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The proposal
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INTRODUCTION

Row-store DBMS

• Attributes of a row are placed 
contiguously in storage

• Write-optimized system
• More suitable for OLTP-style

applications

Column-store DBMS

• Values for each attribute (column) 
are stored contiguously

• Read-optimized system
• Data warehouses, customer 

relationship management systems, 
ad-hoc inquiry systems
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Why Column-store DBMS?
§ Can only bring required attribute values into memory

§ Typical queries involve aggregates over important attributes

§ Easy to encode together column values of the same data type

§ Data can be packed densely together rather than aligned by byte or word 
boundaries.
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C-Store
§ Stores a group of columns in the form of projections

§ A distributed architecture where different projections could occupy different
nodes

§ Supports k-safe failure mode

§ Has both a read-optimized column store and an update/insert oriented writeable
store
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Architecture
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DESIGN

§ Support read-optimized workload

§ Avoid locking with write based 
workload

§ Two logical sets:
§ WS supports high performance inserts

§ RS supports high performance reads

§ Tuple mover moves updated records 
from WS to RS
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Architecture

PAGE  7

DESIGN
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§ Queries (in SQL) must access data 
in both storage systems.

§ WS-inserts, RS-deletes 

§ Updates work as inserts followed
by deletes

§ Read only queries use snapshot
isolation

§ Supports large ad-hoc queries, 
small updates,  continuous inserts



Projections
§ Groups of columns which are 

stored in physically contiguous 
manner

§ Anchored on a logical table T

§ Can also contain columns from
other tables that are related to T
through foreign keys, etc.
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DATA MODEL
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Another table DEPT(dname, floor)

Set of possible projections:

EMP1 (name, age)
EMP2 (dept, age, DEPT.floor)
EMP3 (name, salary)
DEPT1 (dname, floor)



Sort Key

§ Tuples in a projection are stored 
column-wise

§ K attributes will be stored in K-
data structures

§ All are sorted on a sort key which 
is a column or a set of columns in 
the projection
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DATA MODEL
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Another table DEPT(dname, floor)

Set of possible projections with sort order:

EMP1 (name, age| age)
EMP2 (dept, age, DEPT.floor| DEPT.floor)
EMP3 (name, salary| salary)
DEPT1 (dname, floor| floor)



Segments and Storage Keys
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DATA MODEL
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Segments

• Every projection is divided into 
segments

• Value-based partitioning on the sort 
key

• Each has a segment identifier Sid>0

Storage Keys

• In each segment, different column
values belonging to the same record 
are identified by SK

• In RS- Inferred from tuple’s physical 
position

• In WS- Integers largest than the 
largest integer storage key for any 
segment in RS



Join Indices
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DATA MODEL
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§ Used to reconstruct a table from its 
projections

Table T has projections T1, T2.

A tuple in a segment of T1 will have 
corresponding join index (s,k)

s: SID in T2

k: Storage key of corresponding tuple in 
T2

Maintaining join index is expensive.
Any update to a projection leads to an
update of the incoming or outgoing join
index. Therefore, each column is stored
in several projections.



RS encoding schemes
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RS
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1. Self-order, few distinct values:
(v,f,n) 

1,1,1,1,3,3,3,3,3,3,3,5,5,5
(1, 1,4), (3,5,7),(5,12,3)

2. Foreign-order, few distinct values:
(v,b) 

0,0,1,1,2,1,0,2,1
(0, 110000100), (1, 001101001), (2, 

000010010)

3. Self-order, many distinct values:
1,4,7,7,8,12
(1,3,3,0,1,4)

4. Foreign-order, few distinct values:
leave it unencoded 



WS
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WS
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§ Similar physical structure as RS to avoid writing query optimizers differently

§ The difference being columns are not encoded since it is assumed that WS is trivial 
in size as compared to RS

§ This also ensures efficient updates

§ Sid and SK identify the same tuple in RS and WS

§ Every column represented as (v, sk) and a B-tree is built for sk

§ Sort key s represented as (s, sk)



Storage Management
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STORAGE MANAGEMENT
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§ A storage allocator will allocate segments 
to nodes in a grid system 

§ Co-locate the following
§ same columns in the projection

§ same segments of RS and WS

§ the sender segment like EMP3 and the join 
index as was shown in Figure 2



Updates and Transactions
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UPDATES AND TRANSACTIONS
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§ Inserts (WS)- updating all the columns in the given projection and also the 
sorted-key column. 

