
Topics in Database Systems:
Modern DBMS
CS848 Spring 2022

David Toman

(POSTPROCESSING AND EFFICIENCY)

David Toman (University of Waterloo) CS848 Spring 2022 1 / 19

QUERY COMPILATION

PART II: WHAT CAN IT DO?

David Toman (University of Waterloo) CS848 Spring 2022 2 / 19

What can this do?

GOAL
Generate query plans that compete with hand-written programs in C

1 linked data structures, pointers, . . .
2 access to search structures (index access and selection),
3 hash-based access to data (including hash-joins),
4 multi-level storage (aka disk/remote/distributed files), . . .
5 materialized views (FO-definable),
6 updates through logical schema (needs id invention!), . . .

. . . all without having to code (too much) in C/C++ !

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 3 / 19

Two-level Storage

The access path ea is refined by emppages/1/0 and emprecords/2/1:
emppages returns (sequentially) disk pages containing emp records, and
emprecords given a disc page, returns emp records in that page.

5 List all employees with the same name
(∃z,u, v ,w , t .employee(x1, z,u, v) ∧ employee(x2, z,w , t)):

∃y , z,w , v ,p,q.emppages(p) ∧ emppages(q)
∧ emprecords(p, y) ∧ emp-num(y , x1) ∧ emp-name(y ,w)
∧ emprecords(q, z) ∧ emp-num(z, x2) ∧ emp-name(z, v)

∧ compare(w , v).

⇒ this plan implements the block nested loops join algorithm.

. . . more examples inMorgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: M. Tamer Özsu, University of Waterloo

CM& Morgan Claypool Publishers&SYNTHESIS LECTURES ON DATA MANAGEMENT

SYNTHESIS LECTURES ON DATA MANAGEMENT

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

M. Tamer Özsu, Series Editor

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

ISBN: 978-1-60845-278-1

9 781608 452781

90000

Series ISSN: 2153-5418

FUNDAM
ENTALS OF PHYSICAL DESIGN AND Q

UERY COM
PILATION

Fundamentals of Physical Design and
Query Compilation

University of Waterloo

Query compilation is the problem of translating user requests formulated over purely conceptual and
domain specific ways of understanding data, commonly called logical designs, to efficient executable
programs called query plans. Such plans access various concrete data sources through their low-level
often iterator-based interfaces. An appreciation of the concrete data sources, their interfaces and how
such capabilities relate to logical design is commonly called a physical design. This book is an introduction
to the fundamental methods underlying database technology that solves the problem of query
compilation. The methods are presented in terms of first-order logic which serves as the vehicle for
specifying physical design, expressing user requests and query plans, and understanding how query
plans implement user requests.

Fundamentals of
Physical Design and
Query Compilation

David Toman

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: M. Tamer Özsu, University of Waterloo

CM& Morgan Claypool Publishers&SYNTHESIS LECTURES ON DATA MANAGEMENT

SYNTHESIS LECTURES ON DATA MANAGEMENT

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

M. Tamer Özsu, Series Editor

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

ISBN: 978-1-60845-278-1

9 781608 452781

90000

Series ISSN: 2153-5418

FUNDAM
ENTALS OF PHYSICAL DESIGN AND Q

UERY COM
PILATION

Fundamentals of Physical Design and
Query Compilation

University of Waterloo

Query compilation is the problem of translating user requests formulated over purely conceptual and
domain specific ways of understanding data, commonly called logical designs, to efficient executable
programs called query plans. Such plans access various concrete data sources through their low-level
often iterator-based interfaces. An appreciation of the concrete data sources, their interfaces and how
such capabilities relate to logical design is commonly called a physical design. This book is an introduction
to the fundamental methods underlying database technology that solves the problem of query
compilation. The methods are presented in terms of first-order logic which serves as the vehicle for
specifying physical design, expressing user requests and query plans, and understanding how query
plans implement user requests.

