
C-STORE: A COLUMN-ORIENTED DBMS

CS 848 Modern Database Systems

Presenter- Amy Bhatia

22/6/22

Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch 
Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth 
O’Neil, Pat O’Neil, Alex Rasin, Nga Tran, Stan Zdonik



Outline
§ Introduction

§ Data Model

§ RS

§ WS

§ Storage Management

§ Updates and Transactions

§ Recovery

§ Tuple Mover

§ Query Execution

§ Performance

§ Conclusion

PAGE  2C-STORE: A COLUMN ORIENTED DBMS



The proposal

PAGE  3

INTRODUCTION

Row-store DBMS

• Attributes of a row are placed 
contiguously in storage

• Write-optimized system
• More suitable for OLTP-style

applications

Column-store DBMS

• Values for each attribute (column) 
are stored contiguously

• Read-optimized system
• Data warehouses, customer 

relationship management systems, 
ad-hoc inquiry systems

C-STORE: A COLUMN ORIENTED DBMS



Why Column-store DBMS?
§ Can only bring required attribute values into memory

§ Typical queries involve aggregates over important attributes

§ Easy to encode together column values of the same data type

§ Data can be packed densely together rather than aligned by byte or word 
boundaries.

PAGE  4

INTRODUCTION

C-STORE: A COLUMN ORIENTED DBMS



C-Store
§ Stores a group of columns in the form of projections

§ A distributed architecture where different projections could occupy different
nodes

§ Supports k-safe failure mode

§ Has both a read-optimized column store and an update/insert oriented writeable
store

PAGE  5

INTRODUCTION

C-STORE: A COLUMN ORIENTED DBMS



Architecture

PAGE  6

DESIGN

§ Support read-optimized workload

§ Avoid locking with write based 
workload

§ Two logical sets:
§ WS supports high performance inserts

§ RS supports high performance reads

§ Tuple mover moves updated records 
from WS to RS

C-STORE: A COLUMN ORIENTED DBMS



Architecture

PAGE  7

DESIGN

C-STORE: A COLUMN ORIENTED DBMS

§ Queries (in SQL) must access data 
in both storage systems.

§ WS-inserts, RS-deletes 

§ Updates work as inserts followed
by deletes

§ Read only queries use snapshot
isolation

§ Supports large ad-hoc queries, 
small updates,  continuous inserts



Projections
§ Groups of columns which are 

stored in physically contiguous 
manner

§ Anchored on a logical table T

§ Can also contain columns from
other tables that are related to T
through foreign keys, etc.

PAGE  8

DATA MODEL

C-STORE: A COLUMN ORIENTED DBMS

Another table DEPT(dname, floor)

Set of possible projections:

EMP1 (name, age)
EMP2 (dept, age, DEPT.floor)
EMP3 (name, salary)
DEPT1 (dname, floor)



Sort Key

§ Tuples in a projection are stored 
column-wise

§ K attributes will be stored in K-
data structures

§ All are sorted on a sort key which 
is a column or a set of columns in 
the projection

PAGE  9

DATA MODEL

C-STORE: A COLUMN ORIENTED DBMS

Another table DEPT(dname, floor)

Set of possible projections with sort order:

EMP1 (name, age| age)
EMP2 (dept, age, DEPT.floor| DEPT.floor)
EMP3 (name, salary| salary)
DEPT1 (dname, floor| floor)



Segments and Storage Keys

PAGE  10

DATA MODEL

C-STORE: A COLUMN ORIENTED DBMS

Segments

• Every projection is divided into 
segments

• Value-based partitioning on the sort 
key

• Each has a segment identifier Sid>0

Storage Keys

• In each segment, different column
values belonging to the same record 
are identified by SK

• In RS- Inferred from tuple’s physical 
position

• In WS- Integers largest than the 
largest integer storage key for any 
segment in RS



Join Indices

PAGE  11

DATA MODEL

C-STORE: A COLUMN ORIENTED DBMS

§ Used to reconstruct a table from its 
projections

Table T has projections T1, T2.

A tuple in a segment of T1 will have 
corresponding join index (s,k)

s: SID in T2

k: Storage key of corresponding tuple in 
T2

Maintaining join index is expensive.
Any update to a projection leads to an
update of the incoming or outgoing join
index. Therefore, each column is stored
in several projections.



RS encoding schemes

PAGE  12

RS

C-STORE: A COLUMN ORIENTED DBMS

1. Self-order, few distinct values:
(v,f,n) 

1,1,1,1,3,3,3,3,3,3,3,5,5,5
(1, 1,4), (3,5,7),(5,12,3)

2. Foreign-order, few distinct values:
(v,b) 

0,0,1,1,2,1,0,2,1
(0, 110000100), (1, 001101001), (2, 

000010010)

3. Self-order, many distinct values:
1,4,7,7,8,12
(1,3,3,0,1,4)

4. Foreign-order, few distinct values:
leave it unencoded 



WS

PAGE  13

WS

C-STORE: A COLUMN ORIENTED DBMS

§ Similar physical structure as RS to avoid writing query optimizers differently

§ The difference being columns are not encoded since it is assumed that WS is trivial 
in size as compared to RS

§ This also ensures efficient updates

§ Sid and SK identify the same tuple in RS and WS

§ Every column represented as (v, sk) and a B-tree is built for sk

§ Sort key s represented as (s, sk)



Storage Management

PAGE  14

STORAGE MANAGEMENT

C-STORE: A COLUMN ORIENTED DBMS

§ A storage allocator will allocate segments 
to nodes in a grid system 

§ Co-locate the following
§ same columns in the projection

§ same segments of RS and WS

§ the sender segment like EMP3 and the join 
index as was shown in Figure 2



Updates and Transactions

PAGE  15

UPDATES AND TRANSACTIONS

C-STORE: A COLUMN ORIENTED DBMS

§ Inserts (WS)- updating all the columns in the given projection and also the 
sorted-key column. 

