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Column Stores vs. Row-Stores: 
How Different Are They 

Really?
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Introduction

• Column-Store database systems have emerged in recent years
• MonetDB
• C-Store

• It is commonly understood that column-stores offer superior performance on I/O intensive 
tasks
• However, literature fails to address if these performance gains can be achieved in row-store DBMS

• RQ1. This work investigates if row-store DBMS can achieve similar gains if the physical 
architecture emulates that of column-stores

• RQ2. The authours look to discover which features/attributes of column-stores DBMS 
contributes most to the performance advantage over row-stores 
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Row-Oriented 
Execution
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Emulating Column-Stores in 
Row-Oriented DBMS

• Vertical Partitioning
• Index-Only Plans
• Materialized Views

Authours 
outline three 

alternative 
physical 
designs:

4



Vertical Partitioning

ID A B C

1 X X X

2 X X X

3 X X X

Pos A

1 X

2 X

3 X

Pos B

1 X

2 X

3 X

Pos C

1 X

2 X

3 X

Queries perform joins on the 
Postion attribute when 
retrieving multiple attributes 
of a single entity/row

Cons of this approach:
1. Position attribute on every column
2. Row-stores have large headers associated

with each tuple

Wasted memory and/or bandwidth

5



Index-Only Plans

• Base relations are stored in standard row-store format
• Addition: Unclustured B+ tree index on every column  (ALL tables)

• Through this approach only access to indices is required, and not the 
actual data
• Reduce I/O à No disk access

• Cons of this approach:
1. Predicate-less columns, require index to be scanned to extract values

• This is slower than scanning a heap file
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Materialized Views

• “Optimal set of materialized views for every query flight”
• optimal view contains only the required columns 

• Pre-computed dataset
• Allows access to just the data needed to answer a query

• Advantages of this approach:
• No need to store record-ids (index only) or position (vertical partition)
• Only stores tuple headers once
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Column-Oriented 
Execution
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Compression

• Column-Oriented Databases à low information entropy
• Compression algorithms perform better under this condition

• Data sorted on a particular column is super-compressible
• Can be run-length encoded

“Intuitively, data stored in columns is more 
compressible than data stored in rows”

Aaron

Aaron

Aaron

Bob

Bob

…

3Aaron2Bob…
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Compression

• Produces a larger compression ratio 
• Memory Gains 

• Reducing number of disks
• Power consumption

• Performance Gains
• Reduced I/O time à Smaller reads 
• If query executor can operator on compressed data performance can be improved further

• Compression differences are largest in row vs column-stores when:
1. Column data is sorted
2. Repeating values are present (runs) 

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =
𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑

3Aaron2Bob…
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Late Materialization

• Column-stores have entity information distributed throughout a disk(s)
• Row-stores have entity information group together (single record)
• Problem?
• Most queries access multiple attributes of an entity (i.e., name, address)
• Many database output standards (i.e. JDBC, ODBC) work at an entity-at-a-time

• Solution?
• At some point, query plans must combine data from multiple columns into rows 

representing an entity
• Depending on when this is done à “Early Materialization” or “Late Materialization”
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• Early Materialization:
• Constructs entity using relevant columns and then applies row-store 

operators
Aaron Sam Jennifer Lucy Alex Luke

0 1 2 3 4 5

Canada England Canada France Italy Canada

0 1 2 3 4 5

Toronto London London Paris Venice Waterloo

0 1 2 3 4 5

SELECT Name, City FROM Customer WHERE Nation = “Canada” 
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• Early Materialization:
• Constructs entity using relevant columns and then applies row-store 

operators

Aaron Sam Jennifer Lucy Alex Luke

0 1 2 3 4 5

Canada England Canada France Italy Canada

0 1 2 3 4 5

Toronto London London Paris Venice Waterloo

0 1 2 3 4 5

Aaron, Canada, Toronto

Sam, England, London

Jennifer, Canada, London

Lucy, France, Paris

Alex, Italy, Venice

Luke, Canada, Waterloo

SELECT Name, City FROM Customer WHERE Nation = “Canada” 

Aaron, Canada, Toronto

Jennifer, Canada, London
Luke, Canada, Waterloo 13



• Late Materialization:
• Operates on columns

Aaron Sam Jennifer Lucy Alex Luke

0 1 2 3 4 5

Canada England Canada France Italy Canada

0 1 2 3 4 5

Toronto London London Paris Venice Waterloo

0 1 2 3 4 5

SELECT Name, City FROM Customer WHERE Nation = “Canada” 

0 2 5
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• Late Materialization:
• Operates on columns

Aaron Sam Jennifer Lucy Alex Luke

0 1 2 3 4 5

Canada England Canada France Italy Canada

0 1 2 3 4 5

Toronto London London Paris Venice Waterloo

0 1 2 3 4 5

SELECT Name FROM Customer WHERE Nation = “Canada”  
AND City = “London”

0 2 5

1 2

AND

2
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• Late Materialization:
• Operates on columns

Aaron Sam Jennifer Lucy Alex Luke

0 1 2 3 4 5

Canada England Canada France Italy Canada

0 1 2 3 4 5

Toronto London London Paris Venice Waterloo

0 1 2 3 4 5

SELECT Name FROM Customer WHERE Nation = “Canada”  
AND City = “London”

0 2 5

1 2

AND

2
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Late Materialization - Advantages

1. Selection and aggregation operators tend to reduce the number of 
tuples which need to be constructed
Ø Think of the number tuples we needed to construct in early materialization

2. Data compressed using column-oriented compression methods must 
be decompressed during the tuple construction process
Ø Early materialization constructs many tuples at start
Ø Late materialization constructs few tuples at end