Fundamentals of
Physical Design and
Query Compilation

David Toman

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: M. Tamer Özsu, University of Waterloo

CM& Morgan Claypool Publishers&SYNTHESIS LECTURES ON DATA MANAGEMENT

SYNTHESIS LECTURES ON DATA MANAGEMENT

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

M. Tamer Özsu, Series Editor

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

ISBN: 978-1-60845-278-1

9 781608 452781

90000

Series ISSN: 2153-5418

FUNDAM
ENTALS OF PHYSICAL DESIGN AND Q

UERY COM
PILATION

Fundamentals of Physical Design and
Query Compilation

University of Waterloo

Query compilation is the problem of translating user requests formulated over purely conceptual and
domain specific ways of understanding data, commonly called logical designs, to efficient executable
programs called query plans. Such plans access various concrete data sources through their low-level
often iterator-based interfaces. An appreciation of the concrete data sources, their interfaces and how
such capabilities relate to logical design is commonly called a physical design. This book is an introduction
to the fundamental methods underlying database technology that solves the problem of query
compilation. The methods are presented in terms of first-order logic which serves as the vehicle for
specifying physical design, expressing user requests and query plans, and understanding how query
plans implement user requests.

Fundamentals of
Physical Design and
Query Compilation

David Toman

.

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 4 / 19

DUPLICATES AND POST-PROCESSING

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 5 / 19

Query Context

Assume Q is a query plan that contains a subplan Q1.

Write Q[Q1] to denote this and call Q[], in which Q1 has been replaced by a
placeholder “[]”, a context.

Given a context Qc , a user query Uqp(Qc) abstracting properties of variables
within the context is defined as follows.

Uqp(Qc) ≡



> Qc = “[]”

Uq(Q2) ∧ Uqp(Qc
1) Qc = “Qc

1 [Q2 ∧ []]” or “Qc
1 [[] ∧Q2]”

∃x .Uqp(Qc
1) Qc = “Qc

1 [∃x .[]]”

Uqp(Qc
1) Qc = “Qc

1 [{[]}]”, “Qc
1 [¬[]]”, “Qc

1 [Q2 ∨ []]”
or “Qc

1 [[] ∨Q2]”

⇒ extract as much information from Q and Q1 as possible for C1 and C2.

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 6 / 19

Query Context

Assume Q is a query plan that contains a subplan Q1.

Write Q[Q1] to denote this and call Q[], in which Q1 has been replaced by a
placeholder “[]”, a context.

Given a context Qc , a user query Uqp(Qc) abstracting properties of variables
within the context is defined as follows.

Uqp(Qc) ≡



> Qc = “[]”

Uq(Q2) ∧ Uqp(Qc
1) Qc = “Qc

1 [Q2 ∧ []]” or “Qc
1 [[] ∧Q2]”

∃x .Uqp(Qc
1) Qc = “Qc

1 [∃x .[]]”

Uqp(Qc
1) Qc = “Qc

1 [{[]}]”, “Qc
1 [¬[]]”, “Qc

1 [Q2 ∨ []]”
or “Qc

1 [[] ∨Q2]”

⇒ extract as much information from Q and Q1 as possible for C1 and C2.

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 6 / 19

Eliminating Duplicate Elimination (cont’d)

Assume 〈SL ∪ SP,Σ〉 is a physical design and Qc [Q] a query plan. Then the
following rewrite rules hold.

Qc [{R(x1, . . . , xk)}] ↔ Qc [R(x1, . . . , xk)]

Qc [{Q1 ∧Q2}] ↔ Qc [{Q1} ∧ {Q2}]
Qc [{∃x .Q1}] ↔

C1
Qc [∃x .{Q1}]

Qc [{¬Q1}] ↔ Qc [¬Q1]

Qc [¬{Q1}] ↔ Qc [¬Q1]

Qc [{Q1 ∨Q2}] ↔
C2

Qc [{Q1} ∨ {Q2}]

where C1 = Σ ∪ {Qc ∧Q1[y1/x] ∧Q1[y2/x]} |= (y1 ≈ y2)

C2 = Σ ∪ {Qc} |= (Q1 ∧Q2)→ ⊥

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 7 / 19

Cut Operator
Query with two parameters checking for correct salaries:

