Column-Stores vs. Row-Stores
How Different Are They Really?

Daniel J. Abadi (Yale)
Samuel R. Madden (MIT)
Nabil Hachem (AvantGarde)

Presented By: Kanika Nagpal
OUTLINE

• Introduction
• Motivation
• Background
• SSBM
• Row Oriented Execution
• Column Oriented Execution
• Experiments
• Conclusion
Introduction

• Significant amount of excitement and recent work on column oriented database systems – “column-stores”

• On analytical workloads, these are found to perform an order of magnitude better than traditional row-oriented database systems – “row stores”

• Elevator pitch: “column-stores are more I/O efficient for read-only queries since they only have to read from disk (or from memory) those attributes accessed by a query”
Motivation

• Common assumption:

One can obtain the performance benefits of a column-store using a row-store; either by vertically partitioning the schema, or by indexing every column so that the columns can be accessed independently.

Is this assumption valid?
In row store, data is stored in the disk tuple by tuple.

Where as in column store, data is stored in the disk column by column.
• Most of the queries does not process all the attributes of a particular relation.

• For example the query
 Select c.name and c.address
 From CUSTOMERS as c
 Where c.region=Waterloo;

• Only process three attributes of the relation CUSTOMER. But the customer relation can have more than three attributes.

• Column-stores are more I/O efficient for read-only queries as they read, only those attributes which are accessed by a query.
<table>
<thead>
<tr>
<th>Row Store</th>
<th>Column Store</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+) Easy to add/modify a record</td>
<td>(+) Only need to read in relevant data</td>
</tr>
<tr>
<td>(-) Might read in unnecessary data</td>
<td>(-) Tuple writes require multiple accesses</td>
</tr>
</tbody>
</table>

- So, column stores are suitable for read-mostly, read-intensive, large data repositories.
WHY COLUMN-STORES?

• Can be significantly faster than row stores for some applications
 – Fetch only required columns for a query
 – Better cache effects
 – Better compression (similar attribute values within a column)

• But can be slower for other applications
 – OLTP with many row inserts, ..

• Long war between the column store and row store
 – This paper tries to give a balanced picture of advantages and disadvantages, after adding/ subtracting a number of optimizations for each approach
Star Schema Benchmark (SSBM)

- SSBM is a data warehousing benchmark derived from TPC-H
- It consists of a single fact table LINE-ORDER
- There are four dimension table.
 - CUSTOMER
 - PART
 - SUPPLIER
 - DATE
- LINEORDER table consists of 60,000,000 tuples
- SSBM consists of thirteen queries divided into four categories (or flights).
Figure 1: Schema of the SSBM Benchmark
Row Oriented Execution

• Now the simplistic view about the difference in storage layout leads to the assumption that one can obtain the performance benefits of a column-store using a row-store by making some changes to the physical structure of the row store.

• These changes can be
 – Vertically partitioning
 – Using index-only plans
 – Using materialized views
1. Vertical Partitioning

• Process:
 – Full Vertical partitioning of each relation
 - Each column = 1 Physical table
 - This can be achieved by adding integer position column to every table
 - Adding integer position is better than adding primary key
 – Join on Position for multi column fetch

• Problems:
 – “Position” - Space and disk bandwidth
 – Header for every tuple
 – further space wastage
 • e.g. 24 byte overhead in PostgreSQL
Each attribute is a two-column table: (values, position).
2. Index Only Plans

- **Process:**
 - Add B+Tree index for every Table.column
 - Plans never access the actual tuples on disk
 - Headers are not stored, so per tuple overhead is less

- **Problems:**
 - Separate indices may require full index scan, which is slower.
 - An optimization of Index only approach is to create indices with composite keys, where the secondary keys are from predicate-less columns

 Eg: SELECT AVG(salary) FROM emp WHERE age > 40 – Composite index with an (age, salary) key helps.
 - Slow Tuple Construction
• Unclustered B+Tree index for every column of every table
3. Materialized Views

• Process:
 – Create ‘optimal’ set of MVs for given query workload
 – Objective:
 • Provide just the required data
 • Avoid overheads
 • Perform better
 • Expected to perform better than other two approaches

• Problems:
 – Practical only in limited situations
 – Requires knowledge of query workloads in advance
• Select F.custID from Facts as F where F.price>20
Column Oriented Execution

- Different optimizations for improving performance of column oriented databases:
 - Compression
 - Late Materialization
 - Block Iteration
 - Invisible Joins
1. Compression

• Low information entropy (high data value locality) leads to high compression ratio

• **Advantages:**
 – Disk Space is saved
 – Less I/O
 – CPU cost decreases if we can perform operation without decompressing

• Light weight compression schemes do better
• If data is sorted on one column that column will be super compressible in row store