3. Cache performance improved
Ø Cache line is populated with related data (High data locality of column-stores)
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A Typical Query Structure

Restrict the set of tuples using selection 
predicates on 1+ dimension tables

Next, perform aggregation often grouping 
on other table attributes
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Traditional Query Plan:
• Perform joins in order of predicate selectivity

Assuming  c.region = ASIA
is the most selective

1. Join customer and lineorder
2. Filter lineorderà customers from 

ASIA remain
3. nation of these customers is added 

to customer-order
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Traditional Query Plan:

1. Join supplier and lineorder
2. Filter lineorderà suppliers from 

ASIA remain
3. nation of these supliers is added to 

customer-order
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Traditional Query Plan:

1. Join dworder and lineorder
2. Filter lineorderà customers who 

ordered between the years 1992 and 
1997 remain

3. year of these customers ordered is 
added to customer-order

Results of joins to are finally GROUPed and
aggregated (i.e. sum)
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Late Materialized Query Plan:
• Predicate is applied on column-store

1. Filter c.regionà customers from ASIA remain
2. CUSTKEY of these customers is extracted
3. These CUSTKEYs are joined with CUSTKEYs from 

the fact table.
Ø Resulting in 2 position lists 

Ø 1 sorted (fact table) and 1 unsorted 
(dimension table)

Ø Lists indicate which tuples pass the 
predicate (i.e. c.region = ASIA)

4. Extract values from out-of-order positions               
(i.e. c.nation) alongside the values from in-order set 
of positions for the fact table (i.e. lo.suppkey, 
lo.orderdate, and lo.revenue)
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Late Materialized Query Plan:
• Predicate is applied on column-store

1. Filter  s.regionà customers from ASIA remain
2. SUPPKEY of these suppliers is extracted
3. These SUPPKEYs are joined with SUPPKEYs from 

the fact table.
Ø Resulting in 2 position lists 

Ø 1 sorted (fact table) and 1 unsorted 
(dimension table)

Ø Lists indicate which tuples pass the 
predicate (i.e. s.region = ASIA)

4. Extract values from out-of-order positions               
(i.e. s.nation) alongside the values from in-order set 
of positions for the fact table (i.e. lo.custkey, 
lo.orderdate, and lo.revenue)

Repeat once more for d.year predicate
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An Alternative Plan – Invisible Join
• Late materialized join that minimizes out-of-order value extraction
• How is this accomplished?

• Rewriting joins as predicates on foreign key columns in fact table

PHASE 01: Constructing Hash Tables
• Apply each predicate to dimension table à list of keys satisfying predicate
• Construct hash table
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An Alternative Plan – Invisible Join

PHASE 02: Extract Fact Table Records
• Use  hash tables to locate records in fact 

table that satisfy predicate
• Probe hash table with each value in foreign 

key column 
• Intersect positions lists à records which 

satisfy ALL predicates
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An Alternative Plan – Invisible Join

PHASE 03: Extract Dimension Table 
Records & Execute Query

• Apply list of satisfying positions to 
fact tables
• Identify foreign key references in the 

appropriate dimension table
• Extract corresponding values

Note: “If dimension table key is sorted, contiguous 
list of identifiers starting from 1 [..], then the foreign
key actually represents the position of desired tuple
in dimension table”
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Experiments
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Motivation: C-Store vs System X - SSBM

x 6.425
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Motivation: C-Store vs System X - SSBM

x 2.55
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Motivation:  C-Store vs System X - SSBM

x 2.54

System X supports advanced 
performance features:
• Partitioning
• Multi-threading
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Column-Store Simulation in a Row-Store

Materialized views 
perform best
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Column-Store Simulation in a Row-Store

Outside of MVs, Traditional 
and Traditional(bitmap) 
perform best on average 

Note: These are not  
attempts to emulate

column-stores

x 3.1 
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Column-Store Simulation in a Row-Store
• Why can’t we outperform traditional methods (T and T(B))?
• Tuple Overheads

• Tuple overhead is quite large in fully vertical portioned approach
• Must maintain rids or primary keys with each column à tuple construction

• Adds significant overhead to read operations

• Vertical partitioning (VP) approach is competitive with row store 
when few columns are selected
• However, as the number of columns selected grows

• Tuple headers waste space and redundant rids yield inferior performance
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Column-Store Simulation in a Row-Store
• Indexing Only (IA) approach has low per-record overhead, but hash 

joins with fact table are expensive
• System X is unable to defer joins until later in the query plan

• Cannot retain rids from fact table after joining with a dimension table
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Column-Store Performance

Recall: AVG CS is faster than 
RS (MV) !

• Column stores à No tuple overhead + low join costs
• Tuple headers are stored separately from data
• Column stores rely on position order not keys or rids

• How does it beat RS(MV)as they have similar I/O and no joins are 
required from same table.
• With all else being the same CS’ advantage may 

result from its optimizations
• Compression
• Late materialization
• Block Iteration
• Invisible Join
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Column Store Performance

All optimizations 
enabled
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Column Store Performance
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1 Late Materialization

2 Compression



Conclusion
• Authors successfully illustrate attempts to reproduce I/O performance 

of column-stores in row-stores were rather fruitless
• High tuple reconstruction costs
• High per tuple overheads

• Tuple headers
• rids or primary keys  

• Optimizations of column-stores were thoroughly explored
• Identifying the key advantages over row-stores in late materialization and 

compression optimizations
• Proposed a new join technique invisible join
• Extending late materialization via between-predicate rewriting
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