{∃y , z.(emp(x , y , z) ∧ (correct(p1, z) ∨ correct(p2, z)))}.

we know that for every x there is just one answer:

∃y , z.(emp(x , y , z) ∧ [(correct(p1, z) ∨ correct(p2, z))]1∧ !1)).

function ([Q1]i)-first
cuti := false
return Q1-first

function ([Q1]i)-next
if cuti return false
return Q1-next

function (!i)-first
cuti := true
return true

function (!i)-next
return false

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 8 / 19

Cut Operator
Query with two parameters checking for correct salaries:

{∃y , z.(emp(x , y , z) ∧ (correct(p1, z) ∨ correct(p2, z)))}.

we know that for every x there is just one answer:

∃y , z.(emp(x , y , z) ∧ [(correct(p1, z) ∨ correct(p2, z))]1∧ !1)).

function ([Q1]i)-first
cuti := false
return Q1-first

function ([Q1]i)-next
if cuti return false
return Q1-next

function (!i)-first
cuti := true
return true

function (!i)-next
return false

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 8 / 19

Cut Operator
Query with two parameters checking for correct salaries:

{∃y , z.(emp(x , y , z) ∧ (correct(p1, z) ∨ correct(p2, z)))}.

we know that for every x there is just one answer:

∃y , z.(emp(x , y , z) ∧ [(correct(p1, z) ∨ correct(p2, z))]1∧ !1)).

function ([Q1]i)-first
cuti := false
return Q1-first

function ([Q1]i)-next
if cuti return false
return Q1-next

function (!i)-first
cuti := true
return true

function (!i)-next
return false

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 8 / 19

Incremental Query Context

Given a context Qc , a user query Uqip(Qc) abstracting incremental properties
of variables within the context is defined as follows.

Uqip(Qc) ≡



> Qc = “[]”

Uq(Q2) ∧ Uqip(Qc
1) Qc = “Qc

1 [Q2 ∧ []]”

∃x .Uqip(Qc
1) Qc = “Qc

1 [∃x .[]]”

Uqip(Qc
1) Qc = “Qc

1 [{[]}]”, “Qc
1 [¬[]]”, “Qc

1 [Q2 ∨ []]”,
“Qc

1 [[] ∨Q2]” or “Qc
1 [[] ∧Q2]”

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 9 / 19

Cut Insertion
Observe that the rewrite rules for duplicate elimination are bidirectional, and can
therefore determine situations in which such operators can be added to a query plan.

This is useful when formulating additional rewrite rules that determine when cut
operators can be inserted in query plans without any impact on their ability to
implement user queries.

Assume 〈SL ∪ SP,Σ〉 is a physical design and Qc [{Q1} ∧Q2] a query plan. Then the
following rewrite rule holds.

Qc [{Q1} ∧Q2] ↔
C

Qc [[{Q1}]` ∧ (Q2∧ !`)]

C1 corresponds to the following condition, where Out(Q1) = {x1, . . . , xk} and where
each yi and zj are fresh variable names not occurring in Qc , Q1 or Q2.

Σ ∪ {Uqip(Qc) ∧ Uq((Q1 ∧Q2)[y1/x1, . . . , yk/xk]) ∧ Uq((Q1 ∧Q2)[z1/x1, . . . , zk/xk])}
|= (y1 ≈ z1) ∧ · · · ∧ (yk ≈ zk)

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 10 / 19

SORTED ACCESS

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 11 / 19

What about Merge-Joins et al??

Join Algorithms (in typical DBMS):

• Block Nested Loops:
⇒ takes care of block access (done);

• Hash:
⇒ free if appropriate hashtable(s) already exist
⇒ creting hashtables = extra physical design/on the fly decision

• Merge(-Sort):
⇒ ????
⇒ sorting = extra physical design/on the fly decision

⇐ NOW

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 12 / 19

What about Merge-Joins et al??

Join Algorithms (in typical DBMS):

• Block Nested Loops:
⇒ takes care of block access (done);

• Hash:
⇒ free if appropriate hashtable(s) already exist
⇒ creting hashtables = extra physical design/on the fly decision

• Merge(-Sort):
⇒ ????
⇒ sorting = extra physical design/on the fly decision

⇐ NOW

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 12 / 19

What about Merge-Joins et al??

