Column Stores vs. Row-Stores:
How Different Are They
Really?

Authours: Daniel Abadi, Sammuel
Madden, Nabil Hachem

Presented By: Aaron Sarson

Introduction

Column-Store database systems have emerged in recent years
* MonetDB
* C-Store

It is commonly understood that column-stores offer superior performance on I/O intensive
tasks
* However, literature fails to address if these performance gains can be achieved in row-store DBMS

RQ1. This work investigates if row-store DBMS can achieve similar gains if the physical
architecture emulates that of column-stores

RQ2. The authours look to discover which features/attributes of column-stores DBMS
contributes most to the performance advantage over row-stores

Row-0Oriented
Execution

Emulating Column-Stores in
Row-Oriented DBMS

Authours
outline three

e Vertical Partitioning

IEOERVY S o Index-Only Plans

physical * Materialized Views
designs:

Ve rtica ‘ Pa rt|t|0 N | ﬂg I Queries perform joins on the

1 X Postion attribute when

2 X retrieving multiple attributes
3 X of a single entity/row

(@]

A8 __lc
1 X X

X
2 X m_
3 X 1 X

Cons of this approach:
1. Position attribute on every column
2. Row-stores have large headers associated

with each tuple I

i X
Wasted memory and/or bandwidth 2 X
X

Index-Only Plans

* Base relations are stored in standard row-store format
Unclustured B+ tree index on every column (ALL tables)

* Through this approach only access to indices is required, and not the
actual data

* Reduce I/O = No disk access

* Cons of this approach:

1. Predicate-less columns, require index to be scanned to extract values
* This is slower than scanning a heap file

Materialized Views

* “Optimal set of materialized views for every query flight”
e optimal view contains only the required columns

* Pre-computed dataset
* Allows access to just the data needed to answer a query

of this approach:
* No need to store record-ids (index only) or position (vertical partition)
* Only stores tuple headers once

Column-Oriented
Execution

: “Intuitively, data stored in columns is more
Compression ,

compressible than data stored in rows”

* Column-Oriented Databases = low information entropy
* Compression algorithms perform better under this condition

e Data sorted on a particular column is super-compressible
e Can be run-length encoded

—

Aaron
CUSTOMER
Aaron CUSTKEY N
NAME
Aaron 3Aaron2Bob... ADDRESS
— CITY
Bob

NATION
Bob REGION
PHONE
MKTSEGMENT

Compression

Uncompressed

Compression Ratio =
P Compressed

* Produces a larger compression ratio

* Memory Gains
* Reducing number of disks
* Power consumption

* Performance Gains

* Reduced I/O time = Smaller reads
* If query executor can operator on compressed data performance can be improved further

3Aaron2Bob...

 Compression differences are largest in row vs column-stores when:
1. Column data is sorted
2. Repeating values are present (runs)

Late Materialization

* Column-stores have entity information distributed throughout a disk(s)
* Row-stores have entity information group together (single record)

* Problem?
* Most queries access multiple attributes of an entity (i.e., name, address)
 Many database output standards (i.e. JDBC, ODBC) work at an entity-at-a-time

e At some point, query plans must combine data from multiple columns into rows
representing an entity

* Depending on when this is done = “Early Materialization” or “Late Materialization”

* Early Materialization:
e Constructs entity using relevant columns and then applies row-store

operators

Aaron Sam Jennifer Lucy Alex Luke

0 1 2 3 4 5

Canada England Canada France Italy Canada

0 1 2 3 4 5

Toronto London London Paris Venice Waterloo

0 1 2 3 4 5

CUSTOMER
)) CUSTKEY
SELECT Name, City FROM Customer WHERE Nation = “Canada” NAME

ADDRESS
CITY
NATION
REGION
PHONE
MKTSEGMENT

12

* Early Materialization:

