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Introduction

Column-Store database systems have emerged in recent years
* MonetDB
* C-Store

It is commonly understood that column-stores offer superior performance on I/O intensive
tasks
* However, literature fails to address if these performance gains can be achieved in row-store DBMS

RQ1. This work investigates if row-store DBMS can achieve similar gains if the physical
architecture emulates that of column-stores

RQ2. The authours look to discover which features/attributes of column-stores DBMS
contributes most to the performance advantage over row-stores
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Emulating Column-Stores in
Row-Oriented DBMS
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Index-Only Plans

* Base relations are stored in standard row-store format
Unclustured B+ tree index on every column (ALL tables)

* Through this approach only access to indices is required, and not the
actual data

* Reduce I/O = No disk access

* Cons of this approach:

1. Predicate-less columns, require index to be scanned to extract values
* This is slower than scanning a heap file



Materialized Views

* “Optimal set of materialized views for every query flight”
e optimal view contains only the required columns

* Pre-computed dataset
* Allows access to just the data needed to answer a query

of this approach:
* No need to store record-ids (index only) or position (vertical partition)
* Only stores tuple headers once
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: “Intuitively, data stored in columns is more
Compression ,

compressible than data stored in rows”

* Column-Oriented Databases = low information entropy
* Compression algorithms perform better under this condition

e Data sorted on a particular column is super-compressible
e Can be run-length encoded
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NAME
Aaron 3Aaron2Bob... ADDRESS
— CITY
Bob

NATION
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PHONE
MKTSEGMENT




Compression

Uncompressed

Compression Ratio =
P Compressed

* Produces a larger compression ratio

* Memory Gains
* Reducing number of disks
* Power consumption

* Performance Gains

* Reduced I/O time = Smaller reads
* If query executor can operator on compressed data performance can be improved further

3Aaron2Bob...

 Compression differences are largest in row vs column-stores when:
1. Column data is sorted
2. Repeating values are present (runs)



Late Materialization

* Column-stores have entity information distributed throughout a disk(s)
* Row-stores have entity information group together (single record)

* Problem?
* Most queries access multiple attributes of an entity (i.e., name, address)
 Many database output standards (i.e. JDBC, ODBC) work at an entity-at-a-time

e At some point, query plans must combine data from multiple columns into rows
representing an entity

* Depending on when this is done = “Early Materialization” or “Late Materialization”



* Early Materialization:
e Constructs entity using relevant columns and then applies row-store

operators

Aaron Sam Jennifer Lucy Alex Luke

0 1 2 3 4 5

Canada England Canada France Italy Canada

0 1 2 3 4 5

Toronto London London Paris Venice Waterloo

0 1 2 3 4 5

CUSTOMER
) ) CUSTKEY
SELECT Name, City FROM Customer WHERE Nation = “Canada” NAME

ADDRESS
CITY
NATION
REGION
PHONE
MKTSEGMENT
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* Early Materialization:

CUSTOMER
CUSTKEY \
NAME
ADDRESS

* Constructs entity using relevant columns and then applies row-store e
operators e
T MKTSEGMENT
Aaron Jennifer Alex
Aaron, Canada, Toronto
0 2 4
Sam, England, London
Canada Canada Italy
== Jennifer, Canada, London
0 2 4
Lucy, France, Paris
Toronto London London Venice Waterloo Alex, Italy, Venice
0 1 2 4 5

SELECT Name, City FROM Customer WHERE Nation = “Canada”

Aaron, Canada, Toronto

4_/’

Jennifer, Canada, London

Luke, Canada, Waterloo

Luke, Canada, Waterloo
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e Late Materialization:
* Operates on columns

Aaron Sam Jennifer Lucy Alex Luke
0 1 2 3 4 5
Canada England Canada France Italy Canada
0 1 2 3 4 5
0 2 5
Toronto London London Paris Venice Waterloo
CUSTOMER
0 1 2 3 4 5 CUSTKEY
NAME
ADDRESS
CITY
SELECT Name, City FROM Customer WHERE Nation = “Canada” NATION
REGION
PHONE
MKTSEGMENT

