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Plan

©@ What are updates (how to understand dynamic aspects of instances)?

® How do we understand updates in our framework?

® updates and logical relations
® updates and constraints
® updates and access paths

® Difficulties on the way

® sequencing updates
® value invention
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Physical Design and Query Compilation: Overview
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Physical Design and Update Compilation

Y  |S,S,SESpk-———-—--- U
r (update compilation)
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e U, is a user query Pt (X) (P~ (X)) for P € Sa;

e Up is a plan for the user query P+ (x) (P~ (X)) for P € Sa
= w.r.t. the access paths Sp U S;t, and
=- aux code that inserts (deletes) the result of the plan into (from) P.
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Example

Setup: standard relational design for Employee (id, name, salary)
e A base file empfile of emp records (organized by id)
® An emp-name index on employee names (links name to id)
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Example

Setup: standard relational design for Employee (id, name, salary)
e A base file empfile of emp records (organized by id)
® An emp-name index on employee names (links name to id)

Logical Schema:
S = {Employee/3}, X = {"idis a key"}
Physical Schema:
Sp = Sp = {empfile/3/0,emp-name/2/1}
Yip= { VXx,y,zEmployee(X,y,Z) <> empfile(X,y,2)
Vx,y,z.Employee(X,y,Z) <> emp—-name(y,Xx) }
Logical Update Schema: (just the signature)
S, = {empfile’/3,empfile™ /3,emp-name’ /2 emp-name~/2}
Physical Update Schema:
Sp = {Employee™/3,Employee™ /3,empfile®/3,empfile?/3,...}
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® An emp-name index on employee names (links name to id)
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S. = {empfile’/3,empfile™ /3,emp-name’ /2 emp-name~/2}
Physical Update Schema:
Sp = {Employee™/3,Employee™ /3,empfile®/3, empfile?/3,...}
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Setup: standard relational design for Employee (id, name, salary)
e A base file empfile of emp records (organized by id)
® An emp-name index on employee names (links name to id)

Logical Update Schema: (just the signature)
S. = {empfile’/3,empfile™ /3,emp-name’ /2 emp-name~/2}
Physical Update Schema:
Sp = {Employee™/3,Employee™ /3,empfile®/3, empfile?/3,...}
Yip ={Vx,y,z.(empfile®(x,y,2z) Vempfile™(x,y, 2))
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Example

Setup: standard relational design for Employee (id, name, salary)
e A base file empfile of emp records (organized by id)
® An emp-name index on employee names (links name to id)

Logical Update Schema: (just the signature)
S. = {empfile’/3,empfile™ /3,emp-name’ /2 emp-name~/2}
Physical Update Schema:
Sp = {Employee™/3,Employee™ /3,empfile®/3, empfile?/3,...}
Yip ={Vx,y,z.(empfile®(x,y,2z) Vempfile™(x,y, 2))
+ (empfile”(x,y,z) Vempfile (X,y,2)),...}
Yp = {Vx,y,z.Employee™(X,y,2) AEmployee™ (X,¥,2) — L,...}
Update Queries:

compiles

empfile®(x,y, z) Employee™®(X,y,z) A mempfile?(X,y,2)

i
TP, Employee ™ (X,y,2) A empfile®(x,y, 2)

empfile™(X,y,Z2)

...similar for emp—name
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Transaction Types

Transactions

A user update (expressed as diffs on logical symbols) that transforms an
consistent instance to another consistent instance.
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Transaction Types

Transactions

A user update (expressed as diffs on logical symbols) that transforms an
consistent instance to another consistent instance.

Additional information about transaction behaviour?
@ transaction only adds tuples to a certain relation,

@® transaction only modifies certain relations,
O ...

Additional information = additional constraints:
@ P~ = 0 for the “insert-only” relation P,
® P = P~ = () for unmodified relations.
o ...
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The View Update Problem

Classical View Update Problem
Given a relational view
vx.V(X) ¢ Q(X)

with Q expressed over S, is it possible to update the content of V by
appropriately modifying the interpretation of the S| symbols?