CUSTOMER
CUSTKEY \
NAME
ADDRESS

* Constructs entity using relevant columns and then applies row-store e
operators e
T MKTSEGMENT
Aaron Jennifer Alex
Aaron, Canada, Toronto
0 2 4
Sam, England, London
Canada Canada Italy
== Jennifer, Canada, London
0 2 4
Lucy, France, Paris
Toronto London London Venice Waterloo Alex, Italy, Venice
0 1 2 4 5

SELECT Name, City FROM Customer WHERE Nation = “Canada”

Aaron, Canada, Toronto

4_/’

Jennifer, Canada, London

Luke, Canada, Waterloo

Luke, Canada, Waterloo

13

e Late Materialization:
* Operates on columns

Aaron Sam Jennifer Lucy Alex Luke
0 1 2 3 4 5
Canada England Canada France Italy Canada
0 1 2 3 4 5
0 2 5
Toronto London London Paris Venice Waterloo
CUSTOMER
0 1 2 3 4 5 CUSTKEY
NAME
ADDRESS
CITY
SELECT Name, City FROM Customer WHERE Nation = “Canada” NATION
REGION
PHONE
MKTSEGMENT

14

e Late Materialization:
* Operates on columns

Aaron Sam Jennifer Lucy Alex Luke
0 1 2 3 4 5
2
Canada England Canada France Italy Canada /
0 1 2 3 4 5 AND
0 2 5
Toronto London London Paris Venice Waterloo
CUSTOMER
0 1 2 3 4 5 CUSTKEY
NAME
1 2 ADDRESS
CITY
SELECT Name FROM Customer WHERE Nation = “Canada” 222.%1
AND City = “London” DHONE
MKTSEGMENT

15

e Late Materialization:
* Operates on columns

-

Aaron Sam Jennifer Lucy Alex Luke
0 1 2 3 4 5

AND

CUSTOMER

CUSTKEY

NAME

1 2 ADDRESS

CITY

SELECT Name FROM Customer WHERE Nation = “Canada” NATION

AND City = “London” REGION

PHONE

MKTSEGMENT

16

Late Materialization - Advantages

\ \\l‘
N

1. Selection and aggregation operators tend to reduce the number of
tuples which need to be constructed
» Think of the number tuples we needed to construct in early materialization

2. Data compressed using column-oriented compression methods must
be decompressed during the tuple construction process
» Early materialization constructs many tuples at start
» Late materialization constructs few tuples at end

3. Cache performance improved
» Cache line is populated with related data (High data locality of column-stores)

A Typical Query Structure

SELECT c.nation, s.nation, d.year,

sum(lo.revenue) as revenue

FROM customer AS ¢, lineorder AS 1o,

WHERE
AND
AND
AND
AND
AND

GROUP

ORDER

supplier AS s, dwdate AS d

lo.custkey = c.custkey

lo.suppkey = s.suppkey
lo.orderdate = d.datekey

c.region = ASIA Restrict the set of tuples using selection
s.region = ASIA predicates on 1+ dimension tables

d.year >= 1992 and d.year <= 1997

BY c.nation, s.nation, d.year :}' Next, perform aggregation often grouping
BY d.year asc, revenue desc; on other table attributes

18

Traditional Query Plan:
e Perform joins in order of predicate selectivity

Assuming c.region = ASIA
SELECT m s.nation, d.year, is the most selective
sum(lo.revenue) as revenue
FROM customer AS ¢, lineorder AS 1lo,

supplier AS s, dwdate AS d 1. Join customer and lineorder
WHERE 2. Filter lineorder = customers from
AND lo.suppkey = s.suppkey ASIA remain
AND lo.orderdate = d.datekey 3. nation ofthese customers is added
AND s.region = ASIA

AND d.year >= 1992 and d.year <= 1997
GROUP BY c.nation, s.nation, d.year
ORDER BY d.year asc, revenue desc;

19

Traditional Query Plan:

SELECT c.nation, d.year,
sum(lo.revenue) as revenue

FROM customer AS ¢, lineorder AS lo,
supplier AS s, dwdate AS d
WHERE lo.custkey = c.custkey

