Column Stores vs. Row-Stores: How Different Are They Really?

Authours: Daniel Abadi, Sammuel Madden, Nabil Hachem

Presented By: Aaron Sarson

Introduction

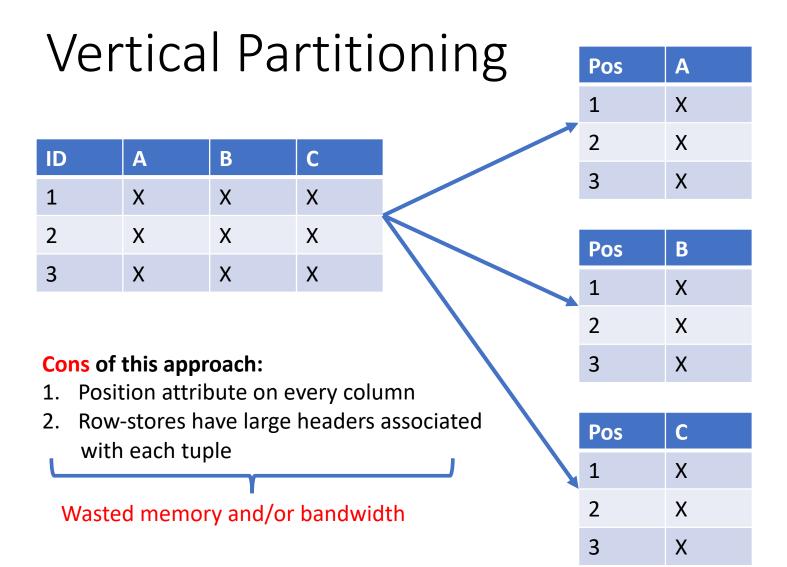
- Column-Store database systems have emerged in recent years
 - MonetDB
 - C-Store
- It is commonly understood that column-stores offer superior performance on I/O intensive tasks
 - However, literature fails to address if these performance gains can be achieved in row-store DBMS
- **RQ1.** This work investigates if row-store DBMS can achieve similar gains if the physical architecture emulates that of column-stores
- **RQ2.** The authours look to discover which features/attributes of column-stores DBMS contributes most to the performance advantage over row-stores

Row-Oriented Execution

Emulating Column-Stores in Row-Oriented DBMS

Authours outline three alternative physical designs:

- Vertical Partitioning
- Index-Only Plans
- Materialized Views



Queries perform joins on the Postion attribute when retrieving multiple attributes of a single entity/row

Index-Only Plans

- Base relations are stored in standard row-store format
 - Addition: Unclustured B+ tree index on every column (ALL tables)
- Through this approach only access to indices is required, and not the actual data
 - Reduce I/O \rightarrow No disk access

• Cons of this approach:

- 1. Predicate-less columns, require index to be scanned to extract values
 - This is slower than scanning a heap file

Materialized Views

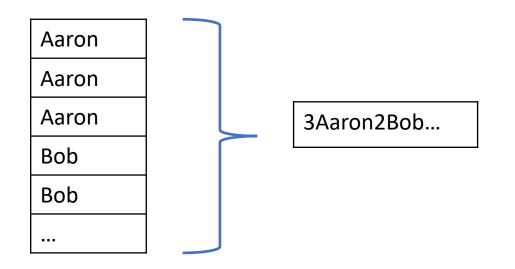
- "Optimal set of materialized views for every query flight"
 - optimal view contains only the required columns
- Pre-computed dataset
 - Allows access to just the data needed to answer a query
- Advantages of this approach:
 - No need to store record-ids (index only) or position (vertical partition)
 - Only stores tuple headers once

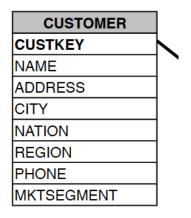
Column-Oriented Execution

Compression

"Intuitively, data stored in columns is more compressible than data stored in rows"

- Column-Oriented Databases → low information entropy
 - Compression algorithms perform better under this condition
- Data sorted on a particular column is super-compressible
 - Can be run-length encoded





Compression

 $Compression Ratio = \frac{Uncompressed}{Compressed}$

- Produces a larger compression ratio
 - Memory Gains
 - Reducing number of disks
 - Power consumption
 - Performance Gains
 - Reduced I/O time \rightarrow Smaller reads
 - If query executor can operator on compressed data performance can be improved further

3Aaron2Bob...