14



e Late Materialization:
* Operates on columns

Aaron Sam Jennifer Lucy Alex Luke
0 1 2 3 4 5
2
Canada England Canada France Italy Canada /
0 1 2 3 4 5 AND
0 2 5
Toronto London London Paris Venice Waterloo
CUSTOMER
0 1 2 3 4 5 CUSTKEY
NAME
1 2 ADDRESS
CITY
SELECT Name FROM Customer WHERE Nation = “Canada” 222.%1
AND City = “London” DHONE
MKTSEGMENT
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e Late Materialization:
* Operates on columns

-

Aaron Sam Jennifer Lucy Alex Luke
0 1 2 3 4 5

AND

CUSTOMER

CUSTKEY

NAME

1 2 ADDRESS

CITY

SELECT Name FROM Customer WHERE Nation = “Canada” NATION

AND City = “London” REGION

PHONE

MKTSEGMENT
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Late Materialization - Advantages

\ \\l‘
N

1. Selection and aggregation operators tend to reduce the number of
tuples which need to be constructed
» Think of the number tuples we needed to construct in early materialization

2. Data compressed using column-oriented compression methods must
be decompressed during the tuple construction process
» Early materialization constructs many tuples at start
» Late materialization constructs few tuples at end

3. Cache performance improved
» Cache line is populated with related data (High data locality of column-stores)



A Typical Query Structure

SELECT c.nation, s.nation, d.year,

sum(lo.revenue) as revenue

FROM customer AS ¢, lineorder AS 1o,

WHERE
AND
AND
AND
AND
AND

GROUP

ORDER

supplier AS s, dwdate AS d

lo.custkey = c.custkey

lo.suppkey = s.suppkey
lo.orderdate = d.datekey

c.region = ASIA Restrict the set of tuples using selection
s.region = ASIA predicates on 1+ dimension tables

d.year >= 1992 and d.year <= 1997

BY c.nation, s.nation, d.year :}' Next, perform aggregation often grouping
BY d.year asc, revenue desc; on other table attributes
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Traditional Query Plan:
e Perform joins in order of predicate selectivity

Assuming c.region = ASIA
SELECT m s.nation, d.year, is the most selective
sum(lo.revenue) as revenue
FROM customer AS ¢, lineorder AS 1lo,

supplier AS s, dwdate AS d 1. Join customer and lineorder
WHERE 2. Filter lineorder = customers from
AND lo.suppkey = s.suppkey ASIA remain
AND lo.orderdate = d.datekey 3. nation ofthese customers is added
AND s.region = ASIA

AND d.year >= 1992 and d.year <= 1997
GROUP BY c.nation, s.nation, d.year
ORDER BY d.year asc, revenue desc;
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Traditional Query Plan:

SELECT c.nation, d.year,
sum(lo.revenue) as revenue

FROM customer AS ¢, lineorder AS lo,
supplier AS s, dwdate AS d
WHERE lo.custkey = c.custkey

AN To-suppkey = s.suppkey.
AND lo.orderdate = d.
AND c.region = ASTIA
AND d.year >= 1992 and d.year <= 1997
GROUP BY c.nation, s.nation, d.year
ORDER BY d.year asc, revenue desc;

Join supplier and lineorder
Filter 1ineorder - suppliers from
ASIA remain

. nation of these supliersis added to

customer—-order
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Traditional Query Plan:

SELECT c.nation, s.nat ion,

sum(lo.revenue) as revenue
FROM customer AS ¢, lineorder AS 1lo,
supplier AS s, dwdate AS d

WHERE lo.custkey = c.custkey

AND lo.suppkey = s.suppke

AND c.region = ASIA

AND s.region = ASIA

ANDfd.year >= 1992 and d.year <= 1997
GROUP BY c.nation, s.nation, d.year
ORDER BY d.year asc, revenue desc;

1. Join dworder and lineorder

2. Filter 1ineorder > customers who
ordered between the years 1992 and
1997 remain

3. year ofthese customers ordered is
added to customer-order

Results of joins to are finally GROUPed and
aggregated (i.e. sum)
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Late Materialized Query Plan:
* Predicate is applied on column-store

SELECT jc.nation, s.nation, d.year,

as revenue

FROM customer AS ¢, lineorder AS 1lo,
supplier AS s, dwdate AS d

K o c.custkey

AND flo.suppkey = s.suppkey

AND Mlo.orderdate d.datekey

AND s.region = ASIA

AND d.year >= 1992 and d.year <= 1997

GROUP BY c.nation, s.nation, d.year

ORDER BY d.year asc, revenue desc;