AN To-suppkey = s.suppkey.
AND lo.orderdate = d.
AND c.region = ASTIA
AND d.year >= 1992 and d.year <= 1997
GROUP BY c.nation, s.nation, d.year
ORDER BY d.year asc, revenue desc;

Join supplier and lineorder
Filter 1ineorder - suppliers from
ASIA remain

. nation of these supliersis added to

customer—-order

20

Traditional Query Plan:

SELECT c.nation, s.nat ion,

sum(lo.revenue) as revenue
FROM customer AS ¢, lineorder AS 1lo,
supplier AS s, dwdate AS d

WHERE lo.custkey = c.custkey

AND lo.suppkey = s.suppke

AND c.region = ASIA

AND s.region = ASIA

ANDfd.year >= 1992 and d.year <= 1997
GROUP BY c.nation, s.nation, d.year
ORDER BY d.year asc, revenue desc;

1. Join dworder and lineorder

2. Filter 1ineorder > customers who
ordered between the years 1992 and
1997 remain

3. year ofthese customers ordered is
added to customer-order

Results of joins to are finally GROUPed and
aggregated (i.e. sum)

21

Late Materialized Query Plan:
* Predicate is applied on column-store

SELECT jc.nation, s.nation, d.year,

as revenue

FROM customer AS ¢, lineorder AS 1lo,
supplier AS s, dwdate AS d

K o c.custkey

AND flo.suppkey = s.suppkey

AND Mlo.orderdate d.datekey

AND s.region = ASIA

AND d.year >= 1992 and d.year <= 1997

GROUP BY c.nation, s.nation, d.year

ORDER BY d.year asc, revenue desc;

WHERE

1. Filter c.region = customers from ASIA remain
2. CUSTKEY of these customers is extracted
3. These CUSTKEYS are joined with CUSTKEYs from
the fact table.
» Resulting in 2 position lists
» 1 sorted (fact table) and 1 unsorted
(dimension table)
» Lists indicate which tuples pass the
predicate (i.e. c.region = ASIA)
4. Extract values from out-of-order positions
(i.e. c.nation) alongside the values from in-order set
of positions for the fact table (i.e. 1o. suppkey,
lo.orderdate, and lo.revenue)

22

Late Materialized Query Plan:
* Predicate is applied on column-store

SELECT c.nation, d.year,

sum f{lo.revenue as revenue

FROM customer AS ¢, lineorder AS 1lo,
supplier AS s, dwdate AS d
WHERE = c.custkey
AND lo.suppkey = s.suppkey
AND jlo.orderdate |= d.datekey
AND c.region = ASIA
AND s.region = ASIA
AND d.year >= 1992 and d.year <= 1997

GROUP BY c.nation, s.nation, d.year
ORDER BY d.year asc, revenue desc;

1. Filter s.region—> customers from ASIA remain
2. SUPPKEY of these suppliers is extracted
3. These SUPPKEYSs are joined with SUPPKEYs from
the fact table.
» Resulting in 2 position lists
» 1 sorted (fact table) and 1 unsorted
(dimension table)
» Lists indicate which tuples pass the
predicate (i.e. s.region = ASIA)
4. Extract values from out-of-order positions
(i.e. s.nation) alongside the values from in-order set
of positions for the fact table (i.e. 1o.custkey,
lo.orderdate, and lo.revenue)

Repeat once more for d. year predicate

23

An Alternative Plan — Invisible Join

* Late materialized join that minimizes out-of-order value extraction
* How is this accomplished?

* Rewriting joins as predicates on foreign key columns in fact table

PHASE 01: Constructing Hash Tables

* Apply each predicate to dimension table = list of keys satisfying predicate
* Construct hash table

Apply region = 'Asia' on Customer table

custkey region nation
1 Asia China > ':;fl:‘ ;23'5 Apply year in [1992,1997] on Date table
§ E:rc?pe Flra(:ce 1and 3 dateid year Hash table with

Sla ndia 01011997 | 1997

Apply region = 'Asia’' on Supplier table 01021997 1997 — %?I%szggg;jg%’

suppkey | region nation 01031997 1997 01031997
1 Asia Russia ... |j—pp Hash tabl
2 Europe Spain with key 1

