,2) AEmployee™ (X,¥,2) — L,...}
Update Queries:

compiles

empfile®(x,y, z) Employee™®(X,y,z) A mempfile?(X,y,2)

i
TP, Employee ™ (X,y,2) A empfile®(x,y, 2)

empfile™(X,y,Z2)

David Toman (University of Waterloo) Update in a Nutshell 8/18

Example

Setup: standard relational design for Employee (id, name, salary)
e A base file empfile of emp records (organized by id)
® An emp-name index on employee names (links name to id)

Logical Update Schema: (just the signature)
S. = {empfile’/3,empfile™ /3,emp-name’ /2 emp-name~/2}
Physical Update Schema:
Sp = {Employee™/3,Employee™ /3,empfile®/3, empfile?/3,...}
Yip ={Vx,y,z.(empfile®(x,y,2z) Vempfile™(x,y, 2))
+ (empfile”(x,y,z) Vempfile (X,y,2)),...}
Yp = {Vx,y,z.Employee™(X,y,2) AEmployee™ (X,¥,2) — L,...}
Update Queries:

compiles

empfile®(x,y, z) Employee™®(X,y,z) A mempfile?(X,y,2)

i
TP, Employee ™ (X,y,2) A empfile®(x,y, 2)

empfile™(X,y,Z2)

...similar for emp—name

David Toman (University of Waterloo) Update in a Nutshell 8/18

Transaction Types

Transactions

A user update (expressed as diffs on logical symbols) that transforms an
consistent instance to another consistent instance.

David Toman (University of Waterloo) Update in a Nutshell 9/18

Transaction Types

Transactions

A user update (expressed as diffs on logical symbols) that transforms an
consistent instance to another consistent instance.

Additional information about transaction behaviour?
@ transaction only adds tuples to a certain relation,

@® transaction only modifies certain relations,
O ...

David Toman (University of Waterloo) Update in a Nutshell

9/18

Transaction Types

Transactions

A user update (expressed as diffs on logical symbols) that transforms an
consistent instance to another consistent instance.

Additional information about transaction behaviour?
@ transaction only adds tuples to a certain relation,

@® transaction only modifies certain relations,
O ...

Additional information = additional constraints:
@ P~ = 0 for the “insert-only” relation P,
® P = P~ = () for unmodified relations.
o ...

David Toman (University of Waterloo) Update in a Nutshell 9/18

The View Update Problem

Classical View Update Problem
Given a relational view
vx.V(X) ¢ Q(X)

with Q expressed over S, is it possible to update the content of V by
appropriately modifying the interpretation of the S| symbols?

= insertable, deletable, and updatable views

David Toman (University of Waterloo) Update in a Nutshell 10/18

The View Update Problem

Classical View Update Problem

Given a relational view
vx.V(X) < Q(X)

with Q expressed over S, is it possible to update the content of V by
appropriately modifying the interpretation of the S| symbols?

= insertable, deletable, and updatable views

Answer

Define update schema for V and S| (where every symbol is also an access
path). Then V' is

e jnsertable if P" is definable w.r.t. the update design with V= = 0,
e deletable if P" is definable w.r.t. the update design with V+ = (), and
® updatable if P" and V'~ are definable w.r.t. the update design
forall P € S,.
= when the answer is positive, we construct a corresponding update queries./

David Toman (University of Waterloo) Update in a Nutshell 10/18

ADVANCED ISSUES
IN UPDATE COMPILATION

David Toman (University of Waterloo) 11/18

Progressive Updates

Update Queries:
N compiles " o
empfile’(x,y,z) ——— Employee™(X,y,Z) A mempfile®(x,y,2)
compiles

empfile™(X,y,2) Employee™ (X,y,Z) Aempfile®(x,y,2)

— [= AN

David Toman (University of Waterloo) Advanced Updates

Progressive Updates

Update Queries:
. + compiles + , 0
empfile’(x,y,z) ——— Employee™(X,y,Z) A mempfile®(x,y,2)
compiles

empfile™(X,y,2) Employee™ (X,y,Z) Aempfile®(x,y,2)

This doesn’t quite work:
after executing the 1st update query we no longer have empfile®!

David Toman (University of Waterloo) Advanced Updates 12/18

Progressive Updates

Update Queries:

il
empfile®(x,y,2) compres

Employee™(X,y,z) A —empfile?(x,y,2)

_compiles Employee™ (X,y,Z) Aempfile®(x,y,2)

empfile (X, ¥, 2)

This doesn’t quite work:
after executing the 1st update query we no longer have empfile®!

Possible Solutions:
© simultaneous relational assignment:

= compute all deltas and store results in temporary storage,
= only then apply all deltas to Sa;

® using independent deltas:
= add constraints to avoid the problem (e.g., P~ C P°);
® evolving physical schema one AP at a time

= sequence of update schemas with a subset of Sp “updated”,
= subsequent updates compiled w.r.t. partially updated schema.

