
Authours: Daniel Abadi, Sammuel
Madden, Nabil Hachem

Presented By: Aaron Sarson

Column Stores vs. Row-Stores:
How Different Are They

Really?

1

Introduction

• Column-Store database systems have emerged in recent years
• MonetDB
• C-Store

• It is commonly understood that column-stores offer superior performance on I/O intensive
tasks
• However, literature fails to address if these performance gains can be achieved in row-store DBMS

• RQ1. This work investigates if row-store DBMS can achieve similar gains if the physical
architecture emulates that of column-stores

• RQ2. The authours look to discover which features/attributes of column-stores DBMS
contributes most to the performance advantage over row-stores

2

Row-Oriented
Execution

3

Emulating Column-Stores in
Row-Oriented DBMS

• Vertical Partitioning
• Index-Only Plans
• Materialized Views

Authours
outline three

alternative
physical
designs:

4

Vertical Partitioning

ID A B C

1 X X X

2 X X X

3 X X X

Pos A

1 X

2 X

3 X

Pos B

1 X

2 X

3 X

Pos C

1 X

2 X

3 X

Queries perform joins on the
Postion attribute when
retrieving multiple attributes
of a single entity/row

Cons of this approach:
1. Position attribute on every column
2. Row-stores have large headers associated

with each tuple

Wasted memory and/or bandwidth

5

Index-Only Plans

• Base relations are stored in standard row-store format
• Addition: Unclustured B+ tree index on every column (ALL tables)

• Through this approach only access to indices is required, and not the
actual data
• Reduce I/O à No disk access

• Cons of this approach:
1. Predicate-less columns, require index to be scanned to extract values

• This is slower than scanning a heap file

6

Materialized Views

• “Optimal set of materialized views for every query flight”
• optimal view contains only the required columns

• Pre-computed dataset
• Allows access to just the data needed to answer a query

• Advantages of this approach:
• No need to store record-ids (index only) or position (vertical partition)
• Only stores tuple headers once

7

Column-Oriented
Execution

8

Compression

• Column-Oriented Databases à low information entropy
• Compression algorithms perform better under this condition

• Data sorted on a particular column is super-compressible
• Can be run-length encoded

“Intuitively, data stored in columns is more
compressible than data stored in rows”

Aaron

Aaron

Aaron

Bob

Bob

…

3Aaron2Bob…

9

Compression

• Produces a larger compression ratio
• Memory Gains

• Reducing number of disks
• Power consumption

• Performance Gains
• Reduced I/O time à Smaller reads
• If query executor can operator on compressed data performance can be improved further

• Compression differences are largest in row vs column-stores when:
1. Column data is sorted
2. Repeating values are present (runs)

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =
𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑

3Aaron2Bob…

10

Late Materialization

• Column-stores have entity information distributed throughout a disk(s)
• Row-stores have entity information group together (single record)
• Problem?
• Most queries access multiple attributes of an entity (i.e., name, address)
• Many database output standards (i.e. JDBC, ODBC) work at an entity-at-a-time

• Solution?
• At some point, query plans must combine data from multiple columns into rows

representing an entity
• Depending on when this is done à “Early Materialization” or “Late Materialization”

11

• Early Materialization:
• Constructs entity using relevant columns and then applies row-store

operators
Aaron Sam Jennifer Lucy Alex Luke

0 1 2 3 4 5

Canada England Canada France Italy Canada

0 1 2 3 4 5

Toronto London London Paris Venice Waterloo

0 1 2 3 4 5

SELECT Name, City FROM Customer WHERE Nation = “Canada”

12

• Early Materialization:
• Constructs entity using relevant columns and then applies row-store

operators

Aaron Sam Jennifer Lucy Alex Luke

0 1 2 3 4 5

Canada England Canada France Italy Canada

0 1 2 3 4 5

Toronto London London Paris Venice Waterloo

0 1 2 3 4 5

Aaron, Canada, Toronto

Sam, England, London

Jennifer, Canada, London

Lucy, France, Paris

Alex, Italy, Venice

Luke, Canada, Waterloo

SELECT Name, City FROM Customer WHERE Nation = “Canada”

Aaron, Canada, Toronto

Jennifer, Canada, London
Luke, Canada, Waterloo 13

• Late Materialization:
• Operates on columns

Aaron Sam Jennifer Lucy Alex Luke

0 1 2 3 4 5

Canada England Canada France Italy Canada

0 1 2 3 4 5

Toronto London London Paris Venice Waterloo

0 1 2 3 4 5

SELECT Name, City FROM Customer WHERE Nation = “Canada”

0 2 5

14

• Late Materialization:
• Operates on columns

Aaron Sam Jennifer Lucy Alex Luke

0 1 2 3 4 5

Canada England Canada France Italy Canada

0 1 2 3 4 5

Toronto London London Paris Venice Waterloo

0 1 2 3 4 5

SELECT Name FROM Customer WHERE Nation = “Canada”
AND City = “London”

0 2 5

1 2

AND

2

15

• Late Materialization:
• Operates on columns

Aaron Sam Jennifer Lucy Alex Luke

0 1 2 3 4 5

Canada England Canada France Italy Canada

0 1 2 3 4 5

Toronto London London Paris Venice Waterloo

0 1 2 3 4 5

SELECT Name FROM Customer WHERE Nation = “Canada”
AND City = “London”

0 2 5

1 2

AND

2

16

Late Materialization - Advantages

1. Selection and aggregation operators tend to reduce the number of
tuples which need to be constructed
Ø Think of the number tuples we needed to construct in early materialization

2. Data compressed using column-oriented compression methods must
be decompressed during the tuple construction process
Ø Early materialization constructs many tuples at start
Ø Late materialization constructs few tuples at end