§ Node is responsible for creating a new storage key for this entry. 

§ The unique storage key= node_id + local_counter. This local_counter is unique 
and greater than the largest key in RS to ensure a unique value across all nodes.

§ Locking is minimized using snapshot isolation



Snapshot Isolation

PAGE  16C-STORE: A COLUMN ORIENTED DBMS

§ Every projection segment in WS has Insertion Vector (IV)

§ IV has epochs or time-ranges at which records are inserted

§ Every projection has Deleted Record Vector (DRV) which contains the deletion 
status and epoch for each record

§ High watermark (HWM) denotes the time at which snapshot isolation ran

§ Low watermark (LWM) indicates the latest time at which a read-only query can be 
run on the snapshot

UPDATES AND TRANSACTIONS



Snapshot Isolation

PAGE  17C-STORE: A COLUMN ORIENTED DBMS

UPDATES AND TRANSACTIONS



Read-write transactions

PAGE  18C-STORE: A COLUMN ORIENTED DBMS

§ Each transaction gets a master.

§ Masters will split the work of the transaction and assign it to appropriate nodes

§ Once all nodes finish their work, master will send a “commit” message, release 
logs and delete the undo log

UPDATES AND TRANSACTIONS



Recovery

PAGE  19

RECOVERY

C-STORE: A COLUMN ORIENTED DBMS

§ K-safety: K sites can fail in time t to still keep transactional consistency

§ If failed node has no loss of data, it can be rectified by using updates that will be 
queued for it elsewhere in the network.

§ If both RS and WS crash, reconstruct both segments from other projections and 
joint indexes in the system

§ WS being damaged is a more common case. 
§ The first step would be to check if it can be retrieved completely from other projections. 

§ If the common case becomes otherwise, the authors propose to make the tuple mover log all the
information it moves to RS



Tuple Mover

PAGE  20

TUPLE MOVER

C-STORE: A COLUMN ORIENTED DBMS

§ Move blocks of tuples from WS to RS segment

§ The records deleted before LWM are ignored

§ The rest were moved by creating a new segment in RS with the updated data and 
then deleting the older version of that segment 

§ Each tuple gets a new storage key and SID and join indices also need to be 
maintained



Query Operators and Plan Format

PAGE  21

QUERY EXECUTION

C-STORE: A COLUMN ORIENTED DBMS

§ 10 node types with possible operators: decompress, select, mask, project, sort, 
aggregation operators, concat, permute, join and bitstring operators.

§ Query plan has a tree of the operators with access methods at leaves and iterators
serving as the interface between connected nodes.

§ A non-leaf node gets data from its children through the interface



Query Optimization

PAGE  22C-STORE: A COLUMN ORIENTED DBMS

§ A Selinger-style optimiser that uses cost-based estimation for plan construction

§ Query optimization in this setting differs from traditional query optimization:
§ the need to consider compressed representations of data, and 

§ the decisions about when to mask a projection using a bitstring. 

§ Execution cost depends on the compression type of the input

§ The main optimizer decision: decide which set of projections to use for a given 
query

QUERY EXECUTION



Performance

PAGE  23

PERFORMANCE

C-STORE: A COLUMN ORIENTED DBMS

§ Have implemented only single site read-only queries

§ Used a simplified version of TPC-H benchmark with 7 queries

§ Compared the performance of three systems each with a storage budget of 2.7GB-
C-Store, a row-oriented DBMS, a-column oriented DBMS



Performance Test Results

PAGE  24C-STORE: A COLUMN ORIENTED DBMS

§ Disk Usage in standard relational schemas (left) materialized schemas (right)

§ Query execution time in standard relational schemas (left) materialized schemas (right)

PERFORMANCE



Performance Test Results Summary

PAGE  25C-STORE: A COLUMN ORIENTED DBMS

§ C-store is much faster than either commercial product
§ Column representation – avoids reads of unused attributes 

§ Storing overlapping projections, rather than the whole table – allows storage of multiple 
orderings of a column as appropriate. 

§ Better compression of data – allows more orderings in the same space

§ Query operators operate on compressed representation – mitigates the storage barrier 
problem of current processors. 

PERFORMANCE



Summary

PAGE  26

CONCLUSION

C-STORE: A COLUMN ORIENTED DBMS

§ Proposed a concept of read-mostly database

§ A hybrid architecture that permits column store transactions

§ An emphasis on compressing data and coding data values to save space while 
storing representations of data on disc

§ A data model that, instead of the usual tables, secondary indexes, and projections, 
consists of overlapping projections of tables

§ Effective isolation of snapshots



References

PAGE  27

Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch 
Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth 
O'Neil, Pat O'Neil, Alex Rasin, Nga Tran, and Stan Zdonik. 2005. C-store: a 
column-oriented DBMS. In Proceedings of the 31st international conference on 
Very large data bases (VLDB '05). VLDB Endowment, 553–564.

C-STORE: A COLUMN ORIENTED DBMS



THANK YOU

PAGE  28C-STORE: A COLUMN ORIENTED DBMS