WHERE

1. Filter c.region = customers from ASIA remain
2. CUSTKEY of these customers is extracted
3. These CUSTKEYS are joined with CUSTKEYs from
the fact table.
» Resulting in 2 position lists
» 1 sorted (fact table) and 1 unsorted
(dimension table)
» Lists indicate which tuples pass the
predicate (i.e. c.region = ASIA)
4. Extract values from out-of-order positions
(i.e. c.nation) alongside the values from in-order set
of positions for the fact table (i.e. 1o. suppkey,
lo.orderdate, and lo.revenue)
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Late Materialized Query Plan:
* Predicate is applied on column-store

SELECT c.nation, d.year,

sum f{lo.revenue as revenue

FROM customer AS ¢, lineorder AS 1lo,
supplier AS s, dwdate AS d
WHERE = c.custkey
AND lo.suppkey = s.suppkey
AND jlo.orderdate |= d.datekey
AND c.region = ASIA
AND s.region = ASIA
AND d.year >= 1992 and d.year <= 1997

GROUP BY c.nation, s.nation, d.year
ORDER BY d.year asc, revenue desc;

1. Filter s.region—> customers from ASIA remain
2. SUPPKEY of these suppliers is extracted
3. These SUPPKEYSs are joined with SUPPKEYs from
the fact table.
» Resulting in 2 position lists
» 1 sorted (fact table) and 1 unsorted
(dimension table)
» Lists indicate which tuples pass the
predicate (i.e. s.region = ASIA)
4. Extract values from out-of-order positions
(i.e. s.nation) alongside the values from in-order set
of positions for the fact table (i.e. 1o.custkey,
lo.orderdate, and lo.revenue)

Repeat once more for d. year predicate
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An Alternative Plan — Invisible Join

* Late materialized join that minimizes out-of-order value extraction
* How is this accomplished?

* Rewriting joins as predicates on foreign key columns in fact table

PHASE 01: Constructing Hash Tables

* Apply each predicate to dimension table = list of keys satisfying predicate
* Construct hash table

Apply region = 'Asia' on Customer table

custkey region nation
1 Asia China > ':;fl:‘ ;23'5 Apply year in [1992,1997] on Date table
§ E:rc?pe Flra(:ce 1and 3 dateid year Hash table with

Sla ndia 01011997 | 1997

Apply region = 'Asia’' on Supplier table 01021997 1997 — %?I%szggg;jg%’

suppkey | region nation 01031997 1997 01031997
1 Asia Russia ...  |j—pp Hash tabl
2 Europe Spain with key 1




An Alternative Plan — Invisible Join

PHASE 02: Extract Fact Table Records

e Use hash tables to locate records in fact
table that satisfy predicate

* Probe hash table with each value in foreign
key column

* Intersect positions lists = records which
satisfy ALL predicates

Fact Table
orderkey custkey suppkey | | orderdate revenue
1 3 1 01011997 43256
2 3 2 01011997 33333
3 2 1 01021997 12121
4 1 1 01021997 23233
5 2 2 01021997 45456
6 1 2 01031997 43251
7 3 2 01031997 34235

pV P’°b':/

\probe

Hash table| | Hash table| _ | 1 Hash table with
with keys |= |1 withkey1 | ™| 0 keys 01011997
1and 3 :’ 1 01021997, and|
1
matching fact | o 0 01031997
table bitmap [ 0
for cust. dim. [ 0
Join 1
i 0
01 fact table
Bm:jse = |1 tuples that
0 satisfy all join
0 | predicates
0

— o | e | e | o | e
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An Alternative Plan — Invisible Join

PHASE 03: Extract Dimension Table
Records & Execute Query

* Apply list of satisfying positions to
fact tables

* ldentify foreign key references in the
appropriate dimension table

e Extract corresponding values

Note: “If dimension table key is sorted, contiguous
list of identifiers starting from 1 [..], then the foreign
key actually represents the position of desired tuple
in dimension table”

Fact Table Columns

S L U P S

1]
% fact table dimension table
= tuples th.at’ o
| 1| satisfy all join -
|0 |  predicates China
- 0 | France
custkey 0 India
3
3 \
2 i -
1 b\:;rlr:laep _| 3 position | _| India
- = 1 Positions = :
2 extraction lookup China
1
3 nation
. Russia
squ Y Spain
2 bit \
1 Ja'ﬂ.? -1 position | _| Russia
- = 1 Positions = "
; extraction lookup Russia
2 -
2 dateid year
01011997 1997
orderdate 01021997 1997
01011997 01031997 1997
01011997 bi
01021997 > \:gﬂ;p _[01011997 o = 1997
01021997 e 01021997 | vajyes 1997
01021997
01031997
01031997
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EXperiments