• eg. Run-length encoding
2. Late Materialization

• Most query results entity-at-a-time not column-at-a-time

• So at some point of time, multiple column must be combined

• One simple approach is to join the columns relevant for a particular query

• But further performance can be improve using late-materialization
• Delay Tuple Construction
• Might avoid constructing it altogether
• Intermediate position lists might need to be constructed
• Eg: SELECT R.a FROM R WHERE R.c = 5 AND R.b = 10
 – Output of each predicate is a bit string
 – Perform Bitwise AND
 – Use final position list to extract R.a
• Advantages:
 – Unnecessary construction of tuple is avoided
 – Direct operation on compressed data
 – Cache performance is improved (PAX)
3. Block Iteration

- Operators operate on blocks of values at once
- Iterate over blocks of values from same column
- Like batch processing
- If column is fixed width, it can be operated as an array

- Advantages:
 - Minimizes per-tuple overhead
 - Exploits potential for parallelism

- Can be applied even in Row stores – IBM DB2 implements it
4. Invisible Joins

• Queries over data warehouses (particularly those modelled with star schema) often have following structure:
 – Restrict the set of tuple in the fact table using selection predicates on dimension table
 – Perform some aggregation on the restricted fact table
 – Often grouping by other dimension table attribute

• For each selection predicate and for each aggregate grouping, a join between fact table and dimension table is required
SELECT c.nation, s.nation, d.year,
sum(lo.revenue) as revenue
FROM customer AS c, lineorder AS lo,
supplier AS s, dwddate AS d
WHERE lo.custkey = c.custkey
AND lo.suppkey = s.suppkey
AND lo.orderdate = d.datekey
AND c.region = ASIA
AND s.region = ASIA
AND d.year >= 1992 and d.year <= 1997
GROUP BY c.nation, s.nation, d.year
ORDER BY d.year asc, revenue desc;

• Find Total revenue from Asian customers who purchase a product supplied by an Asian supplier between 1992 and 1997 grouped by nation of the customer, supplier and year of transaction.
• Traditional plan for this type of query is to pipeline join in order of predicate selectivity

• Alternate plan is late materialized join technique

• But both have disadvantages:
 – Traditional plan lacks all the advantages described previously of late materialization
 – In the late materialized join technique group by columns need to be extracted in out-of-position order
• Invisible join is a late materialized join but minimizes the values that need to be extracted out of order

• Invisible join

 – Rewrites joins into predicates on the foreign key columns in the fact table
 – These predicates are evaluated either by hash-lookup
 – Or by between-predicate rewriting
PHASE 1
Each predicate is applied to the appropriate dimension table to extract a list of dimension table keys that satisfy the predicate.

Customer Table
- **Apply region = 'Asia' on Customer table**
 - **custkey**: 1, 2, 3
 - **region**: Asia, Europe, Asia
 - **nation**: China, France, India

Supplier Table
- **Apply region = 'Asia' on Supplier table**
 - **suppkey**: 1, 2
 - **region**: Asia, Europe
 - **nation**: Russia, Spain

Date Table
- **Apply year in [1992, 1997] on Date table**
 - **dateid**: 01011997, 01021997, 01031997
 - **year**: 1997

Hash Tables
- **Hash table with keys 1 and 3**
- **Hash table with key 1**
- **Hash table with keys 01011997, 01021997, and 01031997**
PHASE 2

Each hash table is used to extract the positions of records in the fact table that satisfy the corresponding predicate.
PHASE 3

The third phase uses the list of satisfying positions P in the fact table to get foreign key values and hence needed data values from the corresponding dimension table.
• Between-Predicate rewriting

 – Use of range predicates instead of hash lookup in phase 1
 – Useful if contiguous set of keys are valid after applying a predicate
 – Dictionary encoding for key reassignment if not contiguous
 – Query optimizer is not altered. Predicate is rewritten at runtime
Apply "region = 'Asia'" On Customer Table

<table>
<thead>
<tr>
<th>custkey</th>
<th>region</th>
<th>nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ASIA</td>
<td>CHINA</td>
</tr>
<tr>
<td>2</td>
<td>ASIA</td>
<td>INDIA</td>
</tr>
<tr>
<td>3</td>
<td>ASIA</td>
<td>INDIA</td>
</tr>
<tr>
<td>4</td>
<td>EUROPE</td>
<td>FRANCE</td>
</tr>
</tbody>
</table>

Hash Table (or bit-map) Containing Keys 1, 2 and 3

Apply "region = 'Asia'" On Supplier Table

<table>
<thead>
<tr>
<th>suppkey</th>
<th>region</th>
<th>nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ASIA</td>
<td>RUSSIA</td>
</tr>
<tr>
<td>2</td>
<td>EUROPE</td>
<td>SPAIN</td>
</tr>
<tr>
<td>3</td>
<td>ASIA</td>
<td>JAPAN</td>
</tr>
</tbody>
</table>