- Compression differences are largest in row vs column-stores when:
 - 1. Column data is sorted
 - 2. Repeating values are present (runs)

Late Materialization

- Column-stores have **entity** information distributed throughout a disk(s)
- Row-stores have entity information group together (single record)

• Problem?

- Most queries access multiple attributes of an entity (i.e., name, address)
- Many database output standards (i.e. JDBC, ODBC) work at an entity-at-a-time

Solution?

- At some point, query plans must combine data from multiple columns into rows representing an entity
 - Depending on when this is done \rightarrow "Early Materialization" or "Late Materialization"

• Early Materialization:

Constructs entity using relevant columns and then applies row-store operators

Aaron	Sam	Jennifer	Lucy	Alex	Luke
0	1	2	3	4	5

Canada	England	Canada	France	Italy	Canada
0	1	2	3	4	5

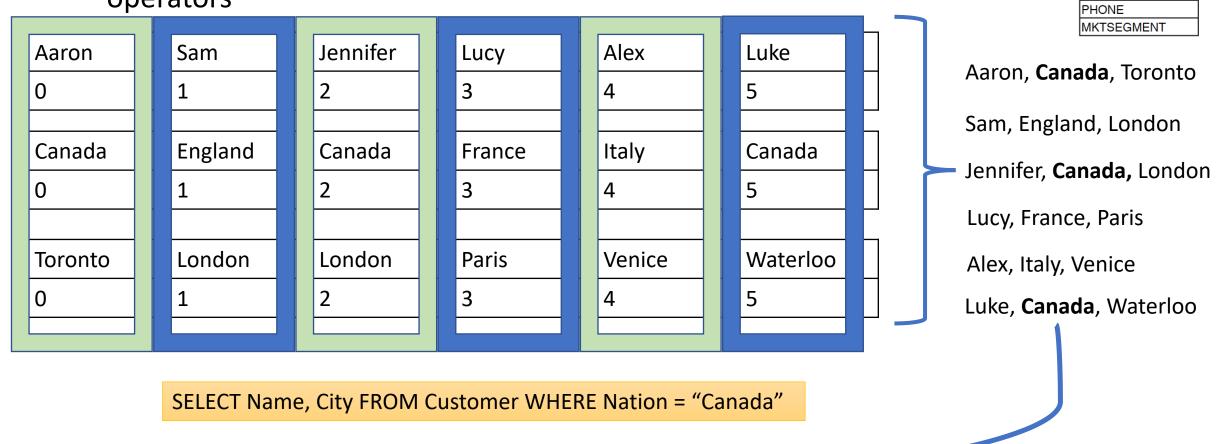
Toronto	London	London	Paris	Venice	Waterloo
0	1	2	3	4	5

SELECT Name, City FROM Customer WHERE Nation = "Canada"

CUSTOMER CUSTKEY NAME ADDRESS CITY NATION REGION PHONE MKTSEGMENT

• Early Materialization:

Constructs entity using relevant columns and then applies row-store operators



Aaron, **Canada**, Toronto Jennifer, **Canada,** London Luke, **Canada**, Waterloo CUSTOMER

CUSTKEY

NAME ADDRESS CITY

NATION REGION

• Late Materialization:

• Operates on columns

Aaron	Sam	Jennifer	Lucy	Alex	Luke
0	1	2	3	4	5

Canada	England	Canada	France	Italy	Canada	
0	1	2	3	4	5	
			0	2	5	

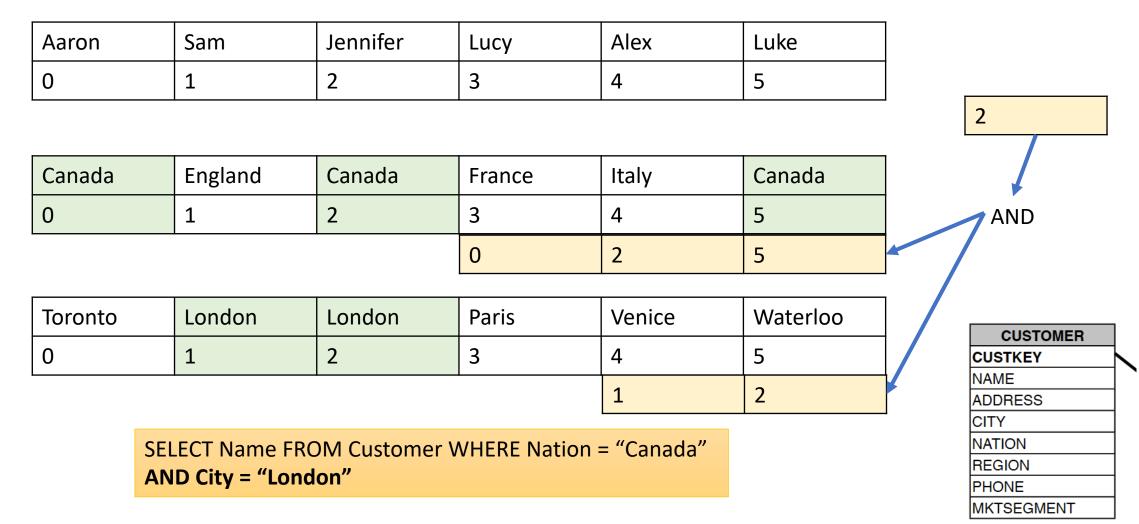
Toronto	London	London	Paris	Venice	Waterloo
0	1	2	3	4	5

SELECT Name, City FROM Customer WHERE Nation = "Canada"

CUSTOMER CUSTKEY NAME ADDRESS CITY NATION REGION PHONE MKTSEGMENT

• Late Materialization:

• Operates on columns



• Late Materialization:

• Operates on columns

Aaron	Sam	Jennifer	Lucy	Alex	Luke
0	1	2	3	4	5

Canada	England	Canada	France	Italy	Canada
0	1	2	3	4	5
			0	2	5

Toronto	London	London	Paris	Venice	Waterloo
0	1	2	3	4	5
	•			1	2

SELECT Name FROM Customer WHERE Nation = "Canada" AND City = "London" CUSTOMER CUSTKEY NAME ADDRESS CITY NATION REGION PHONE MKTSEGMENT

2

AND

Late Materialization - Advantages

- Selection and aggregation operators tend to reduce the number of tuples which need to be constructed
 Think of the number tuples we needed to construct in early materialization
- 2. Data compressed using column-oriented compression methods must be decompressed during the tuple construction process

> Early materialization constructs many tuples at start

> Late materialization constructs few tuples at end

3. Cache performance improved

> Cache line is populated with related data (High data locality of column-stores)

A Typical Query Structure

```
SELECT c.nation, s.nation, d.year,
        sum(lo.revenue) as revenue
FROM customer AS c, lineorder AS lo,
      supplier AS s, dwdate AS d
WHERE lo.custkey = c.custkey
  AND lo.suppkey = s.suppkey
  AND lo.orderdate = d.datekey
                                                Restrict the set of tuples using selection
  AND c.region = ASIA
                                                predicates on 1+ dimension tables
  AND s.region = ASIA
  AND d.year \geq 1992 and d.year \leq 1997
GROUP BY c.nation, s.nation, d.year
                                             Next, perform aggregation often grouping
ORDER BY d.year asc, revenue desc;
                                             on other table attributes
```

Traditional Query Plan:

• Perform joins in order of predicate selectivity

SELECT c.nation, s.nation, d.year, sum(lo.revenue) as revenue FROM customer AS c, lineorder AS lo, supplier AS s, dwdate AS d WHERE lo.custkey = c.custkey AND lo.suppkey = s.suppkey AND lo.orderdate = d.datekey AND c.region = ASIA AND s.region = ASIAAND d.year \geq 1992 and d.year \leq 1997 GROUP BY c.nation, s.nation, d.year ORDER BY d.year asc, revenue desc;

Assuming c.region = ASIA is the most selective

- 1. Join customer and lineorder
- 2. Filter lineorder → customers from ASIA remain
- 3. nation of these customers is added
 to customer-order

Traditional Query Plan:

SELECT c.nation, s.nation, d.year, sum(lo.revenue) as revenue FROM customer AS c, lineorder AS lo, supplier AS s, dwdate AS d WHERE lo.custkey = c.custkey AND lo.suppkey = s.suppkey AND lo.orderdate = d.datekey AND c.region = ASIAAND s.region = ASIA AND d.year >= 1992 and d.year <= 1997 GROUP BY c.nation, s.nation, d.year ORDER BY d.year asc, revenue desc;

- 1. Join supplier and lineorder
- 2. Filter lineorder → suppliers from ASIA remain
- 3. nation of these supliers is added to customer-order