Motivation: C-Store vs System X - SSBM

1.1 | 1.2 1.3 212223 3.1 |32 33|34 |41 |42 |43

27120 ] 15 43.844.1|46.043.0(428|31.2| 6.5 |44.4|14.1|12.2
1.0 10|02 155]135|11.8]16.1| 6.9 | 6.4 | 3.0 |29.2|22.4| 6.4
404 101 101 |57 4239 11.0,44 /7606 |82 |37 |26
OCS (Row-MV) | 16.0] 9.1 | 84 |33.5]23.5/22.3|48.5|21.517.6|17.4|48.6|38.4|32.1

Figure 5: Baseline performance of C-Store ‘“CS” and System X “RS”, compared with materialized view cases on the same systems.
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Motivation: C-Store vs System X - SSBM

60
z _ _
z 40| 1 .
: _
N I
F
O_ J.—J:L

11012 11321222331 (3233344142
H RS 2.7 20| 1.5 |43.8[44.1/46.0(43.0|42.8/31.2| 6.5 |44.4|14.1
@RS (MV) 1.0 1.0 02 |155/13.5/11.8|16.1| 6.9 | 6.4 | 3.0 [29.2|22.4
mcs  Jo4 01|01 [57]42[39][11.0/44 76|06 82|37
OCS (Row-MV) | 16.0| 9.1 | 8.4 |33.5/23.5/22.3|48.5|21.5/17.6|17.448.6|38.4

Figure 5: Baseline performance of C-Store ‘“CS” and System X “RS”, compared with materialized view cases on the same systems.
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Motivation: C-Store vs System X - SSBM

60

System X supports advanced
performance features:

L 40| 1 _
* Partitioning _

e Multi-threading 20 -
o n §

1.1 | 1.2 1.3 212223 31|32 ]33 |34 41|42 |43 |AVG

B RS 271 20| 1.5 [43.8]44.146.0(43.042.8 312 6.5 |44.4|14.1]12.2]25.7
1.0 10| 02 |155(13.5/11.8]16.1] 6.9 | 6.4 | 3.0 |29.2122.4| 6.4
mCs 0401|0157 42[39/11.0/44|76|06|82 37|26
16.0 0.1 | 84 [33.5(23.5/223(48.5(21.5|17.6 17.4148.6|38.4|32.1

Figure S: Baseline performance of C-Store “CS” and System X “RS”’, compared with materialized view cases on the same systems.

Time

X 2.54
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Column-Store Simulation in a Row-Store

Flight 1
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Average
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200.0
2 150.0
o
=t
3
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°
=
= 100.0
50.0
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‘I Average

Materialized views

perform best

7

(b)

Figure 6: (a) Performance numbers for different variants of the row-store by query ight. Here, T is traditional, T(B) is traditional
(bitmap), MV is materialized views, VP is vertical partitioning, and Al is all indexes. (b) Average performance across all queries.
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Column-Store Simulation in a Row-Store
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Figure 6: (a) Performance numbers for different variants of the row-store by query ight. Here, T is traditional, T(B) is traditional
(bitmap), MV is materialized views, VP is vertical partitioning, and Al is all indexes. (b) Average performance across all queries.
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Column-Store Simulation in a Row-Store

* Why can’t we outperform traditional methods (T and T (B))?

* Tuple Overheads
* Tuple overhead is quite large in fully vertical portioned approach

* Must maintain rids or primary keys with each column = tuple construction
* Adds significant overhead to read operations

* Vertical partitioning (VP) approach is competitive with row store
when few columns are selected

* However, as the number of columns selected grows
* Tuple headers waste space and redundant rids yield inferior performance



Column-Store Simulation in a Row-Store

* Indexing Only (I2) approach has low per-record overhead, but hash
joins with fact table are expensive

» System X is unable to defer joins until later in the query plan
e Cannot retain rids from fact table after joining with a dimension table



Column-Store Performance

* Column stores = No tuple overhead + low join costs

* Tuple headers are stored separately from data
e Column stores rely on position order not keys or rids

 How does it beat RS (MV) as they have similar I/O and no joins are
required from same table.
* With all else being the same CS’ advantage may seralll 3R ©F e e T
result from its optimizations RS (MV) !