’

David Toman (University of Waterloo) Advanced Updates 12/18

Value Invention

Setup: advanced relational design for Employee (id, name, salary)
® A base file empfile(r,x,y, z) of emp records with R1ds r”
® An emp-name(y, r) index on employee names (links name to RIds)

David Toman (University of Waterloo) Advanced Updates 13/18

Value Invention

Setup: advanced relational design for Employee (id, name, salary)
® A base file empfile(r,x,y, z) of emp records with R1ds r”
® An emp-name(y, r) index on employee names (links name to RIds)

= no update query, e.g., for empfile™(r, x,y, z): no “source” of R1ds!
(due to: Vx, y,z.Employee(X,y, Z) <> (Ir.empfile(r, X, y, 2))

David Toman (University of Waterloo) Advanced Updates 13/18

Value Invention

Setup: advanced relational design for Employee (id, name, salary)
® A base file empfile(r,x,y, z) of emp records with R1ds r”
® An emp-name(y, r) index on employee names (links name to RIds)

= no update query, e.g., for empfile™(r, x,y, z): no “source” of R1ds!

IDEA (Constant Complement [Bancilhon and Spyratos])
An oracle access path that provides the required value
given the values of remaining attributes as parameters.

David Toman (University of Waterloo) Advanced Updates 13/18

Value Invention

Setup: advanced relational design for Employee (id, name, salary)
® A base file empfile(r, x,y, z) of emp records with RIds r”
® An emp-name(y, r) index on employee names (links name to RIds)

= no update query, e.g., for empfile™(r, x,y, z): no “source” of R1ds!

IDEA (Constant Complement [Bancilhon and Spyratos])

An oracle access path that provides the required value
given the values of remaining attributes as parameters.

In practice: a record allocation mechanism
(e.g., malloc+code that initializes fields of the allocated record)

David Toman (University of Waterloo) Advanced Updates 13/18

Value Invention

Setup: advanced relational design for Employee (id, name, salary)
® A base file empfile(r, x,y, z) of emp records with RIds r”
® An emp-name(y, r) index on employee names (links name to RIds)

= no update query, e.g., for empfile™(r, x,y, z): no “source” of R1ds!

IDEA (Constant Complement [Bancilhon and Spyratos])

An oracle access path that provides the required value
given the values of remaining attributes as parameters.

In practice: a record allocation mechanism
(e.g., malloc+code that initializes fields of the allocated record)

® a separate access path (may need to “remember” all allocated records!)

e a part of the record insertion code (AP doesn’t have the attribute)
= update query for emp-name™® must execute after empfile™.

David Toman (University of Waterloo) Advanced Updates 13/18

Value Invention and Schematic Cycles

Can we always schedule the updates of record 1Ds before using
these as values (e.g., in an index)?

David Toman (University of Waterloo) Advanced Updates 14/18

Value Invention and Schematic Cycles

Can we always schedule the updates of record 1Ds before using
these as values (e.g., in an index)?
NO: recall our Employee-Works-Department physical schema in which
® emp records have a pointer to a dept record (for the Works relationship),
® dept records have a pointer to an emp record (to the “manager”).

David Toman (University of Waterloo) Advanced Updates

14/18

Value Invention and Schematic Cycles

Can we always schedule the updates of record 1Ds before using
these as values (e.g., in an index)?
NO: recall our Employee-Works-Department physical schema in which
® emp records have a pointer to a dept record (for the Works relationship),
® dept records have a pointer to an emp record (to the “manager”).

= impossible to insert the 1st employee and 1st department!

David Toman (University of Waterloo) Advanced Updates

14/18

Value Invention and Schematic Cycles

Can we always schedule the updates of record 1Ds before using
these as values (e.g., in an index)?

NO: recall our Employee-Works-Department physical schema in which
® emp records have a pointer to a dept record (for the Works relationship),
® dept records have a pointer to an emp record (to the “manager”).

= impossible to insert the 1st employee and 1st department!

IDEA: reify (one of) the AP (we have done that already in our example) and
then interleave updates to the reified relations.

David Toman (University of Waterloo) Advanced Updates 14/18

Value Invention and Schematic Cycles

Can we always schedule the updates of record 1Ds before using
these as values (e.g., in an index)?
NO: recall our Employee-Works-Department physical schema in which
® emp records have a pointer to a dept record (for the Works relationship),
® dept records have a pointer to an emp record (to the “manager”).

= impossible to insert the 1st employee and 1st department!

v

IDEA: reify (one of) the AP (we have done that already in our example) and
then interleave updates to the reified relations.