Traditional Query Plan:

SELECT c.nation, s.nation, d.year, sum(lo.revenue) as revenue FROM customer AS c, lineorder AS lo, supplier AS s, dwdate AS d WHERE lo.custkey = c.custkey AND lo.suppkey = s.suppkeyAND lo.orderdate = d.datekey AND c.region = ASIA AND s.region = ASIAAND d.year \geq 1992 and d.year \leq 1997 GROUP BY c.nation, s.nation, d.year ORDER BY d.year asc, revenue desc;

- 1. Join dworder and lineorder
- 2. Filter lineorder → customers who ordered between the years 1992 and 1997 remain
- 3. year of these customers ordered is added to customer-order

Results of joins to are finally GROUPed and aggregated (i.e. sum)

Late Materialized Query Plan:

• Predicate is applied on column-store

- 1. Filter c.region → customers from ASIA remain
- 2. CUSTKEY of these customers is extracted
- 3. These CUSTKEYs are joined with CUSTKEYs from the fact table.
 - Resulting in 2 position lists
 - 1 sorted (fact table) and 1 unsorted (dimension table)
 - Lists indicate which tuples pass the predicate (i.e. c.region = ASIA)
- 4. Extract values from out-of-order positions
- (i.e. c.nation) alongside the values from in-order set

of positions for the fact table (i.e. lo.suppkey,

lo.orderdate, and lo.revenue)

Late Materialized Query Plan:

• Predicate is applied on column-store

SELECT c.nation, s.nation, d.year,
sum lo.revenue) as revenue
FROM customer AS c, lineorder AS lo,
supplier AS s, dwdate AS d
WHERE lo.custkey = c.custkey
AND lo.suppkey = s.suppkey
AND lo.orderdate = d.datekey
AND $c.region = ASIA$
AND s.region = ASIA
AND d.year >= 1992 and d.year <= 1997
GROUP BY c.nation, s.nation, d.year
ORDER BY d.year asc, revenue desc;

- 1. Filter s.region→ customers from ASIA remain
- 2. SUPPKEY of these suppliers is extracted
- 3. These SUPPKEYs are joined with SUPPKEYs from the fact table.
 - Resulting in 2 position lists
 - 1 sorted (fact table) and 1 unsorted (dimension table)
 - Lists indicate which tuples pass the predicate (i.e. s.region = ASIA)

4. Extract values from out-of-order positions

(i.e. s.nation) alongside the values from in-order set

of positions for the fact table (i.e. lo.custkey,

lo.orderdate, and lo.revenue)

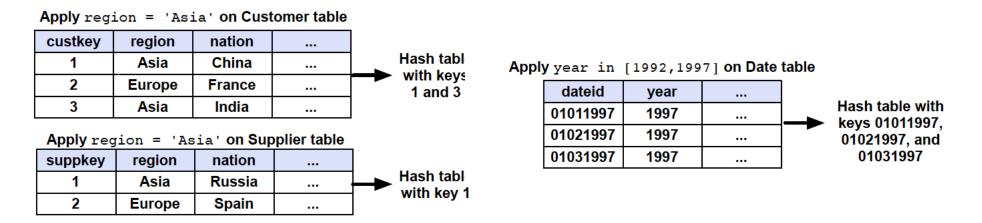
Repeat once more for d.year predicate

An Alternative Plan – Invisible Join

- Late materialized join that minimizes out-of-order value extraction
 - How is this accomplished?
 - Rewriting joins as predicates on foreign key columns in fact table

PHASE 01: Constructing Hash Tables

- Apply each predicate to dimension table \rightarrow list of keys satisfying predicate
- Construct hash table

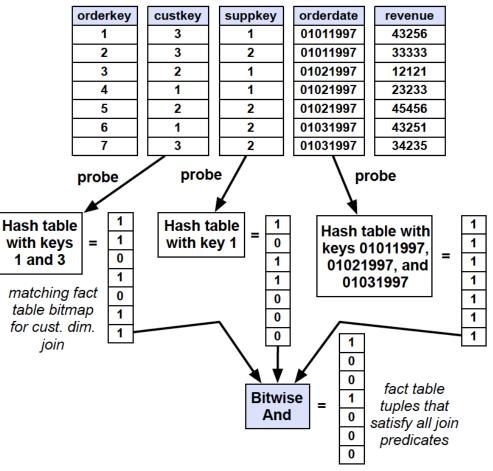


An Alternative Plan – Invisible Join

PHASE 02: Extract Fact Table Records

- Use hash tables to locate records in fact table that satisfy predicate
- Probe hash table with each value in foreign key column
- Intersect positions lists → records which satisfy ALL predicates