= insertable, deletable, and updatable views
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The View Update Problem

Classical View Update Problem

Given a relational view
vx.V(X) < Q(X)

with Q expressed over S, is it possible to update the content of V by
appropriately modifying the interpretation of the S| symbols?

= insertable, deletable, and updatable views

Answer

Define update schema for V and S| (where every symbol is also an access
path). Then V' is

e jnsertable if P" is definable w.r.t. the update design with V= = 0,
e deletable if P" is definable w.r.t. the update design with V+ = (), and
® updatable if P" and V'~ are definable w.r.t. the update design
forall P € S,.
= when the answer is positive, we construct a corresponding update queries./
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ADVANCED ISSUES
IN UPDATE COMPILATION
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Progressive Updates

Update Queries:
N compiles " o
empfile’(x,y,z) ——— Employee™(X,y,Z) A mempfile®(x,y,2)
compiles

empfile™(X,y,2) Employee™ (X,y,Z) Aempfile®(x,y,2)

— [ = AN

David Toman (University of Waterloo) Advanced Updates



Progressive Updates

Update Queries:
. + compiles + , 0
empfile’(x,y,z) ——— Employee™(X,y,Z) A mempfile®(x,y,2)
compiles

empfile™(X,y,2) Employee™ (X,y,Z) Aempfile®(x,y,2)

This doesn’t quite work:
after executing the 1st update query we no longer have empfile®!
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Progressive Updates

Update Queries:

il
empfile®(x,y,2) compres

Employee™(X,y,z) A —empfile?(x,y,2)

_compiles Employee™ (X,y,Z) Aempfile®(x,y,2)

empfile (X, ¥, 2)

This doesn’t quite work:
after executing the 1st update query we no longer have empfile®!

Possible Solutions:
© simultaneous relational assignment:

= compute all deltas and store results in temporary storage,
= only then apply all deltas to Sa;

® using independent deltas:
= add constraints to avoid the problem (e.g., P~ C P°);
® evolving physical schema one AP at a time

= sequence of update schemas with a subset of Sp “updated”,
= subsequent updates compiled w.r.t. partially updated schema.

’
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Value Invention

Setup: advanced relational design for Employee (id, name, salary)
® A base file empfile(r,x,y, z) of emp records with R1ds r”
® An emp-name(y, r) index on employee names (links name to RIds)
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Setup: advanced relational design for Employee (id, name, salary)
® A base file empfile(r,x,y, z) of emp records with R1ds r”
® An emp-name(y, r) index on employee names (links name to RIds)

= no update query, e.g., for empfile™(r, x,y, z): no “source” of R1ds!
(due to: Vx, y,z.Employee(X,y, Z) <> (Ir.empfile(r, X, y, 2))
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Value Invention

Setup: advanced relational design for Employee (id, name, salary)
® A base file empfile(r, x,y, z) of emp records with RIds r”
® An emp-name(y, r) index on employee names (links name to RIds)

= no update query, e.g., for empfile™(r, x,y, z): no “source” of R1ds!

IDEA (Constant Complement [Bancilhon and Spyratos])

An oracle access path that provides the required value
given the values of remaining attributes as parameters.

In practice: a record allocation mechanism
(e.g., malloc+code that initializes fields of the allocated record)

® a separate access path (may need to “remember” all allocated records!)

e a part of the record insertion code (AP doesn’t have the attribute)
= update query for emp-name™® must execute after empfile™.
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Value Invention and Schematic Cycles

Can we always schedule the updates of record 1Ds before using
these as values (e.g., in an index)?
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® emp records have a pointer to a dept record (for the Works relationship),
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Value Invention and Schematic Cycles

Can we always schedule the updates of record 1Ds before using
these as values (e.g., in an index)?
NO: recall our Employee-Works-Department physical schema in which
® emp records have a pointer to a dept record (for the Works relationship),
® dept records have a pointer to an emp record (to the “manager”).

