
Topics in Database Systems: Modern DBMS
CS848 Spring 2022

David Toman

BASIC DESIGNS
(AND AN OVERVIEW OF STANDARD TECHNIQUES)

David Toman (University of Waterloo) CS848 Spring 2022 1 / 32

Big Picture

Definability and Rewriting

Queries range-restricted FOL (a.k.a. SQL)
Schema range-restricted FOL Σ := ΣL ∪ ΣLP ∪ ΣP

Data CWA (complete information)

ΣL SL ϕoo Logical Schema
and User Queries

to users it looks like a single model (of the logical schema)
implementation can pick from many models

but definable queries answer the same in each of them

Query (SL)
ψ

��
Compiler

ψ (Relational Algebra over SA)

��
Schema (SL ∪ SP)

Σ

OO

Executable // Answers

Data (SA ⊆ SP)
(instance of) SA

OO

David Toman (et al.) CS848 Spring 2022 Motivation (recap) 2 / 32

Big Picture

Definability and Rewriting

Queries range-restricted FOL over SL definable w.r.t. Σ and SA

Schema range-restricted FOL Σ := ΣL ∪ ΣLP ∪ ΣP

Data CWA (complete information for SA symbols)

ΣL SL ϕoo Logical Schema
and User Queries

ΣLP (compilation)

��
ΣP SA ⊆ SP ψoo Physical Schema

and Query Plans

[Borgida, de Bruijn, Franconi, Seylan, Straccia, Toman, Weddell: On Finding
Query Rewritings under Expressive Constraints. SEBD 2010: 426-437]

to users it looks like a single model (of the logical schema)
implementation can pick from many models

but definable queries answer the same in each of them

Query (SL)
ψ

��
Compiler

ψ (Relational Algebra over SA)

��
Schema (SL ∪ SP)

Σ

OO

Executable // Answers

Data (SA ⊆ SP)
(instance of) SA

OO

David Toman (et al.) CS848 Spring 2022 Motivation (recap) 2 / 32

Big Picture

Definability and Rewriting

Queries range-restricted FOL over SL definable w.r.t. Σ and SA

Schema range-restricted FOL Σ := ΣL ∪ ΣLP ∪ ΣP

Data CWA (complete information for SA symbols)

to users it looks like a single model (of the logical schema)
implementation can pick from many models

but definable queries answer the same in each of them

Query (SL)
ψ

��
Compiler

ψ (Relational Algebra over SA)

��
Schema (SL ∪ SP)

Σ

OO

Executable // Answers

Data (SA ⊆ SP)
(instance of) SA

OO

David Toman (et al.) CS848 Spring 2022 Motivation (recap) 2 / 32

Big Picture

Definability and Rewriting

Queries range-restricted FOL over SL definable w.r.t. Σ and SA

Schema range-restricted FOL Σ := ΣL ∪ ΣLP ∪ ΣP

Data CWA (complete information for SA symbols)

to users it looks like a single model (of the logical schema)
implementation can pick from many models

but definable queries answer the same in each of them

Query (SL)
ψ

��
Compiler

ψ (Relational Algebra over SA)

��
Schema (SL ∪ SP)

Σ

OO

Executable // Answers

Data (SA ⊆ SP)
(instance of) SA

OO

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: M. Tamer Özsu, University of Waterloo

CM& Morgan Claypool Publishers&SYNTHESIS LECTURES ON DATA MANAGEMENT

SYNTHESIS LECTURES ON DATA MANAGEMENT

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

M. Tamer Özsu, Series Editor

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

ISBN: 978-1-60845-278-1

9 781608 452781

90000

Series ISSN: 2153-5418

FUNDAM
ENTALS OF PHYSICAL DESIGN AND Q

UERY COM
PILATION

Fundamentals of Physical Design and
Query Compilation

University of Waterloo

Query compilation is the problem of translating user requests formulated over purely conceptual and
domain specific ways of understanding data, commonly called logical designs, to efficient executable
programs called query plans. Such plans access various concrete data sources through their low-level
often iterator-based interfaces. An appreciation of the concrete data sources, their interfaces and how
such capabilities relate to logical design is commonly called a physical design. This book is an introduction
to the fundamental methods underlying database technology that solves the problem of query
compilation. The methods are presented in terms of first-order logic which serves as the vehicle for
specifying physical design, expressing user requests and query plans, and understanding how query
plans implement user requests.