Join Algorithms (in typical DBMS):

• Block Nested Loops:
⇒ takes care of block access (done);

• Hash:
⇒ free if appropriate hashtable(s) already exist
⇒ creting hashtables = extra physical design/on the fly decision

• Merge(-Sort):
⇒ ????
⇒ sorting = extra physical design/on the fly decision

⇐ NOW

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 12 / 19

What about Merge-Joins et al??

Join Algorithms (in typical DBMS):

• Block Nested Loops:
⇒ takes care of block access (done);

• Hash:
⇒ free if appropriate hashtable(s) already exist
⇒ creting hashtables = extra physical design/on the fly decision

• Merge(-Sort):
⇒ ????
⇒ sorting = extra physical design/on the fly decision

⇐ NOW

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 12 / 19

Merge-Joins Solution(s)

IDEA:
• improve ordered access paths with fingers
⇒ modifies the behaviour of get-first depending on a parameter

• use standard Nested Loops Join

Example (Joining two sorted arrays with distinct values)

A : 1 3 6 8 11 17 . . . 50 B : 3 4 5 6 11 . . . 55

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 13 / 19

Merge-Joins Solution(s)

IDEA:
• improve ordered access paths with fingers
⇒ modifies the behaviour of get-first depending on a parameter

• use standard Nested Loops Join

Example (Joining two sorted arrays with distinct values)

A : 1 3 6 8 11 17 . . . 50 B : 3 4 5 6 11 . . . 55
⇑ ⇑ 1 < 3: next A

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 13 / 19

Merge-Joins Solution(s)

IDEA:
• improve ordered access paths with fingers
⇒ modifies the behaviour of get-first depending on a parameter

• use standard Nested Loops Join

Example (Joining two sorted arrays with distinct values)

A : 1 3 6 8 11 17 . . . 50 B : 3 4 5 6 11 . . . 55
⇑ ⇑ 3 = 3: next B

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 13 / 19

Merge-Joins Solution(s)

IDEA:
• improve ordered access paths with fingers
⇒ modifies the behaviour of get-first depending on a parameter

• use standard Nested Loops Join

Example (Joining two sorted arrays with distinct values)

A : 1 3 6 8 11 17 . . . 50 B : 3 4 5 6 11 . . . 55
⇑ ⇑ 3 < 4: next A

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 13 / 19

Merge-Joins Solution(s)

IDEA:
• improve ordered access paths with fingers
⇒ modifies the behaviour of get-first depending on a parameter

• use standard Nested Loops Join

Example (Joining two sorted arrays with distinct values)

A : 1 3 6 8 11 17 . . . 50 B : 3 4 5 6 11 . . . 55
⇑ ⇑ 6 > 4: next B

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 13 / 19

Merge-Joins Solution(s)

IDEA:
• improve ordered access paths with fingers
⇒ modifies the behaviour of get-first depending on a parameter

• use standard Nested Loops Join

Example (Joining two sorted arrays with distinct values)

A : 1 3 6 8 11 17 . . . 50 B : 3 4 5 6 11 . . . 55
⇑ ⇑ 6 > 5: next B

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 13 / 19

Merge-Joins Solution(s)

IDEA:
• improve ordered access paths with fingers
⇒ modifies the behaviour of get-first depending on a parameter

• use standard Nested Loops Join

Example (Joining two sorted arrays with distinct values)

A : 1 3 6 8 11 17 . . . 50 B : 3 4 5 6 11 . . . 55
⇑ ⇑ out 6: next B

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 13 / 19

Merge-Joins Solution(s)

IDEA:
• improve ordered access paths with fingers
⇒ modifies the behaviour of get-first depending on a parameter

• use standard Nested Loops Join

Example (Joining two sorted arrays with distinct values)

A : 1 3 6 8 11 17 . . . 50 B : 3 4 5 6 11 . . . 55
⇑ ⇑ 6 < 11: next A

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 13 / 19

Merge-Joins Solution(s)