= impossible to insert the 1st employee and 1st department!

v

IDEA: reify (one of) the AP (we have done that already in our example) and
then interleave updates to the reified relations.

@ insert an employee’s 1d into emp—id AP (yields address of emp);

@® insert department record (the above value used for the manager field;
yields address of dept);

® insert the same employee into emp-dept AP using the dept address.
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Updates and 2-level Store (open problem)

Example
® Design: employees stored in emppages/1/0 and emprecords/2/1;
e Update: every employee (making <100k) gets 10% salary increase
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Updates and 2-level Store (open problem)

Example
® Design: employees stored in emppages/1/0 and emprecords/2/1;
e Update: every employee (making <100k) gets 10% salary increase

Hand-crafted Solution

while —end-of(emppages) do
read emppages to p;
while —end-of(emprecords(p)) do
read emprecords(p) to r;
if r - salary < 100k then
r — salary *=1.1;
write r to emprecords(p);
write p to emppages;
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Updates and 2-level Store (open problem)

Example
® Design: employees stored in emppages/1/0 and emprecords/2/1;
e Update: every employee (making <100k) gets 10% salary increase

Hand-crafted Solution

while —end-of(emppages) do
read emppages to p;
while —end-of(emprecords(p)) do
read emprecords(p) to r;
if r - salary < 100k then
r — salary *=1.1;
write r to emprecords(p);
write p to emppages; // only if p is "dirty"?
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Updates and 2-level Store (open problem)

Example
® Design: employees stored in emppages/1/0 and emprecords/2/1;
e Update: every employee (making <100k) gets 10% salary increase

Current Situation
e Qur (current) solution—behaves as if pages were just pointers:

= emprecords” becomes “all old records”
emprecords™ becomes “all changed records”
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e Update: every employee (making <100k) gets 10% salary increase

Current Situation
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= emprecords” becomes “all old records”
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Updates and 2-level Store (open problem)

Example

® Design: employees stored in emppages/1/0 and emprecords/2/1;
e Update: every employee (making <100k) gets 10% salary increase

Current Situation
e Qur (current) solution—behaves as if pages were just pointers:

= emprecords~ becomes “all old records”
emprecords™ becomes “all changed records”

= we completely miss the need to write emppages...

Project Idea
How do we deal with temporarily replicated data and intermediate results?
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Updates and 2-level Store (open problem)

Example
® Design: employees stored in emppages/1/0 and emprecords/2/1;
e Update: every employee (making <100k) gets 10% salary increase

Ideas for Solution(s)
e extensions with updates-in-place

* modified operators (NLJ) so that it writes data back
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Updates and 2-level Store (open problem)

Example
® Design: employees stored in emppages/1/0 and emprecords/2/1;
e Update: every employee (making <100k) gets 10% salary increase

Ideas for Solution(s)
e extensions with updates-in-place

* modified operators (NLJ) so that it writes data back
= NLJ(emppages(p), NLI(emprecords(p, r), modify r))
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Updates and 2-level Store (open problem)

Example
® Design: employees stored in emppages/1/0 and emprecords/2/1;
e Update: every employee (making <100k) gets 10% salary increase

Ideas for Solution(s)
e extensions with updates-in-place
* modified operators (NLJ) so that it writes data back
= NLJ(emppages(p), NLI(emprecords(p, r), modify r))

® or more schema design??