3. Cache performance improved
Ø Cache line is populated with related data (High data locality of column-stores)

17

A Typical Query Structure

Restrict the set of tuples using selection
predicates on 1+ dimension tables

Next, perform aggregation often grouping
on other table attributes

18

Traditional Query Plan:
• Perform joins in order of predicate selectivity

Assuming c.region = ASIA
is the most selective

1. Join customer and lineorder
2. Filter lineorderà customers from

ASIA remain
3. nation of these customers is added

to customer-order

19

Traditional Query Plan:

1. Join supplier and lineorder
2. Filter lineorderà suppliers from

ASIA remain
3. nation of these supliers is added to

customer-order

20

Traditional Query Plan:

1. Join dworder and lineorder
2. Filter lineorderà customers who

ordered between the years 1992 and
1997 remain

3. year of these customers ordered is
added to customer-order

Results of joins to are finally GROUPed and
aggregated (i.e. sum)

21

Late Materialized Query Plan:
• Predicate is applied on column-store

1. Filter c.regionà customers from ASIA remain
2. CUSTKEY of these customers is extracted
3. These CUSTKEYs are joined with CUSTKEYs from

the fact table.
Ø Resulting in 2 position lists

Ø 1 sorted (fact table) and 1 unsorted
(dimension table)

Ø Lists indicate which tuples pass the
predicate (i.e. c.region = ASIA)

4. Extract values from out-of-order positions
(i.e. c.nation) alongside the values from in-order set
of positions for the fact table (i.e. lo.suppkey,
lo.orderdate, and lo.revenue)

22

Late Materialized Query Plan:
• Predicate is applied on column-store

1. Filter s.regionà customers from ASIA remain
2. SUPPKEY of these suppliers is extracted
3. These SUPPKEYs are joined with SUPPKEYs from

the fact table.
Ø Resulting in 2 position lists

Ø 1 sorted (fact table) and 1 unsorted
(dimension table)

Ø Lists indicate which tuples pass the
predicate (i.e. s.region = ASIA)

4. Extract values from out-of-order positions
(i.e. s.nation) alongside the values from in-order set
of positions for the fact table (i.e. lo.custkey,
lo.orderdate, and lo.revenue)

Repeat once more for d.year predicate

23

An Alternative Plan – Invisible Join
• Late materialized join that minimizes out-of-order value extraction
• How is this accomplished?

• Rewriting joins as predicates on foreign key columns in fact table

PHASE 01: Constructing Hash Tables
• Apply each predicate to dimension table à list of keys satisfying predicate
• Construct hash table

24

An Alternative Plan – Invisible Join

PHASE 02: Extract Fact Table Records
• Use hash tables to locate records in fact

table that satisfy predicate
• Probe hash table with each value in foreign

key column
• Intersect positions lists à records which

satisfy ALL predicates

25

An Alternative Plan – Invisible Join

PHASE 03: Extract Dimension Table
Records & Execute Query

• Apply list of satisfying positions to
fact tables
• Identify foreign key references in the

appropriate dimension table
• Extract corresponding values

Note: “If dimension table key is sorted, contiguous
list of identifiers starting from 1 [..], then the foreign
key actually represents the position of desired tuple
in dimension table”

26

Experiments

27

Motivation: C-Store vs System X - SSBM

x 6.425

28

Motivation: C-Store vs System X - SSBM

x 2.55

29

Motivation: C-Store vs System X - SSBM

x 2.54

System X supports advanced
performance features:
• Partitioning
• Multi-threading

30

Column-Store Simulation in a Row-Store

Materialized views
perform best

31

Column-Store Simulation in a Row-Store

Outside of MVs, Traditional
and Traditional(bitmap)
perform best on average

Note: These are not
attempts to emulate

column-stores

x 3.1

32

Column-Store Simulation in a Row-Store
• Why can’t we outperform traditional methods (T and T(B))?
• Tuple Overheads

• Tuple overhead is quite large in fully vertical portioned approach
• Must maintain rids or primary keys with each column à tuple construction

• Adds significant overhead to read operations

• Vertical partitioning (VP) approach is competitive with row store
when few columns are selected
• However, as the number of columns selected grows

• Tuple headers waste space and redundant rids yield inferior performance

33

Column-Store Simulation in a Row-Store
• Indexing Only (IA) approach has low per-record overhead, but hash

joins with fact table are expensive
• System X is unable to defer joins until later in the query plan

• Cannot retain rids from fact table after joining with a dimension table

34

Column-Store Performance

Recall: AVG CS is faster than
RS (MV) !

• Column stores à No tuple overhead + low join costs
• Tuple headers are stored separately from data
• Column stores rely on position order not keys or rids

• How does it beat RS(MV)as they have similar I/O and no joins are
required from same table.
• With all else being the same CS’ advantage may

result from its optimizations
• Compression
• Late materialization
• Block Iteration
• Invisible Join

35

Column Store Performance

All optimizations
enabled

36

Column Store Performance

37

1 Late Materialization

2 Compression

Conclusion
• Authors successfully illustrate attempts to reproduce I/O performance

of column-stores in row-stores were rather fruitless
• High tuple reconstruction costs
• High per tuple overheads

• Tuple headers
• rids or primary keys

• Optimizations of column-stores were thoroughly explored
• Identifying the key advantages over row-stores in late materialization and

compression optimizations
• Proposed a new join technique invisible join
• Extending late materialization via between-predicate rewriting

38

References
Daniel J. Abadi, Samuel R. Madden, and Nabil Hachem. 2008. Column-stores vs. row-stores: how
different are they really? In Proceedings of the 2008 ACM SIGMOD international conference on
Management of data (SIGMOD '08). Association for Computing Machinery, New York, NY, USA, 967–
980. DOI:https://doi.org/10.1145/1376616.1376712

39