@ insert an employee’s 1d into emp—id AP (yields address of emp);

@® insert department record (the above value used for the manager field;
yields address of dept);

® insert the same employee into emp-dept AP using the dept address.

David Toman (University of Waterloo) Advanced Updates 14/18

Updates and 2-level Store (open problem)

Example
® Design: employees stored in emppages/1/0 and emprecords/2/1;
e Update: every employee (making <100k) gets 10% salary increase

David Toman (University of Waterloo) Advanced Updates 15/18

Updates and 2-level Store (open problem)

Example
® Design: employees stored in emppages/1/0 and emprecords/2/1;
e Update: every employee (making <100k) gets 10% salary increase

Hand-crafted Solution

while —end-of(emppages) do
read emppages to p;
while —end-of(emprecords(p)) do
read emprecords(p) to r;
if r - salary < 100k then
r — salary *=1.1;
write r to emprecords(p);
write p to emppages;

David Toman (University of Waterloo) Advanced Updates 15/18

Updates and 2-level Store (open problem)

Example
® Design: employees stored in emppages/1/0 and emprecords/2/1;
e Update: every employee (making <100k) gets 10% salary increase

Hand-crafted Solution

while —end-of(emppages) do
read emppages to p;
while —end-of(emprecords(p)) do
read emprecords(p) to r;
if r - salary < 100k then
r — salary *=1.1;
write r to emprecords(p);
write p to emppages; // only if p is "dirty"?

David Toman (University of Waterloo) Advanced Updates 15/18

Updates and 2-level Store (open problem)

Example
® Design: employees stored in emppages/1/0 and emprecords/2/1;
e Update: every employee (making <100k) gets 10% salary increase

Current Situation
e Qur (current) solution—behaves as if pages were just pointers:

= emprecords” becomes “all old records”
emprecords™ becomes “all changed records”

David Toman (University of Waterloo) Advanced Updates 15/18

Updates and 2-level Store (open problem)

Example
® Design: employees stored in emppages/1/0 and emprecords/2/1;
e Update: every employee (making <100k) gets 10% salary increase

Current Situation
e Qur (current) solution—behaves as if pages were just pointers:

= emprecords” becomes “all old records”
emprecords™ becomes “all changed records”

= we completely miss the need to write emppages...

David Toman (University of Waterloo) Advanced Updates 15/18

Updates and 2-level Store (open problem)

Example

® Design: employees stored in emppages/1/0 and emprecords/2/1;
e Update: every employee (making <100k) gets 10% salary increase

Current Situation
e Qur (current) solution—behaves as if pages were just pointers:

= emprecords~ becomes “all old records”
emprecords™ becomes “all changed records”

= we completely miss the need to write emppages...

Project Idea
How do we deal with temporarily replicated data and intermediate results?

David Toman (University of Waterloo) Advanced Updates 15/18

Updates and 2-level Store (open problem)

Example
® Design: employees stored in emppages/1/0 and emprecords/2/1;
e Update: every employee (making <100k) gets 10% salary increase

Ideas for Solution(s)
e extensions with updates-in-place

* modified operators (NLJ) so that it writes data back

David Toman (University of Waterloo) Advanced Updates 15/18

Updates and 2-level Store (open problem)

Example
® Design: employees stored in emppages/1/0 and emprecords/2/1;
e Update: every employee (making <100k) gets 10% salary increase

Ideas for Solution(s)
e extensions with updates-in-place

* modified operators (NLJ) so that it writes data back
= NLJ(emppages(p), NLI(emprecords(p, r), modify r))

David Toman (University of Waterloo) Advanced Updates 15/18

Updates and 2-level Store (open problem)

Example
® Design: employees stored in emppages/1/0 and emprecords/2/1;
e Update: every employee (making <100k) gets 10% salary increase

Ideas for Solution(s)
e extensions with updates-in-place
* modified operators (NLJ) so that it writes data back
= NLJ(emppages(p), NLI(emprecords(p, r), modify r))

® or more schema design??

= separate “access paths” for reading/writing
= sequencing, e.g., via union, etc.

David Toman (University of Waterloo) Advanced Updates 15/18

The Halloween Problem (open problem)

Example
® Design: employees stored in a list emplist/2/0 ordered by salary
e Update: every employee (making <100k) gets 10k salary increase

David Toman (University of Waterloo) Advanced Updates 16/18

The Halloween Problem (open problem)

Example
® Design: employees stored in a list emplist/2/0 ordered by salary
e Update: every employee (making <100k) gets 10k salary increase

(Naive) Hand-crafted Solution

while —end-of(emplist) do
read emplist tor;
if r - salary < 100k then
r — salary + = 10k;
write r to emprecords(p);

David Toman (University of Waterloo) Advanced Updates 16/18

The Halloween Problem (open problem)

Example

® Design: employees stored in a list emplist/2/0 ordered by salary
e Update: every employee (making <100k) gets 10k salary increase

(Naive) Hand-crafted Solution

while —end-of(emplist) do
read emplist tor;
if r - salary < 100k then
r — salary + = 10k;
write r to emprecords(p);

Does this work??

