Taxonomy Of Online Update Techniques For Column Store Database

Presented by: Udit Panchal & Dhruv Patel

CS848 : Main/In-Memory Database Systems | Spring 2016
University of Waterloo
Overview

- Columnar Database and Challenges
- Motivation
- Overheads
- Contribution: Taxonomy of Online Updates
- Data Structures
- Examples
Columnar Database and Challenges

- Why we need Columnar Database System?
 - Analytical query sessions inspect large amount of queries, but on small subset of columns.
 - Thus, OLAP are not suitable for row-store architecture.
 - Columnar storage avoids data access for unused columns, improving cost of the query.

- Following approaches further increase performance:
 - Various projection of same data, in various orders
 - Data Compression, reducing data access cost
Columnar Database and Challenges

- But read-optimized databases are not write friendly
- Many disk I/O required for a single write query.
Columnar Database and Challenges

- But read-optimized databases are not write friendly
 - Many disk I/O required for a single write query.
 - Compression makes it more computationally expensive & complex
 - Data needs to be de-compressed, updated and recompressed
 - Extra complication occurs if the updated data no longer fits its original location
 - Maintain reasonable physical interference between concurrent queries and updates.
Motivation

- **Scenario 1: Location based Mobile Advertising**
 - $18 billion annually
 - Location, shopping pattern, past purchase, browsing history
 - Aim: Improve effectiveness of future advertisements
 - Recent purchase must be available immediately to subsequent analytics

- **Scenario 2: Credit Card Fraud Detection**
 - $400 billion annually
 - Approve transaction in short span
 - Detect if transaction is fraudulent or not
 - Run complex analytics in real time
 - Match application with appropriate database management system
 - Difficult with increasing complex business
 - Up to date transactional data
Overheads

- Function of Latency, Throughput and Data Freshness.
 - Maintaining the indices for the delta, stored in the RAM
 - Merging of Delta to Main
 - Decompress and recompress the data in disk to merge update
 - Space consumption of the RAM to store delta

- When is the optimal time to merge data?
 - Size of the memory.
 - Size of the delta stored.
 - Physical interference between Delta and Main
 - Approach used i.e. with merge is blocking or not blocking the analytical queries.
Contribution: Taxonomy of Online Updates

- Architectural
 - In-Place
 - Differential

- Data Structure
 - SSD
 - HDD
 - RAM
 - Cache
 - Delta Layout
 - Row Based
 - Column Based

- Storage Place
 - SSD
 - HDD
 - RAM
 - Cache

- Merge Approach
 - Explicit Merge
 - Implicit Merge
 - Merge during scan

- Merge during scan

- Merge Approach

- Architectural
 - In-Place
 - Differential

- Data Structure
 - SSD
 - HDD
 - RAM
 - Cache
 - Delta Layout
 - Row Based
 - Column Based

- Storage Place
 - SSD
 - HDD
 - RAM
 - Cache
Data Structures

- Positional Delta Tree
- Value based Delta Tree
- Count Index
- Log Structured Merge Tree
- Differential Files
- and more data structures covered in report
Differential Files

- File consists two parts
 - Main File: unchanged
 - Differential File (DF): records all alterations requested for the main file
 - PID, time-stamp, other identification information
- Retrieve: DF always searched first
 - May not be present in DF
 - BitMap accessed by hashing scheme: reduce probability of making unnecessary search
 - If bits are set to 1: may be record in DF otherwise skip and go to Main File
 - If bits are set to 1 coincidentally by mapping from other updated records, search will be fruitless
- DF must be merged with main file
 - Based on threshold
 - DF will be empty again
Example: Differential Files

VADIS System
- Architecture: Differential
- Data Structure: Differential Files
- Storage Place: RAM & HDD
- Merge Approach: Explicit - Bulk merge when reached to threshold (I/O intensive)
- Delta Layout: Row based
Log Structured Merge Tree

- Disk based data structure
 - Provides low cost indexing for files experiencing high rate of record insert
 - Reduce disk arm movement
 - Sequentially organized logical data
 - Memory resident C0, Disk resident C1
- Delete:
 - If key-value entry is not found in C0
 - Place *delete node entry*, indexed by key value
 - Delete will be performed at rolling merge process
 - What if find request comes in meantime?
 - Delete filter
 - Delete node entry will be located in the appropriate key-value position than the entry itself
Log Structured Merge Tree

- **Update:**
 - Updates are considered as delete followed by insert
 - Change the index value - mostly unusual in other applications
- **Predicate Deletion:**
 - Perform batch delete
 - Assert a predicate
 - Performed during rolling merge
- **Long latency Find:**
 - *find note entry* inserted into C0
 - Find is performed at later time during merge process
- **Insert:**
 - Inserting an index entry has no I/O cost
- **Merge process happens on threshold value:** series of merge steps
Example: LSM Tree

Jin et. al. developed plug-in system PuntStore with pLSM
- Variant of LSM: pLSM
- Uses COLA (Cache Oblivious Lookahead Array)
- Architecture: Differential
- Data Structure: LSM
- Storage Place: RAM & HDD
- Merge Approach: Merge with scan
- Delta Layout: Row based
Value-based Delta Tree (VDT)

- VDT: B+-Tree sorted on the key values.
- In MonetDB, we have insert table & delete table which stores all the relevant records, in append-only fashion.
- Example: When we apply filter on X Column, there will be one select operator applied directly on column X and another select operator applied on the pending updates columns of X, while subsequently qualifying pending inserts are merged or pending deletes are removed from the corresponding intermediate result.