Fact Table

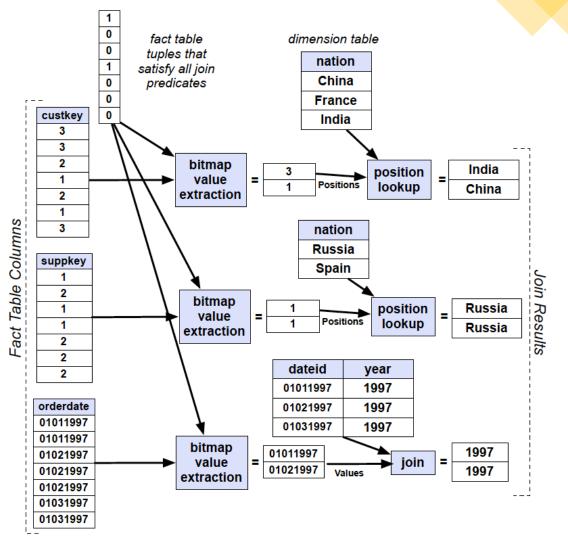


An Alternative Plan – Invisible Join

PHASE 03: Extract Dimension Table Records & Execute Query

- Apply list of satisfying positions to fact tables
 - Identify foreign key references in the appropriate dimension table
 - Extract corresponding values

Note: "If dimension table key is sorted, contiguous list of identifiers starting from 1 [..], then the foreign key actually represents the position of desired tuple in dimension table"



Experiments

Motivation: C-Store vs System X - SSBM

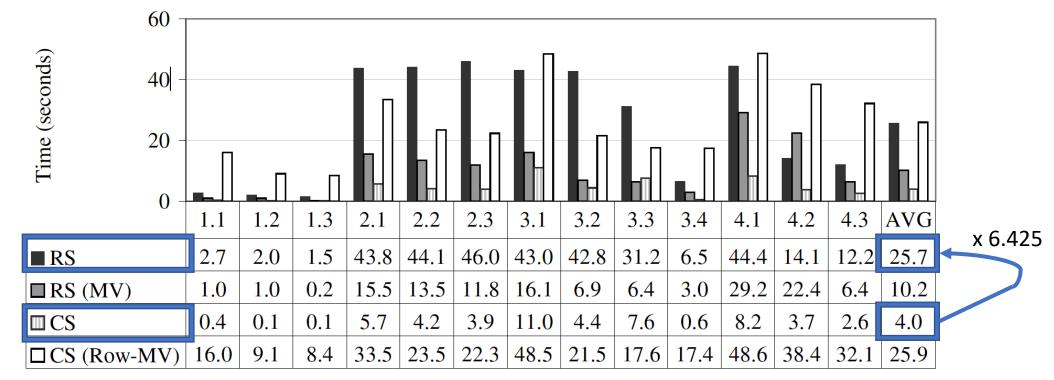


Figure 5: Baseline performance of C-Store "CS" and System X "RS", compared with materialized view cases on the same systems.

Motivation: C-Store vs System X - SSBM

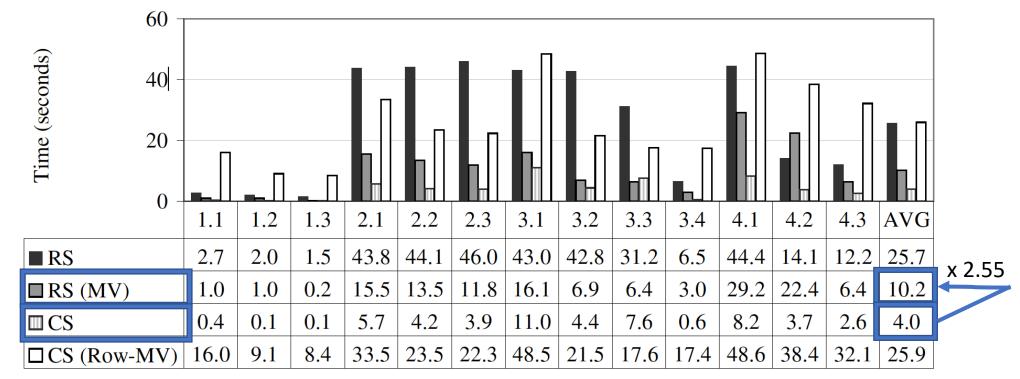


Figure 5: Baseline performance of C-Store "CS" and System X "RS", compared with materialized view cases on the same systems.

