
HIGH-PERFORMANCE CONCURRENCY
CONTROL MECHANISMS FOR MAIN-
MEMORY DATABASES

Boren Zang,
David R. Cheriton School of Computer Science

7/6/22

Overview
§ Background of MVCC

§ Optimistic MVCC

§ Pessimistic MVCC

§ Evaluation

§ Personal reflection

PRESENTATION TITLE PAGE 2

Main Memory Database
§ Data reside in memory.

§ Support high transaction rates.

§ Current concurrency control methods (exp. Single-version locking) do not always
scale.

PRESENTATION TITLE PAGE 3

Multiversion Concurrency Control (MVCC)
§ Serialization of transactions

§ Read stability

§ The readability should not change when a transaction tries to read a version of the record.

§ Phantom avoidance

§ Scans do not return new transactions

PRESENTATION TITLE PAGE 4

Lower isolation level than serialization
§ Repeatable read: No phantom avoidance.

§ Read committed: Only guarantee reads are committed. No validation is required.

§ Snapshot isolation: Read as beginning of versions. No validation is required.

PRESENTATION TITLE PAGE 5

Example

PRESENTATION TITLE PAGE 6

TRANSACTION PHASES

PRESENTATION TITLE PAGE 7

Normal processing phase

Preparation phase

Postprocessing phase.

Validation-based
OPTIMISTIC TRANSACTIONS

PRESENTATION TITLE PAGE 8

Normal Processing Phase
§ Start scan

§ Record information about indexes and predicates

§ Check predicate

§ Check visibility
§ May need commit dependency check

§ Read version
§ Store versions into a ReadSet for further validation

§ Check updatability
§ Updatable: End field equals infinity or it contains a transaction ID and the referenced transaction

has aborted

PRESENTATION TITLE PAGE 9

Normal Processing Phase (cont.)
§ Update version

§ The transaction creates a new version

§ Set Transaction ID to End Field

§ Delete version
§ Update without creating new version

PRESENTATION TITLE PAGE 10

Preparing Phase
§ Read validation

§ Read visibility check

§ Check for phantoms

PRESENTATION TITLE PAGE 11

Lock-based

PESSIMISTIC TRANSACTIONS

PRESENTATION TITLE PAGE 12

Lock Types
§ Record Locks

§ Locks on versions

§ Ensure version readability

§ Bucket Locks
§ Locks on Buckets

§ Check for phantoms

PRESENTATION TITLE PAGE 13

Wait-for dependencies
§ Eagerly update

§ Incoming dependency: Wait on other transactions

§ Outcoming dependency: Waited by other transactions

§ Wait-for graph: Directed graph for deadlock detection

PRESENTATION TITLE PAGE 14

Normal Processing Phase
§ Start Scan: A bucketlock is taken out to prevent phantom

§ Check predicate

§ Check Visibility: Record lock checking

§ Read Version: Acquire locks

§ Check updatability

§ Update Version: Take out wait-for dependencies if the current version is locked

§ Delete Version: Same as updating version

§ Release locks.

PRESENTATION TITLE PAGE 15

Experiment Setup
§ two-socket Intel Xeon X5650 @ 2.67 GHz (Nehalem) that has six cores per socket.

Hyper- Threading was enabled. The system has 48 GB of memory, 12 MB L3 cache
per socket, 256 KB L2 cache per core, and two separate 32 KB L1-I and L1-D
caches per core.

PRESENTATION TITLE PAGE 16

Experimental Results

PRESENTATION TITLE PAGE 17

R=10 and W=2 in each transaction
Table with 10 million rows

R=10 and W=2 in each transaction
Table with 1000 rows

Different isolation level

PRESENTATION TITLE PAGE 18

Impact of Short Read Transactions

PRESENTATION TITLE PAGE 19

Fixed threads #: 24

Impact of Long Read Transactions

PRESENTATION TITLE PAGE 20

TATP Results

PRESENTATION TITLE PAGE 21

Personal reflection
§ No real-world evaluation of serialized level.

§ Garbage collection can be a future direction

PRESENTATION TITLE PAGE 22

PRESENTATION TITLE PAGE 23