An Alternative Plan — Invisible Join

PHASE 02: Extract Fact Table Records

e Use hash tables to locate records in fact
table that satisfy predicate

* Probe hash table with each value in foreign
key column

* Intersect positions lists = records which
satisfy ALL predicates

Fact Table
orderkey custkey suppkey | | orderdate revenue
1 3 1 01011997 43256
2 3 2 01011997 33333
3 2 1 01021997 12121
4 1 1 01021997 23233
5 2 2 01021997 45456
6 1 2 01031997 43251
7 3 2 01031997 34235

pV P’°b':/

\probe

Hash table| | Hash table| _ | 1 Hash table with
with keys |= |1 withkey1 | ™| 0 keys 01011997
1and 3 :’ 1 01021997, and|
1
matching fact | o 0 01031997
table bitmap [0
for cust. dim. [0
Join 1
i 0
01 fact table
Bm:jse = |1 tuples that
0 satisfy all join
0 | predicates
0

— o | e | e | o | e

25

An Alternative Plan — Invisible Join

PHASE 03: Extract Dimension Table
Records & Execute Query

* Apply list of satisfying positions to
fact tables

* ldentify foreign key references in the
appropriate dimension table

e Extract corresponding values

Note: “If dimension table key is sorted, contiguous
list of identifiers starting from 1 [..], then the foreign
key actually represents the position of desired tuple
in dimension table”

Fact Table Columns

S L U P S

1]
% fact table dimension table
= tuples th.at’ o
| 1| satisfy all join -
|0 | predicates China
- 0 | France
custkey 0 India
3
3 \
2 i -
1 b\:;rlr:laep _| 3 position | _| India
- = 1 Positions = :
2 extraction lookup China
1
3 nation
. Russia
squ Y Spain
2 bit \
1 Ja'ﬂ.? -1 position | _| Russia
- = 1 Positions = "
; extraction lookup Russia
2 -
2 dateid year
01011997 1997
orderdate 01021997 1997
01011997 01031997 1997
01011997 bi
01021997 > \:gﬂ;p _[01011997 o = 1997
01021997 e 01021997 | vajyes 1997
01021997
01031997
01031997

26

s)nsay uiof

EXperiments

Motivation: C-Store vs System X - SSBM

1.1 | 1.2 1.3 212223 3.1 |32 33|34 |41 |42 |43

27120] 15 43.844.1|46.043.0(428|31.2| 6.5 |44.4|14.1|12.2
1.0 10|02 155]135|11.8]16.1| 6.9 | 6.4 | 3.0 |29.2|22.4| 6.4
404 101 101 |57 4239 11.0,44 /7606 |82 |37 |26
OCS (Row-MV) | 16.0] 9.1 | 84 |33.5]23.5/22.3|48.5|21.517.6|17.4|48.6|38.4|32.1

Figure 5: Baseline performance of C-Store ‘“CS” and System X “RS”, compared with materialized view cases on the same systems.

28

Motivation: C-Store vs System X - SSBM

60
z _ _
z 40| 1 .
: _
N I
F
O_ J.—J:L

11012 11321222331 (3233344142
H RS 2.7 20| 1.5 |43.8[44.1/46.0(43.0|42.8/31.2| 6.5 |44.4|14.1
@RS (MV) 1.0 1.0 02 |155/13.5/11.8|16.1| 6.9 | 6.4 | 3.0 [29.2|22.4
mcs Jo4 01|01 [57]42[39][11.0/44 76|06 82|37
OCS (Row-MV) | 16.0| 9.1 | 8.4 |33.5/23.5/22.3|48.5|21.5/17.6|17.448.6|38.4

Figure 5: Baseline performance of C-Store ‘“CS” and System X “RS”, compared with materialized view cases on the same systems.