Motivation: C-Store vs System X - SSBM

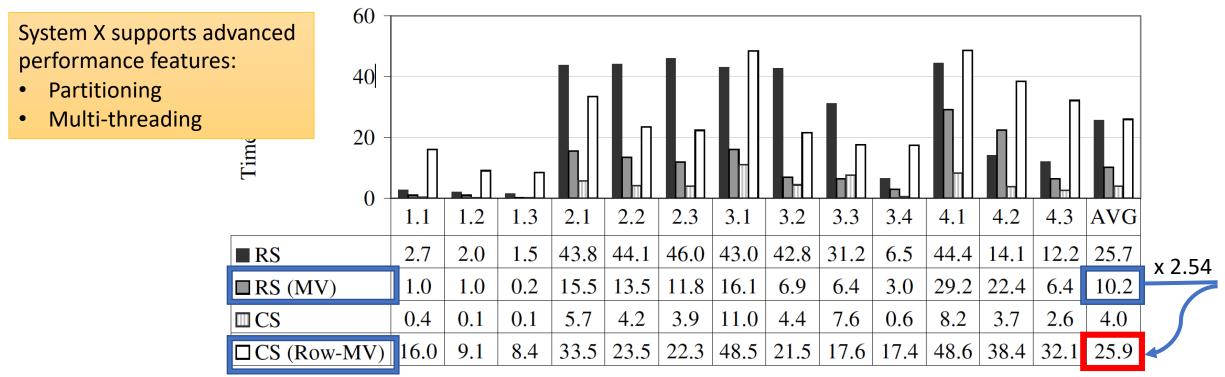


Figure 5: Baseline performance of C-Store "CS" and System X "RS", compared with materialized view cases on the same systems.

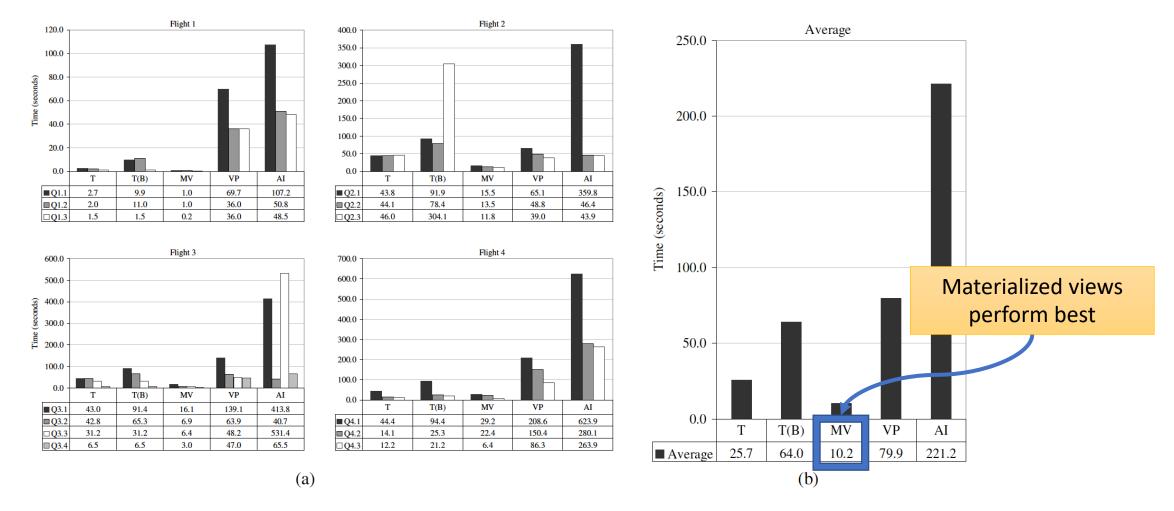


Figure 6: (a) Performance numbers for different variants of the row-store by query ight. Here, T is traditional, T(B) is traditional (bitmap), MV is materialized views, VP is vertical partitioning, and AI is all indexes. (b) Average performance across all queries.