IDEA:
• improve ordered access paths with fingers
⇒ modifies the behaviour of get-first depending on a parameter

• use standard Nested Loops Join

Example (Joining two sorted arrays with distinct values)

A : 1 3 6 8 11 17 . . . 50 B : 3 4 5 6 11 . . . 55
⇑ ⇑ 8 < 11: next A

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 13 / 19

Merge-Joins Solution(s)

IDEA:
• improve ordered access paths with fingers
⇒ modifies the behaviour of get-first depending on a parameter

• use standard Nested Loops Join

Example (Joining two sorted arrays with distinct values)

A : 1 3 6 8 11 17 . . . 50 B : 3 4 5 6 11 . . . 55
⇑ ⇑ out 11: next B

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 13 / 19

Merge-Joins Solution(s)

IDEA:
• improve ordered access paths with fingers
⇒ modifies the behaviour of get-first depending on a parameter

• use standard Nested Loops Join

Example (Joining two sorted arrays with distinct values)

A : 1 3 6 8 11 17 . . . 50 B : 3 4 5 6 11 . . . 55
etc.

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 13 / 19

Merge-Joins Solution(s)

IDEA:
• improve ordered access paths with fingers
⇒ modifies the behaviour of get-first depending on a parameter

• use standard Nested Loops Join

How Well are we doing?
• simulates a merge join provided the arrays are sorted
⇒ B must be sorted and finger-modified (i.e., has an parameter)
⇒ A no changes; what happens if A is not sorted?

• pay-as-you-go behaviour: ordered runs (in the A)
• seamlesly integrates with other operators
⇒ disjunction/concatenation, . . .

• can be extended to two-level access to data (how?)
• . . .

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 13 / 19

Merge-Joins Solution(s)

IDEA:
• improve ordered access paths with fingers
⇒ modifies the behaviour of get-first depending on a parameter

• use standard Nested Loops Join

How Well are we doing?
• simulates a merge join provided the arrays are sorted
⇒ B must be sorted and finger-modified (i.e., has an parameter)
⇒ A no changes; what happens if A is not sorted?

• pay-as-you-go behaviour: ordered runs (in the A)
• seamlesly integrates with other operators
⇒ disjunction/concatenation, . . .

• can be extended to two-level access to data (how?)
• . . .

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 13 / 19

QUERY COMPILATION

PART III: CASE STUDY (TO THINK ABOUT . . .)

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 14 / 19

The LINUX-INFO System: A Case Study

GOAL:
to develop the LINUX-INFO system to monitor the operating systems deployed
in their organization.

david@david-ryzen:/mnt/david/itb/itb2$ ps -efaux | head
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 2 0.0 0.0 0 0 ? S May07 0:00 [kthreadd]
root 3 0.0 0.0 0 0 ? I< May07 0:00 _ [rcu_gp]
root 4 0.0 0.0 0 0 ? I< May07 0:00 _ [rcu_par_gp]
root 6 0.0 0.0 0 0 ? I< May07 0:00 _ [kworker/0:0H-kblockd]
root 9 0.0 0.0 0 0 ? I< May07 0:00 _ [mm_percpu_wq]
root 10 0.0 0.0 0 0 ? S May07 0:07 _ [ksoftirqd/0]
root 11 0.0 0.0 0 0 ? I May07 5:31 _ [rcu_sched]
root 12 0.0 0.0 0 0 ? S May07 0:01 _ [migration/0]
...

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 15 / 19

LINUX-INFO System: Data and Metadata

Example of LINUX-INFO data important to APS.
1 process gcc is running
2 gcc’s process number is 1234.
3 the user running gcc is 145.
4 gcc uses file “foo.c”

Example of LINUX-INFO metadata specified by APS.
4 There entities called process and file.
5 There are attributes called pno, pname, uname, and fname.
6 Each process entity has attributes pno, pname and uname.
7 Each file entity has attribute fname.
8 Processes are identified by their pno.
9 Files are identified by their fname.