Hash Table (or bit-map) Containing Keys 1, 3

Apply "year in [1992, 1997]" On Date Table

<table>
<thead>
<tr>
<th>dateid</th>
<th>year</th>
</tr>
</thead>
<tbody>
<tr>
<td>01011997</td>
<td>1997</td>
</tr>
<tr>
<td>01021997</td>
<td>1997</td>
</tr>
<tr>
<td>01031997</td>
<td>1997</td>
</tr>
</tbody>
</table>

Hash Table Containing Keys 01011997, 01021997, and 01031997
Experiments

• Goal:

– Comparison of attempts to emulate a column store in a row-store with baseline performance of C-Store

– Is it possible for an unmodified row-store to obtain the benefits of column oriented design?

– Effect of different optimization techniques in column-store
Experimental Setup

- Environment:
 - 2.8GHz Dual Core Pentium(R) workstation
 - 3 GB RAM
 - RHEL 5
 - 4 disk array mapped as a single logical volume
 - Reported numbers are average of several runs
 - Warm buffer pool (30% improvement for both systems)
 - Data read exceeds the size of buffer pool
C-store vs. Commercial Row Oriented DB

Baseline performance of C-Store “CS” and System X “RS”, compared with materialized view cases on the same systems.

RS: Base System X
RS (MV): System X with optimal collection of MVs
CS: Base C-Store case
CS (Row–MV): Column store constructed from RS(MV)
System X: Commercial row-oriented database
Results and Analysis

• From the graph we can see
 – C-Store outperforms System X by a
 --Factor of six in the base case
 --Factor of three when System X uses materialized view

• However CS (Row-MV) perform worse than RS (MV)
 – System X provides advance performance feature
 – C-Store has multiple known performance bottleneck
 --C-Store doesn't support partitioning, multithreading
Column store simulation in row store

- Partitioning improves the performance of row store if done on a predicate of the query
- Authors found that it improves the speed by a factor of two
- System X implements star join
- Optimizer will use bloom filters if it feels necessary
- Other configuration parameters
 - 32 KB disk pages
 - 1.5 GB maximum memory for sort joins, intermediate result
 - 500 MB buffer pool
Different configurations of System X

Experimented with five different configurations:
1. Traditional row oriented representation with bitmap and bloom filter
2. Traditional (bitmap): Biased to use bitmaps; might be inferior sometimes
3. Vertical Partitioning: Each column is a relation
4. Index-Only: B+Tree on each column
5. Materialized Views: Optimal set of views for every query
T – Traditional, T(B) – Traditional (bitmap), MV – materialized views, VP – vertical partitioning, AI – All indexes
• Better performance of traditional system is because of partitioning.
• Partitioning on orderdate

T – Traditional,
T(B) – Traditional(bitmap),
MV – materialized views,
VP – vertical partitioning,
AI – All indexes
• Materialized view performs best

• Index only plans are the worst

• Expensive column joins on fact table
 – System X use hash join by default
 – Nested loop join, merge join also does not help
Column Store Performance

• Column Store perform better than the best case of row store (4.0sec Vs 10.2sec)

• Because column stores do not suffer from tuple overhead and high column join costs.
Tuple Overheads and Joins

<table>
<thead>
<tr>
<th>Row Store</th>
<th>Column Store</th>
</tr>
</thead>
<tbody>
<tr>
<td>Store the record-id explicitly</td>
<td>Don’t explicitly store the record-id</td>
</tr>
<tr>
<td>Headers are stored with each column</td>
<td>Headers are stored in separate columns</td>
</tr>
<tr>
<td>Use index-based merge join</td>
<td>Use merge join</td>
</tr>
</tbody>
</table>
Column-Store Advantages

• Block processing improves the performance by a factor of 5% to 50%

• Compression improves the performance by almost a factor of two on average

• Late materialization improves performance by almost a factor of three

• Invisible join improves the performance by 50-75%
Conclusion

• Common Assumption:

“One can obtain the performance benefits of a column-store using a row-store; either by vertically partitioning the schema, or by indexing every column so that the columns can be accessed independently”

False!!

• Column-store simulation performs poorly on today’s row store systems.
• To simulate column store in row store, techniques like
 – Vertical partitioning
 – Index only plan
 do not yield good performance

• High per-tuple overheads, high tuple reconstruction costs are the reason

• Where as in column store
 – Late materialization
 – Compression
 – Block iteration
 – Invisible join are the reasons for good performance
Discussion

• In the future, where do you see this going? Column store simulation in row store or row store simulation in column store? Which will be more widely used?

• How do you think read/write locks for column store work?

• When do you use row, and when column?