§ Node is responsible for creating a new storage key for this entry. 

§ The unique storage key= node_id + local_counter. This local_counter is unique 
and greater than the largest key in RS to ensure a unique value across all nodes.

§ Locking is minimized using snapshot isolation



Snapshot Isolation
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§ Every projection segment in WS has Insertion Vector (IV)

§ IV has epochs or time-ranges at which records are inserted

§ Every projection has Deleted Record Vector (DRV) which contains the deletion 
status and epoch for each record

§ High watermark (HWM) denotes the time at which snapshot isolation ran

§ Low watermark (LWM) indicates the latest time at which a read-only query can be 
run on the snapshot

UPDATES AND TRANSACTIONS



Snapshot Isolation
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UPDATES AND TRANSACTIONS



Read-write transactions
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§ Each transaction gets a master.

§ Masters will split the work of the transaction and assign it to appropriate nodes

§ Once all nodes finish their work, master will send a “commit” message, release 
logs and delete the undo log

UPDATES AND TRANSACTIONS



Recovery
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RECOVERY
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§ K-safety: K sites can fail in time t to still keep transactional consistency

§ If failed node has no loss of data, it can be rectified by using updates that will be 
queued for it elsewhere in the network.

§ If both RS and WS crash, reconstruct both segments from other projections and 
joint indexes in the system

§ WS being damaged is a more common case. 
§ The first step would be to check if it can be retrieved completely from other projections. 

§ If the common case becomes otherwise, the authors propose to make the tuple mover log all the
information it moves to RS



Tuple Mover
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TUPLE MOVER
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§ Move blocks of tuples from WS to RS segment

§ The records deleted before LWM are ignored

§ The rest were moved by creating a new segment in RS with the updated data and 
then deleting the older version of that segment 

§ Each tuple gets a new storage key and SID and join indices also need to be 
maintained



Query Operators and Plan Format
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QUERY EXECUTION
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§ 10 node types with possible operators: decompress, select, mask, project, sort, 
aggregation operators, concat, permute, join and bitstring operators.

§ Query plan has a tree of the operators with access methods at leaves and iterators
serving as the interface between connected nodes.

§ A non-leaf node gets data from its children through the interface



Query Optimization
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§ A Selinger-style optimiser that uses cost-based estimation for plan construction

§ Query optimization in this setting differs from traditional query optimization:
§ the need to consider compressed representations of data, and 

§ the decisions about when to mask a projection using a bitstring. 

§ Execution cost depends on the compression type of the input

§ The main optimizer decision: decide which set of projections to use for a given 
query

QUERY EXECUTION



Performance
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PERFORMANCE
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§ Have implemented only single site read-only queries

§ Used a simplified version of TPC-H benchmark with 7 queries

§ Compared the performance of three systems each with a storage budget of 2.7GB-
C-Store, a row-oriented DBMS, a-column oriented DBMS



Performance Test Results
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§ Disk Usage in standard relational schemas (left) materialized schemas (right)

§ Query execution time in standard relational schemas (left) materialized schemas (right)

PERFORMANCE



Performance Test Results Summary
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§ C-store is much faster than either commercial product
§ Column representation – avoids reads of unused attributes 

§ Storing overlapping projections, rather than the whole table – allows storage of multiple 
orderings of a column as appropriate. 

§ Better compression of data – allows more orderings in the same space

§ Query operators operate on compressed representation – mitigates the storage barrier 
problem of current processors. 

PERFORMANCE



Summary
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CONCLUSION
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§ Proposed a concept of read-mostly database

§ A hybrid architecture that permits column store transactions

§ An emphasis on compressing data and coding data values to save space while 
storing representations of data on disc

§ A data model that, instead of the usual tables, secondary indexes, and projections, 
consists of overlapping projections of tables

§ Effective isolation of snapshots
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