29

Motivation: C-Store vs System X - SSBM

60

System X supports advanced
performance features:

L 40| 1 _
* Partitioning _

e Multi-threading 20 -
o n §

1.1 | 1.2 1.3 212223 31|32]33 |34 41|42 |43 |AVG

B RS 271 20| 1.5 [43.8]44.146.0(43.042.8 312 6.5 |44.4|14.1]12.2]25.7
1.0 10| 02 |155(13.5/11.8]16.1] 6.9 | 6.4 | 3.0 |29.2122.4| 6.4
mCs 0401|0157 42[39/11.0/44|76|06|82 37|26
16.0 0.1 | 84 [33.5(23.5/223(48.5(21.5|17.6 17.4148.6|38.4|32.1

Figure S: Baseline performance of C-Store “CS” and System X “RS”’, compared with materialized view cases on the same systems.

Time

X 2.54

30

Column-Store Simulation in a Row-Store

Flight 1

120.0 400.0 Flight 2
1000 1 350.0 -
300.0 -
z %00 2500
8
3 600 200.0
o
g i
£ 400 150.0
100.0 A
0.0
2 o | IN
0.0 .:l—- 0.0 _m |]
T T(B) MV VP Al T T®) MV VP Al
moLl| 27 9.9 1.0 69.7 107.2 mQ21| 438 91.9 15.5 65.1 359.8
mQ12] 20 11.0 1.0 36.0 50.8 mo22| 441 78.4 13.5 48.8 464
o3| 1s L5 02 36.0 48.5 0023|460 304.1 11.8 39.0 439
Flight 3 Flight 4
600.0 700.0
500.0 4] 600.0 -
= 500.0 A
é 400.0 4
3 30001 4000 7
z 300.0
£ 2000 -
200.0
100.0 -
100.0 A
00 I W IDTI 0
T T(B) MV VP Al 00 | M -
mQ3i| 430 91.4 16.1 139.1 4138 T T(®B) MV VP Al
mQ32] s 65.3 6.9 63.9 40.7 mQa1] 444 94.4 29.2 208.6 623.9
0033 312 31.2 6.4 482 531.4 mos2| 141 25.3 24 150.4 280.1
0Q34| 65 6.5 3.0 470 65.5 0043 122 21.2 6.4 86.3 263.9

(a)

Average
250.0
200.0
2 150.0
o
=t
3
2
°
=
= 100.0
50.0
0.0
‘I Average

Materialized views

perform best

7

(b)

Figure 6: (a) Performance numbers for different variants of the row-store by query ight. Here, T is traditional, T(B) is traditional
(bitmap), MV is materialized views, VP is vertical partitioning, and Al is all indexes. (b) Average performance across all queries.

31

Column-Store Simulation in a Row-Store

1200 Flight 1 4000 Senl Averag
3500 J 250.0
100.0 | -
300.0 -
z %00 2500
i 60.0 200,0 -
E oo 1500 | 200.0 - i o
1000 | Outside of MVs, Traditional
200
500 ey .
N a il o - b and Traditional(bitmap)
’ T T(B) MV VP Al) T T(B) MV VP Al
moLl| 27 9.9 1.0 69.7 107.2 mQ21| 438 91.9 15.5 65.1 350.8 2 150.0 - pe rfO rm best on avera ge
Q12| 20 1.0 1.0 36.0 50.8 mQ22| 441 78.4 13.5 488 46.4 =
oQu3| 1s L5 02 36.0 485 0Q23] 460 304.1 11.8 39.0 439 S
2
Flight 3 Flight 4 2
6000 ieht 700.0 ieht £
_ = 100.0
500.0 - 600.0
_*é* 400.0 500.0 4
3 30001 4000 7
‘E 200.0 300.07 50.0
200,0 -
100.0
o mm B h 0, ooy h
T T(B) MV VP Al 00 Ml—— .
(mQ3i 43.0 91.4 16.1 139.1 413.8 T T(B) MV VP Al
@32 43 65.3 6.9 63.9 40.7 mQa1| 444 94.4 29.2 208.6 623.9 0.0
o3| 312 312 64 482 531.4 mQ42| 141 253 2.4 150.4 280.1
oQ34| 65 6.5 3.0 410 65.5 Doa3| 122 212 64 863 263.9
Il Average

(a) x3.1
Figure 6: (a) Performance numbers for different variants of the row-store by query ight. Here, T is traditional, T(B) is traditional
(bitmap), MV is materialized views, VP is vertical partitioning, and Al is all indexes. (b) Average performance across all queries.