= separate “access paths” for reading/writing
= sequencing, e.g., via union, etc.
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The Halloween Problem (open problem)

Example
® Design: employees stored in a list emplist/2/0 ordered by salary
e Update: every employee (making <100k) gets 10k salary increase
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The Halloween Problem (open problem)

Example
® Design: employees stored in a list emplist/2/0 ordered by salary
e Update: every employee (making <100k) gets 10k salary increase

(Naive) Hand-crafted Solution

while —end-of(emplist) do
read emplist tor;
if r - salary < 100k then
r — salary + = 10k;
write r to emprecords(p);
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The Halloween Problem (open problem)

Example

® Design: employees stored in a list emplist/2/0 ordered by salary
e Update: every employee (making <100k) gets 10k salary increase

(Naive) Hand-crafted Solution

while —end-of(emplist) do
read emplist tor;
if r - salary < 100k then
r — salary + = 10k;
write r to emprecords(p);

Does this work??
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The Halloween Problem (open problem)

Example

® Design: employees stored in a list emplist/2/0 ordered by salary
e Update: every employee (making <100k) gets 10k salary increase

(Naive) Hand-crafted Solution

while —end-of(emplist) do
read emplist tor;
if r - salary < 100k then
r — salary + = 10k;
write r to emprecords(p); // insert into ordered list

Does this work?? NO!!!
= consider emplist = [(Fred, 10k), (Wilma, 15k)] to start with;
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The Halloween Problem (open problem)

Example

® Design: employees stored in a list emplist/2/0 ordered by salary
e Update: every employee (making <100k) gets 10k salary increase

(Naive) Hand-crafted Solution

while —end-of(emplist) do
read emplist tor;
if r - salary < 100k then
r — salary + = 10k;
write r to emprecords(p); // insert into ordered list

Does this work?? NO!!!

= consider emplist = [(Fred, 10k), (Wilma, 15k)] to start with;
= result emplist = [(Fred, 100k), (Wilma, 105k)] at the end...
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The Halloween Problem (open problem)

Example

® Design: employees stored in a list emplist/2/0 ordered by salary
e Update: every employee (making <100k) gets 10k salary increase

(Naive) Hand-crafted Solution

while —end-of(emplist) do
read emplist tor;
if r - salary < 100k then
r — salary + = 10k;
write r to emprecords(p); // insert into ordered list

Project Idea
Detecting and rectifying the Halloween problem
= what is the correct semantics anyway? (this alone is a project topic)
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Concurrency and Durability (open problem)

Isolation: what if others access the data too??

= schematic description of CC rather that lock manager et al.
e.g., the RCU style approach (used by the Linux kernel)

= deadlock-free solutions (why?)

= compile-time (just what one really needs)

David Toman (University of Waterloo) Advanced Updates 17/18



Concurrency and Durability (open problem)

Isolation: what if others access the data too??

= schematic description of CC rather that lock manager et al.
e.g., the RCU style approach (used by the Linux kernel)

= deadlock-free solutions (why?)

= compile-time (just what one really needs)

Durability: what if a permanent record is needed??

= additional physical design for LOGs (or for COW?)
= how to deal with (lazy) replication? (see 2-level store)
= transactions, rollbacks, and recovery?
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Concurrency and Durability (open problem)

Isolation: what if others access the data too??

= schematic description of CC rather that lock manager et al.
e.g., the RCU style approach (used by the Linux kernel)

= deadlock-free solutions (why?)

= compile-time (just what one really needs)

Durability: what if a permanent record is needed??

= additional physical design for LOGs (or for COW?)
= how to deal with (lazy) replication? (see 2-level store)
= transactions, rollbacks, and recovery?

Project Ideas
Each of the above (alone) can be a project
= even just analyzing the problems without a clear/favourite solution!

David Toman (University of Waterloo) Advanced Updates
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More Issues

* How do we know what APs to update? (so we don’t miss emppages!)

=] F = = DA
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More Issues

* How do we know what APs to update? (so we don’t miss emppages!)

How to know when an constant complement is needed?

How to determine the ordering of the individual AP updates?
= what about interleaving??

How to identify cycles and when reification is needed?
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More Issues

* How do we know what APs to update? (so we don’t miss emppages!)
* How to know when an constant complement is needed?

e How to determine the ordering of the individual AP updates?
= what about interleaving??

* How to identify cycles and when reification is needed?

* How to determine if the user update preserves consistency?

= guaranteed by the user (e.g., extra user queries to make sure)
= system-generated checks—HARD!
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