
DISTRIBUTED DB: MERGING STRATEGY

CS 848 Presentation

Senyu Fu

6/28/2022

Outline

▪ Background

▪ Our System Design

▪ Challenges

▪ Merging Strategy

▪ Future Work

Distributed DB: Merging Strategy PAGE 2

Motivation for Distributed DB

BACKGROUND

Distributed DB: Merging Strategy PAGE 3

Background: Serverless Computing

▪ Serverless computing is becoming more and more popular

▪ Function as a Service (FaaS)

▪ Advantages:

▪ No explicit resource management

▪ Scalability

▪ Challenges:

▪ Functions are stateless

▪ No direct communication between functions

Distributed DB: Merging Strategy PAGE 4

Challenges

▪ Most applications are usually stateful

▪ Store data in external storage system (S3, DynamoDB, and etc.)

▪ Application is divided into multiple functions

▪ Share intermediate states through external storage system

▪ Problem: few fast databases for serverless computing

Distributed DB: Merging Strategy PAGE 5

Database Requirements for Serverless Computing

▪ Scalable: serverless computing itself is scalable

▪ High concurrency: a lot of concurrent functions

▪ Low latency: share intermediate states

Distributed DB: Merging Strategy PAGE 6

OUR SYSTEM DESIGN

Distributed DB: Merging Strategy PAGE 7

System Model

▪ Key-value store

▪ Updates stored in the form of dependency graph

▪ Asynchronous write (low write latency)

▪ Flatten: process nodes in batch to form a serializable
order

▪ Non-serializable writes: branch on conflicts

▪ Concurrency control (without locking)

▪ High throughput

▪ At the end of each epoch

▪ Keep the longest branch (prune and abort other branches)

Distributed DB: Merging Strategy PAGE 8

Dependency
Graph

Flattened
Tree

Data Partitioning

▪ Hash-based sharding

▪ Data only stored at designated shard

▪ Clients only send writes to designated
shard

▪ Each shard broadcasts dependency information
in batch

▪ Each shard combines the dependencies to
construct the same dep graph

Distributed DB: Merging Strategy PAGE 9

Architecture

▪ Pipeline architecture: process multiple
batches concurrently in different stages

▪ Single-shard transactions are processed
independently at each shard

▪ Broadcast graph metadata: every shard can
agree on the same order

▪ Multi-shard transactions are processed at
every shard after receiving metadata

▪ Dependencies are now available

▪ Replicated work

Distributed DB: Merging Strategy PAGE 10

CHALLENGES

Distributed DB: Merging Strategy PAGE 11

TPC-C Workload

▪ There is a 'Company' with W warehouses (10).

▪ Each warehouse has D (10) associated districts
and 100K items.

▪ Totally, there are 30K customers which are
spread out across the districts.

▪ W and D can be configured.

Distributed DB: Merging Strategy PAGE 12

(From official TPC-C Specification)

TPC-C Workload: New Order Transaction

Distributed DB: Merging Strategy PAGE 13

Customer

D.Next_Order_ID++

District

Add new

Order item

Order item

Order Lines

District

Read

Write

Customer

TPC-C Workload: Payment Transaction

Distributed DB: Merging Strategy PAGE 14

Customer

D.PayAmount++

WarehouseDistrict

District

C.Balance--

Customer

W.PayAmount++

Warehouse

History

Read

Write

TPC-C Workload

▪ Global states on warehouse and district
▪ Next ID (District)

▪ Payment Amount (District, Warehouse)

▪ Only 10 warehouses and 100 districts

▪ Very high contention on counter values

▪ Without locking, a lot of conflicts

▪ Very high abort rate

▪ Low throughput

Distributed DB: Merging Strategy PAGE 15

MERGING STRATEGY

Distributed DB: Merging Strategy PAGE 16

Observation

▪ Observation: contention mainly comes from counters
▪ Next ID (District)

▪ Payment Amount (District, Warehouse)

▪ Counters are easy to merge
▪ Resolve conflicts without aborting them

▪ Greatly reduce abort rate

Distributed DB: Merging Strategy PAGE 17

Merging

▪ To merge two conflicting nodes:

▪ Re-compute this node

▪ Re-compute nodes that depend on this node

▪ This is similar to aborting and re-execution

▪ Less overhead

▪ Avoid starvation (some txns may be aborted every time)

▪ Problem: each node in our graph stores computed value

▪ Server doesn't know how to compute it

Distributed DB: Merging Strategy PAGE 18

Conflicts

Merging: Solution

▪ Each node represents an update instead of
concrete values

▪ To get the current value of a key: replay the
updates
▪ Use cache to accelerate it

▪ Benefit: when merging, the server can
recompute the value.

▪ Fast path

Distributed DB: Merging Strategy PAGE 19

Data Types

▪ Basic mergeable types

▪ Counter: increment and decrement

▪ List: append and remove

▪ …

▪ Complex data types:

▪ Composition: decompose into different keys (O.counter, O.array)

▪ Use transaction to provide atomicity

Distributed DB: Merging Strategy PAGE 20

Counter

▪ Counter

▪ Increment operation

▪ Value is computed on demand

▪ If cache not available, replay operations

▪ Cache the value

▪ Dirty read

▪ Client submits the value when committing

▪ Used as cache for dirty read

▪ Server invalidates cache after flattening

Distributed DB: Merging Strategy PAGE 21

Before After

Merge

Merging: Dependencies

▪ Merge: re-order nodes

▪ Merge into longer branch

▪ Dependencies may change

▪ Fix dependencies

▪ Find nearest ancestor nodes with the same keys

▪ Dependencies of U1

▪ Before: x1, y1

▪ After: x2, y1

Distributed DB: Merging Strategy PAGE 22

Multi-shard Transactions

▪ After merging, recompute values for merged
nodes

▪ To compute values: replay operations

▪ Multi-shard transaction
▪ The value may not be available locally

▪ Solution:
▪ Use RPC to get the value (increased latency)

▪ Batch requests

Distributed DB: Merging Strategy PAGE 23

Merging: Verifier

▪ Merging may not be safe sometimes

▪ e.g. Deduct the balance counter: verify the balance >= 0

▪ Verifier

▪ Each transaction: multiple categories

▪ Each category corresponds to a verifier

▪ When merging a transaction:

▪ Run verifiers corresponded to its categories

▪ If verification fails, abort

PRESENTATION TITLE PAGE 24

FUTURE WORK

Distributed DB: Merging Strategy PAGE 25

Future Work

▪ Improve merging performance

▪ Dependency fixing

▪ Read policy

▪ Currently, read based on commit timestamp

▪ After merging, read the nodes with greatest depth (latest)

▪ Support more mergeable data types
▪ List

▪ Set

▪ ...

Distributed DB: Merging Strategy PAGE 26

THANK YOU

Distributed DB: Merging Strategy PAGE 27