60

* Compression

Late materialization j Z I]M ‘ ‘ | mﬂﬂ
Block Iteration S ._H._ﬂ.J I‘\‘Hhﬂ hﬂm

°
202223 3.1 32[33[34 414243 |AVG

° 1 bl H ERS 27| 20| 15 |438]44.1 460 430 42.8|31.2] 6.5 |44.4|14.1]122 257 - ¢

InV|S| e J0|n ERS (MV) 10| 1.0 | 02 [155]13.5 118 16.1| 6.9 | 6.4 | 3.0 [29.2]22.4| 6.4 10.2 7
omcs 04]01]01 57|42 39 11044 |76 |0.6(82]37|26[40

OCS (Row-MV)  16.0] 9.1 | 84 |33.5]23.5 223 48.5 21.5/17.6|17.4|48.6|38.4(32.1|25.9

Figure 5: Baseline performance of C-Store “CS” and System X “RS”, compared with materialized view cases on the same systems.




Column Store Performance

Flight 1 Flight 2
400 g 450 gt Average
350 400 45.0
300 350
- 300
§ 25.0 40.0 -
g 250
2200
> 200
E 15.0
= 150 35.0 -
100 100
[ ol 'HN ‘NN ‘IN "IN °H 30.0 - All optimizations
tICL TICL tiCL TiCL ticL TicL Ticl tacL TICL tiCL TiCL ticL TicL Ticl
miLl| 04 0.4 03 0.4 3.8 7.1 334 m2.1| 57 7.4 13.6 14.8 15.0 16.1 40.5 =z e N a b I ed
mi2| ol 0.1 0.1 0.1 2.1 6.1 28.2 m22| 42 6.7 12.6 13.8 13.9 14.9 36.0 2 25.0 -
o3 ol 0.1 0.1 0.1 2.1 6.0 274 [o23] 39 6.5 12.2 13.4 13.6 14.7 35.0 8 :
2
N
Flight 3 Flight 4 2 200 4
60.0 1ght 700 gt g .
=
50.0 60.0
~ w0 500 15.0 -
E
§ 30.0 400
£ 300 10.0 ~
= 200

1 ke e L L

ICL | TICL | GCL | TiCL | tcL | TicL | Ticl . hj_ L
m3.1] 110 17.3 16.0 21.4 319 31.9 56.5 ICcL TICL tiCL TiCL ticL TicL Ticl
}Es.z 44 1.2 | 9.0 141 | 155 | 155 | 34.0 maa] s2 10.7 15.8 17.0 30.1 300 | 663 0.0 !
033 76 126 | 1.5 126 | 135 | 136 | 303 }EM,Z 37 5.5 5.5 6.9 20.4 214 | 608 tiCL
D34 06 07 0.6 07 13.5 | 136 | 302 043] 26 43 4.1 5.4 15.8 16.9 54.4
(W Average| 40 | 6.4 | 7.5 | 93 | 147 ] 16.0 | 41.0

(a) (b)

Figure 7: (a) Performance numbers for C-Store by|query ight with various optimizations removed. The four letter code indicates
the C-Store con guration: T=tuple-at-a-time processing, t=block processing; I=invisible join enabled, i=disabled; C=compression
enabled, c=disabled; L=late materialization enabled, I=disabled. (b) Average performance numbers for C-Store across all queries.
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Column Store Performance
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Figure 7: (a) Performance numbers for C-Store by|query ight with various optimizations removed. The four letter code indicates
the C-Store con guration: T=tuple-at-a-time processing, t=block processing; I=invisible join enabled, i=disabled; C=compression
enabled, c=disabled; L=late materialization enabled, I=disabled. (b) Average performance numbers for C-Store across all queries.



Conclusion

» Authors successfully illustrate attempts to reproduce I/O performance
of column-stores in row-stores were rather fruitless

* High tuple reconstruction costs
* High per tuple overheads
* Tuple headers
 rids or primary keys
* Optimizations of column-stores were thoroughly explored
* |ldentifying the key advantages over row-stores in late materialization and
compression optimizations
* Proposed a new join technique invisible join
* Extending late materialization via between-predicate rewriting
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