32

Column-Store Simulation in a Row-Store

* Why can’t we outperform traditional methods (T and T (B))?

* Tuple Overheads
* Tuple overhead is quite large in fully vertical portioned approach

* Must maintain rids or primary keys with each column = tuple construction
* Adds significant overhead to read operations

* Vertical partitioning (VP) approach is competitive with row store
when few columns are selected

* However, as the number of columns selected grows
* Tuple headers waste space and redundant rids yield inferior performance

Column-Store Simulation in a Row-Store

* Indexing Only (I2) approach has low per-record overhead, but hash
joins with fact table are expensive

» System X is unable to defer joins until later in the query plan
e Cannot retain rids from fact table after joining with a dimension table

Column-Store Performance

* Column stores = No tuple overhead + low join costs

* Tuple headers are stored separately from data
e Column stores rely on position order not keys or rids

 How does it beat RS (MV) as they have similar I/O and no joins are
required from same table.
* With all else being the same CS’ advantage may seralll 3R ©F e e T
result from its optimizations RS (MV) !

60

* Compression

Late materialization j Z I]M ‘ ‘ | mﬂﬂ
Block Iteration S ._H._ﬂ.J I‘\‘Hhﬂ hﬂm

°
202223 3.1 32[33[34 414243 |AVG

° 1 bl H ERS 27| 20| 15 |438]44.1 460 430 42.8|31.2] 6.5 |44.4|14.1]122 257 - ¢

InV|S| e J0|n ERS (MV) 10| 1.0 | 02 [155]13.5 118 16.1| 6.9 | 6.4 | 3.0 [29.2]22.4| 6.4 10.2 7
omcs 04]01]01 57|42 39 11044 |76 |0.6(82]37|26[40

OCS (Row-MV) 16.0] 9.1 | 84 |33.5]23.5 223 48.5 21.5/17.6|17.4|48.6|38.4(32.1|25.9

Figure 5: Baseline performance of C-Store “CS” and System X “RS”, compared with materialized view cases on the same systems.

Column Store Performance

Flight 1 Flight 2
400 g 450 gt Average
350 400 45.0
300 350
- 300
§ 25.0 40.0 -
g 250
2200
> 200
E 15.0
= 150 35.0 -
100 100
[ol 'HN ‘NN ‘IN "IN °H 30.0 - All optimizations
tICL TICL tiCL TiCL ticL TicL Ticl tacL TICL tiCL TiCL ticL TicL Ticl
miLl| 04 0.4 03 0.4 3.8 7.1 334 m2.1| 57 7.4 13.6 14.8 15.0 16.1 40.5 =z e N a b I ed
mi2| ol 0.1 0.1 0.1 2.1 6.1 28.2 m22| 42 6.7 12.6 13.8 13.9 14.9 36.0 2 25.0 -
o3 ol 0.1 0.1 0.1 2.1 6.0 274 [o23] 39 6.5 12.2 13.4 13.6 14.7 35.0 8 :
2
N
Flight 3 Flight 4 2 200 4
60.0 1ght 700 gt g .
=
50.0 60.0
~ w0 500 15.0 -
E
§ 30.0 400
£ 300 10.0 ~
= 200

1 ke e L L

ICL | TICL | GCL | TiCL | tcL | TicL | Ticl . hj_ L
m3.1] 110 17.3 16.0 21.4 319 31.9 56.5 ICcL TICL tiCL TiCL ticL TicL Ticl
}Es.z 44 1.2 | 9.0 141 | 155 | 155 | 34.0 maa] s2 10.7 15.8 17.0 30.1 300 | 663 0.0 !
033 76 126 | 1.5 126 | 135 | 136 | 303 }EM,Z 37 5.5 5.5 6.9 20.4 214 | 608 tiCL
D34 06 07 0.6 07 13.5 | 136 | 302 043] 26 43 4.1 5.4 15.8 16.9 54.4
(W Average| 40 | 6.4 | 7.5 | 93 | 147] 16.0 | 41.0