<table>
<thead>
<tr>
<th>store</th>
<th>prod</th>
<th>new</th>
<th>qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berlin</td>
<td>chair</td>
<td>Y</td>
<td>20</td>
</tr>
<tr>
<td>Berlin</td>
<td>cloth</td>
<td>Y</td>
<td>1</td>
</tr>
<tr>
<td>Berlin</td>
<td>rack</td>
<td>Y</td>
<td>4</td>
</tr>
<tr>
<td>London</td>
<td>rack</td>
<td>Y</td>
<td>4</td>
</tr>
<tr>
<td>London</td>
<td>stool</td>
<td>N</td>
<td>9</td>
</tr>
<tr>
<td>Paris</td>
<td>rug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>London</td>
<td>stool</td>
<td>Y</td>
<td>4</td>
</tr>
</tbody>
</table>

(a) Insertion table

<table>
<thead>
<tr>
<th>store</th>
<th>prod</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paris</td>
<td>rug</td>
</tr>
<tr>
<td>London</td>
<td>stool</td>
</tr>
</tbody>
</table>

(b) Deletion table
Value-based Delta Tree (VDT)

- But,
 - When the read queries are executed, they need to merge the differences by looking at the sort key values.
 - That is, first they have to look for the sort key values, which can be time consuming and requires more I/O.
 - Thus, affects throughput and performance of the DBMS
Positional Delta Tree (PDT)

- PDT: PDTs are similar to counted B-Trees,
 - Provides fast merging of the updates, by providing tuple positions, where differences have to be applied at update time.
 - The leaf node of the PDT stores the SID where the updates applies, type of update and reference to the new tuple values.
 - Since the values of each update type is different, each of those are stored in separate “value tables”
Positional Delta Tree (PDT)

Figure 1: TABLE_0

Figure 2: BATCH_1

Figure 3: PDT_1

Figure 4: VALS_1
Positional Delta Tree (PDT)

Figure 5: TABLE

Figure 6: BATCH

Figure 7: PDT

Figure 8: VALS
Positional Delta Tree (PDT)

- Advantages of PDT over VDT
 - No need to read sort keys during merging, thus reducing I/O operations
 - Positional merging is less CPU intensive, than VDT based merging.
Count Index

- Use of PDT and VDT makes a database two-pronged store: a read-optimized (rs) and a write-optimized (ws) store.
 - Buffers update in the differential store and later merges the updates with rs
 - Bulk update amortizes the time to apply, but cannot avoid the linear cost of table scan
 - While merging, we have to decompress and subsequently re-compressed the data which requires additional time
- Can’t we avoid buffering of the updates and directly update the data in-place?
 - Count Index does so, in sub-linear time complexity of total number of tuples.
Count Index

- So in nutshell
 - Count Index are in-memory index for run-length encoded in-memory/disk database system.
 - Count index is a binary tree on a sequence of integers, where integer is the sum of the values of its children.

![Count Index on the sequence a, a, b, b, a, a, b, b](image)

Figure 1: Count index on the sequence a, a, b, b, a, a, b, b
Count Index

- So in nutshell
 - Count Index are in-memory index for run-length encoded in-memory/disk database system.
 - Count index is a binary tree on a sequence of integers, where integer is the sum of the values of its children.
 - Any index, should be efficiently updatable, when values are updated, or deleted or new values inserted
 - Deleting or inserting a leaf from a count index takes time that is linear in the height of the count index
Advantages of Count Index over PDT

- **Space complexity**
 - If n is total number of tuples in relation and we add k tuples, after which we delete those k tuples, then the space required to store the corresponding PDT would be $O(n + k)$, whereas for Count Index would be $O(n)$.

- **Merge time complexity**
 - PDT requires a merge scan to bulk insert values and thus time complexity of updating a relation is $O(n)$.
 - Whereas count index requires $O(k \times \log n)$.

- Using PDT we need to de-compress and later re-compress the column data, while in count index, we can operate directly on the compressed sequences of values.

- **Maintaining the PDT is computationally expensive, as**
 - PDT stores number of position-based meta-data which needs to be changed, during various update types.
Examples

Analytics in Motion

- Architecture: Differential
- Data Structure: Delta in Google’s Dense Hash Map & Main in ColumnMap (Key Store)
- Storage Place: RAM
- Merge Approach: Explicitly triggered too often to avoid blocking of RTA
- Delta Layout: Hash Map
Examples

Hyper

- Architecture: In-Place Updates
- Data Structure: Snapshot of virtual memory
- Storage Place: RAM
- Merge Approach: Copy on demand
- Delta Layout: Row-based
Examples

Hyper [RAM conservative]

- **Architecture**: In-Place Updates
- **Data Structure**: Snapshot of virtual memory
- **Storage Place**: RAM
- **Merge Approach**: Copy on demand
- **Delta Layout**: Compressed and Column-based
Examples

SQL Server - 2016

- Architecture: Differential Update
- Data Structure: VDT for update and insert & bitmap for delete
- Storage Place: RAM
- Merge Approach: Explicitly triggered because compressed data has efficient space usage and query execution
- Delta Layout: Row Store.
Conclusion

- Searched and categorized existing work on online updates
- Ongoing: compare and contrast approaches and data structures