David Toman (University of Waterloo) Advanced Updates 16/18

The Halloween Problem (open problem)

Example

® Design: employees stored in a list emplist/2/0 ordered by salary
e Update: every employee (making <100k) gets 10k salary increase

(Naive) Hand-crafted Solution

while —end-of(emplist) do
read emplist tor;
if r - salary < 100k then
r — salary + = 10k;
write r to emprecords(p); // insert into ordered list

Does this work?? NO!!!
= consider emplist = [(Fred, 10k), (Wilma, 15k)] to start with;

David Toman (University of Waterloo) Advanced Updates 16/18

The Halloween Problem (open problem)

Example

® Design: employees stored in a list emplist/2/0 ordered by salary
e Update: every employee (making <100k) gets 10k salary increase

(Naive) Hand-crafted Solution

while —end-of(emplist) do
read emplist tor;
if r - salary < 100k then
r — salary + = 10k;
write r to emprecords(p); // insert into ordered list

Does this work?? NO!!!

= consider emplist = [(Fred, 10k), (Wilma, 15k)] to start with;
= result emplist = [(Fred, 100k), (Wilma, 105k)] at the end...

David Toman (University of Waterloo) Advanced Updates 16/18

The Halloween Problem (open problem)

Example

® Design: employees stored in a list emplist/2/0 ordered by salary
e Update: every employee (making <100k) gets 10k salary increase

(Naive) Hand-crafted Solution

while —end-of(emplist) do
read emplist tor;
if r - salary < 100k then
r — salary + = 10k;
write r to emprecords(p); // insert into ordered list

Project Idea
Detecting and rectifying the Halloween problem
= what is the correct semantics anyway? (this alone is a project topic)

David Toman (University of Waterloo) Advanced Updates

16/18

Concurrency and Durability (open problem)

Isolation: what if others access the data too??

= schematic description of CC rather that lock manager et al.
e.g., the RCU style approach (used by the Linux kernel)

= deadlock-free solutions (why?)

= compile-time (just what one really needs)

David Toman (University of Waterloo) Advanced Updates 17/18

Concurrency and Durability (open problem)

Isolation: what if others access the data too??

= schematic description of CC rather that lock manager et al.
e.g., the RCU style approach (used by the Linux kernel)

= deadlock-free solutions (why?)

= compile-time (just what one really needs)

Durability: what if a permanent record is needed??

= additional physical design for LOGs (or for COW?)
= how to deal with (lazy) replication? (see 2-level store)
= transactions, rollbacks, and recovery?

David Toman (University of Waterloo) Advanced Updates 17/18

Concurrency and Durability (open problem)

Isolation: what if others access the data too??

= schematic description of CC rather that lock manager et al.
e.g., the RCU style approach (used by the Linux kernel)

= deadlock-free solutions (why?)

= compile-time (just what one really needs)

Durability: what if a permanent record is needed??

= additional physical design for LOGs (or for COW?)
= how to deal with (lazy) replication? (see 2-level store)
= transactions, rollbacks, and recovery?

Project Ideas
Each of the above (alone) can be a project
= even just analyzing the problems without a clear/favourite solution!

David Toman (University of Waterloo) Advanced Updates

17/18

More Issues

* How do we know what APs to update? (so we don’t miss emppages!)

=] F = = DA
David Toman (University of Waterloo) Advanced Updates

More Issues

* How do we know what APs to update? (so we don’t miss emppages!)

* How to know when an constant complement is needed?

David Toman (University of Waterloo) Advanced Updates 18/18

More Issues

* How do we know what APs to update? (so we don’t miss emppages!)
* How to know when an constant complement is needed?

* How to determine the ordering of the individual AP updates?
= what about interleaving??

David Toman (University of Waterloo) Advanced Updates 18/18

More Issues

* How do we know what APs to update? (so we don’t miss emppages!)

How to know when an constant complement is needed?

How to determine the ordering of the individual AP updates?
= what about interleaving??

How to identify cycles and when reification is needed?

David Toman (University of Waterloo) Advanced Updates 18/18

More Issues

* How do we know what APs to update? (so we don’t miss emppages!)
* How to know when an constant complement is needed?

e How to determine the ordering of the individual AP updates?
= what about interleaving??

* How to identify cycles and when reification is needed?

* How to determine if the user update preserves consistency?

= guaranteed by the user (e.g., extra user queries to make sure)
= system-generated checks—HARD!

David Toman (University of Waterloo) Advanced Updates 18/18