(a) (b)

Figure 7: (a) Performance numbers for C-Store by|query ight with various optimizations removed. The four letter code indicates
the C-Store con guration: T=tuple-at-a-time processing, t=block processing; I=invisible join enabled, i=disabled; C=compression
enabled, c=disabled; L=late materialization enabled, I=disabled. (b) Average performance numbers for C-Store across all queries.

36

Column Store Performance

w00 Flight 1 450 Flight 2 Average
35.0 400 450
300 4 35.0
—_ 30.0
g 250 40.0 —
g 25.0
2200
Py 200
«EISO
= 150 35.0 +
10.0 100
. . i Ml bl 8
a TreTw T Tm] 1 Late Materializati
tICL TICL tiCL TiCL ticL TicL Ticl tacL TICL tiCL TiCL ticL TicL Ticl ate ate rla IZatIOn —
Wil 0.4 0.4 0.3 0.4 3.8 7.1 334 m2.1 5.7 7.4 13.6 14.8 15.0 16.1 40.5 ==
@12 ol 0.1 0.1 0.1 2.1 6.1 282 @22 42 6.7 12.6 13.8 13.9 14.9 36.0 2 250
o3| ol 0.1 0.1 0.1 2.1 6.0 27.4 [O23] 39 6.5 12.2 134 13.6 147 35.0 8 :
2
N
Flight 3 Flight 4 2 200 4
60.0 1ght 700 gt g .
=
50.0 60.0 I
Z 400 500 15.0 -
‘E .
o
§ o o 2 Compression
.E 30.0 Lv.u
= 200
20.0
10.0
L 50 -
0.0
tCL | TICL | 6CL | TiCL | ticL | TicL | Ticl 00
}!3.1 11.0 17.3 16.0 21.4 31.9 31.9 56.5 tcL TICL tiCL TiCL ticL TicL Ticl
m3.2| 44 11.2 9.0 14.1 15.5 15.5 34.0 ma1| s2 10.7 15.8 17.0 30.1 30.0 66.3 0.0 . e "
033 76 126 | 1.5 126 | 135 | 136 | 303 ma2| 37 5.5 5.5 6.9 204 | 214 | 608 tICL | TICL| tiCL ticL B TicL | Ticl
o34 06 0.7 0.6 0.7 13.5 13.6 30.2 D43] 26 43 4.1 5.4 15.8 16.9 54.4
M Average| 40 | 64 | 7.5 1471 16.0 | 41.0

(@) (b)

Figure 7: (a) Performance numbers for C-Store by|query ight with various optimizations removed. The four letter code indicates
the C-Store con guration: T=tuple-at-a-time processing, t=block processing; I=invisible join enabled, i=disabled; C=compression
enabled, c=disabled; L=late materialization enabled, I=disabled. (b) Average performance numbers for C-Store across all queries.

Conclusion

» Authors successfully illustrate attempts to reproduce I/O performance
of column-stores in row-stores were rather fruitless

* High tuple reconstruction costs
* High per tuple overheads
* Tuple headers
 rids or primary keys
* Optimizations of column-stores were thoroughly explored
* |ldentifying the key advantages over row-stores in late materialization and
compression optimizations
* Proposed a new join technique invisible join
* Extending late materialization via between-predicate rewriting

References

Daniel J. Abadi, Samuel R. Madden, and Nabil Hachem. 2008. Column-stores vs. row-stores: how
different are they really? In Proceedings of the 2008 ACM SIGMOD international conference on
Management of data (SIGMOD '08). Association for Computing Machinery, New York, NY, USA, 967—

980. DOI:https://doi.org/10.1145/1376616.1376712