10 There is a relationship uses between processes and files.

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 16 / 19

LINUX-INFO System: Data and Metadata

Example of LINUX-INFO data important to APS.
1 process gcc is running
2 gcc’s process number is 1234.
3 the user running gcc is 145.
4 gcc uses file “foo.c”

Example of LINUX-INFO metadata specified by APS.
4 There entities called process and file.
5 There are attributes called pno, pname, uname, and fname.
6 Each process entity has attributes pno, pname and uname.
7 Each file entity has attribute fname.
8 Processes are identified by their pno.
9 Files are identified by their fname.

10 There is a relationship uses between processes and files.

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 16 / 19

The LINUX System: Physical Design

A physical design for LINUX (selected by Linus Torvalds).
8 There are process records called task-struct.
9 Each task-struct record has record fields pid, uid, comm, and
file-struct.

10 All task-structs is organized as a tree data structure.
11 The task-struct records correspond one-to-one to process entities.
12 Record fields in task-struct encode the corresponding attribute

values for process entities, for example, pid encodes an pno, etc.
13 Similarly, fss correspond appropriately to (open) file entities.
14 file-struct field of task-struct is an array of fds; an entry in this

array indicates that the process corresponding to this task-struct is
using the file represented by the fd record in the array.

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 17 / 19

LINUX-INFO System: Queries and Query Plans

A LINUX-INFO user query specified by APS.
14 Find the files used by process invoked by user 145.

A query plan selected by a query compiler.
15 Scan tree of task-structs, for each check if its uid attribute is 145

and, if so scan the file-struct array in the task-struct and print
out the names of files described by non-NULL file descriptors (fd).

Question:
Does the physical design allow APS to list all files known to the Linux system?

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 18 / 19

LINUX-INFO System: Queries and Query Plans

A LINUX-INFO user query specified by APS.
14 Find the files used by process invoked by user 145.

A query plan selected by a query compiler.
15 Scan tree of task-structs, for each check if its uid attribute is 145

and, if so scan the file-struct array in the task-struct and print
out the names of files described by non-NULL file descriptors (fd).

Question:
Does the physical design allow APS to list all files known to the Linux system?

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 18 / 19

LINUX-INFO System: Queries and Query Plans

A LINUX-INFO user query specified by APS.
14 Find the files used by process invoked by user 145.

A query plan selected by a query compiler.
15 Scan tree of task-structs, for each check if its uid attribute is 145

and, if so scan the file-struct array in the task-struct and print
out the names of files described by non-NULL file descriptors (fd).

Question:
Does the physical design allow APS to list all files known to the Linux system?

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 18 / 19

Take Home

Lots of open issues:
1 DB engine vs. Compilation aproaches
2 Main memory data organization
⇒ pointers and records accommodated natively
⇒ coded as combination of AP and physical tables

3 Data structures can be (commonly) decomposed to primitives (hash)
4 . . .

To try at Home
1 more query examples against employee-department schema
2 description of LINUX-info using constraints/APs

Project Idea(s)
• code generation from templates

(e.g., ...as array generates code similar to the code on s.7)

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 19 / 19

Take Home

Lots of open issues:
1 DB engine vs. Compilation aproaches
2 Main memory data organization
⇒ pointers and records accommodated natively
⇒ coded as combination of AP and physical tables

3 Data structures can be (commonly) decomposed to primitives (hash)
4 . . .

To try at Home
1 more query examples against employee-department schema
2 description of LINUX-info using constraints/APs

Project Idea(s)
• code generation from templates

(e.g., ...as array generates code similar to the code on s.7)

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 19 / 19

Take Home

Lots of open issues:
1 DB engine vs. Compilation aproaches
2 Main memory data organization
⇒ pointers and records accommodated natively
⇒ coded as combination of AP and physical tables

3 Data structures can be (commonly) decomposed to primitives (hash)
4 . . .

To try at Home
1 more query examples against employee-department schema
2 description of LINUX-info using constraints/APs

Project Idea(s)
• code generation from templates

(e.g., ...as array generates code similar to the code on s.7)

David Toman (University of Waterloo) CS848 Spring 2022 What can it do? 19 / 19