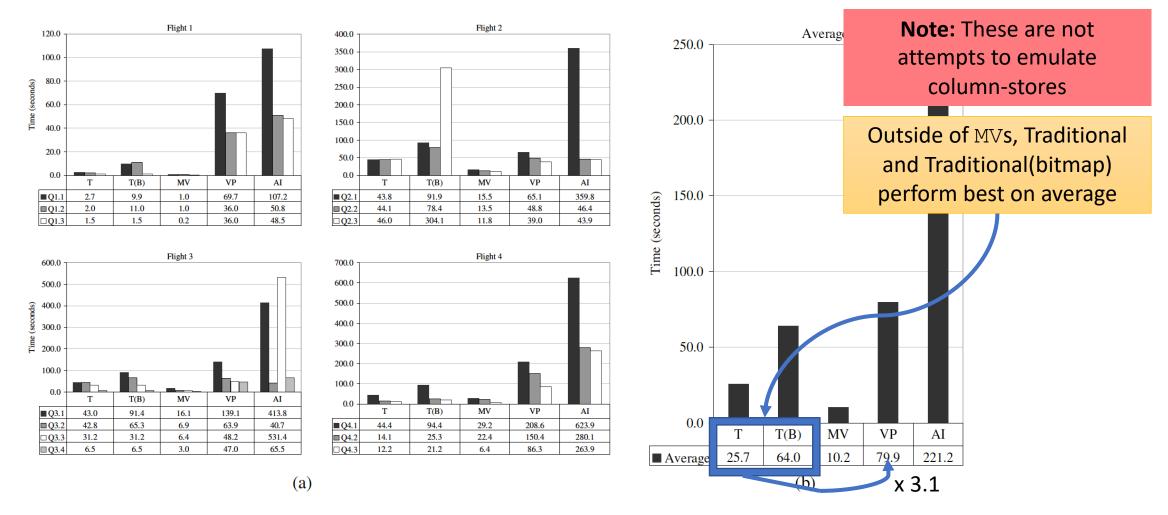


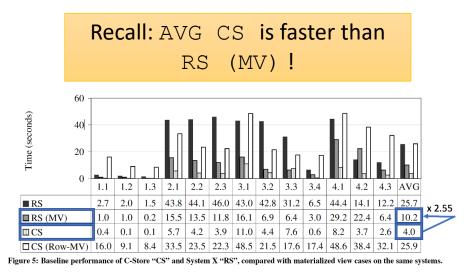
Figure 6: (a) Performance numbers for different variants of the row-store by query ight. Here, T is traditional, T(B) is traditional (bitmap), MV is materialized views, VP is vertical partitioning, and AI is all indexes. (b) Average performance across all queries.

- Why can't we outperform traditional methods (T and T (B))?
 - Tuple Overheads
 - Tuple overhead is quite large in fully vertical portioned approach
 - Must maintain <code>rids</code> or primary keys with each column \rightarrow tuple construction
 - Adds significant overhead to read operations
- Vertical partitioning (VP) approach is competitive with row store when few columns are selected
 - However, as the number of columns selected grows
 - Tuple headers waste space and redundant rids yield inferior performance

- Indexing Only (IA) approach has low per-record overhead, but hash joins with fact table are expensive
 - System X is unable to defer joins until later in the query plan
 - Cannot retain rids from fact table after joining with a dimension table

Column-Store Performance

- Column stores \rightarrow No tuple overhead + low join costs
 - Tuple headers are stored separately from data
 - Column stores rely on position order not keys or rids
- How does it beat RS (MV) as they have similar I/O and no joins are required from same table.
 - With all else being the same CS' advantage may result from its optimizations
 - Compression
 - Late materialization
 - Block Iteration
 - Invisible Join



Column Store Performance

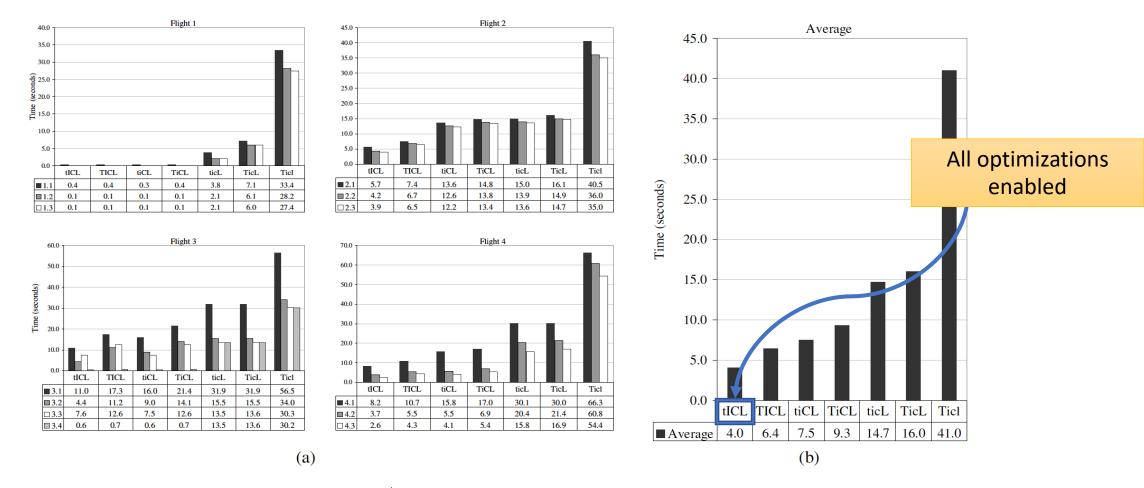


Figure 7: (a) Performance numbers for C-Store by query ight with various optimizations removed. The four letter code indicates the C-Store con guration: T=tuple-at-a-time processing, t=block processing; I=invisible join enabled, i=disabled; C=compression enabled, c=disabled; L=late materialization enabled, l=disabled. (b) Average performance numbers for C-Store across all queries.

Column Store Performance

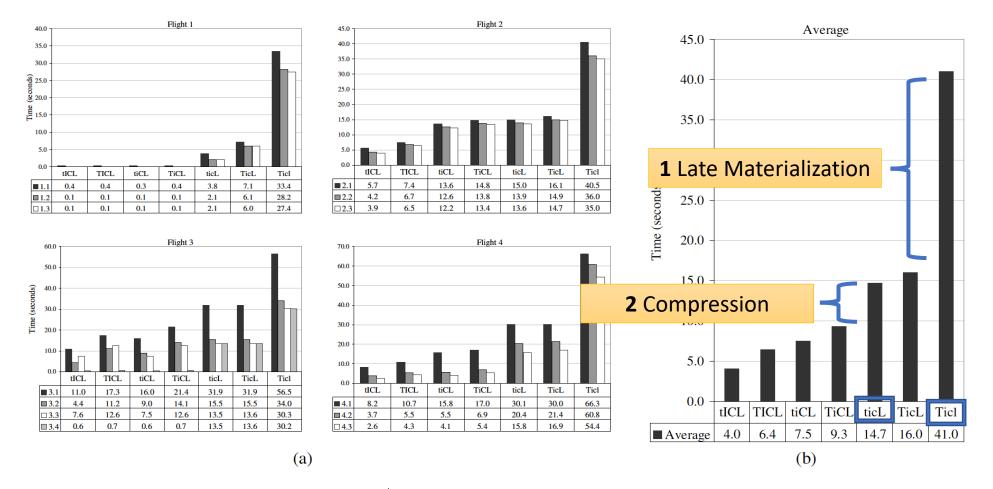


Figure 7: (a) Performance numbers for C-Store by query ight with various optimizations removed. The four letter code indicates the C-Store con guration: T=tuple-at-a-time processing, t=block processing; I=invisible join enabled, i=disabled; C=compression enabled, c=disabled; L=late materialization enabled, l=disabled. (b) Average performance numbers for C-Store across all queries.

Conclusion

- Authors successfully illustrate attempts to reproduce I/O performance of column-stores in row-stores were rather fruitless
 - High tuple reconstruction costs
 - High per tuple overheads
 - Tuple headers
 - rids or primary keys
- Optimizations of column-stores were thoroughly explored
 - Identifying the key advantages over row-stores in late materialization and compression optimizations
- Proposed a new join technique **invisible join**
 - Extending late materialization via **between-predicate rewriting**

References

Daniel J. Abadi, Samuel R. Madden, and Nabil Hachem. 2008. Column-stores vs. row-stores: how different are they really? In *Proceedings of the 2008 ACM SIGMOD international conference on Management of data* (*SIGMOD '08*). Association for Computing Machinery, New York, NY, USA, 967–980. DOI:https://doi.org/10.1145/1376616.1376712