Fundamentals of
Physical Design and
Query Compilation

David Toman

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: M. Tamer Özsu, University of Waterloo

CM& Morgan Claypool Publishers&SYNTHESIS LECTURES ON DATA MANAGEMENT

SYNTHESIS LECTURES ON DATA MANAGEMENT

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

M. Tamer Özsu, Series Editor

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

ISBN: 978-1-60845-278-1

9 781608 452781

90000

Series ISSN: 2153-5418

FUNDAM
ENTALS OF PHYSICAL DESIGN AND Q

UERY COM
PILATION

Fundamentals of Physical Design and
Query Compilation

University of Waterloo

Query compilation is the problem of translating user requests formulated over purely conceptual and
domain specific ways of understanding data, commonly called logical designs, to efficient executable
programs called query plans. Such plans access various concrete data sources through their low-level
often iterator-based interfaces. An appreciation of the concrete data sources, their interfaces and how
such capabilities relate to logical design is commonly called a physical design. This book is an introduction
to the fundamental methods underlying database technology that solves the problem of query
compilation. The methods are presented in terms of first-order logic which serves as the vehicle for
specifying physical design, expressing user requests and query plans, and understanding how query
plans implement user requests.

Fundamentals of
Physical Design and
Query Compilation

David Toman

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: M. Tamer Özsu, University of Waterloo

CM& Morgan Claypool Publishers&SYNTHESIS LECTURES ON DATA MANAGEMENT

SYNTHESIS LECTURES ON DATA MANAGEMENT

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

M. Tamer Özsu, Series Editor

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

ISBN: 978-1-60845-278-1

9 781608 452781

90000

Series ISSN: 2153-5418

FUNDAM
ENTALS OF PHYSICAL DESIGN AND Q

UERY COM
PILATION

Fundamentals of Physical Design and
Query Compilation

University of Waterloo

Query compilation is the problem of translating user requests formulated over purely conceptual and
domain specific ways of understanding data, commonly called logical designs, to efficient executable
programs called query plans. Such plans access various concrete data sources through their low-level
often iterator-based interfaces. An appreciation of the concrete data sources, their interfaces and how
such capabilities relate to logical design is commonly called a physical design. This book is an introduction
to the fundamental methods underlying database technology that solves the problem of query
compilation. The methods are presented in terms of first-order logic which serves as the vehicle for
specifying physical design, expressing user requests and query plans, and understanding how query
plans implement user requests.

Fundamentals of
Physical Design and
Query Compilation

David Toman

©2011

David Toman (et al.) CS848 Spring 2022 Motivation (recap) 2 / 32

QUERY COMPILATION

PART I: PLANS AS FORMULAE AND STANDARD DESIGN

David Toman (et al.) CS848 Spring 2022 Motivation (recap) 3 / 32

Queries over a Physical Design

Issues to resolve (today)

What “formulas” do qualify as plans?
⇒ how do we interpret logical connectives as programs?
Why do the plans implement the user queries?
Are all (desired) plans captured by appropriate formulas?

David Toman (et al.) CS848 Spring 2022 Plans as Formulae 4 / 32

Outline

1 Iterator Protocols to communicate Sets

2 Atomic Plan Operations: Access Paths

3 Logical Connectives/Quantifiers as Plan Operators

4 Beyond Logical Operators: Dealing with Duplicates (not today)

David Toman (et al.) CS848 Spring 2022 Plans as Formulae 5 / 32

Creating Table(s) and Base File(s)

Specification:
[
% constraints
table(x,y,z) <-> ex(r,basetable(r,x,y,z)),

% query
q(x,y,z) <-> table(x,y,z)
].

Notes:
access path: basetable/4/0;
additional r attribute: address in physical storage

Query Plan:
q(v0,v1,v2) <-> ex(v3,basetable(v3,v0,v1,v2))

David Toman (et al.) CS848 Spring 2022 Plans as Formulae 6 / 32

Creating Table(s) and Base File(s)

Specification:
[
% constraints
table(x,y,z) <-> ex(r,basetable(r,x,y,z)),

% query
q(x,y,z) <-> table(x,y,z)
].

Notes:
access path: basetable/4/0;
additional r attribute: address in physical storage

Query Plan:
q(v0,v1,v2) <-> ex(v3,basetable(v3,v0,v1,v2))

David Toman (et al.) CS848 Spring 2022 Plans as Formulae 6 / 32

Access Path Code Templates

Array of records (C-structs)

Pseudo-code templates realizing a first/next protocol:

function basetable-first()
i := 0
return basetable-next

function basetable-next()
if (i ≥ N) return false
x := btarray[i].xname
y := btarray[i].yname
z := btarray[i].zname
r := i++;
return true

⇒ assuming struct { int xname, yname, zname } btarray[N]

⇒ variable i renamed for each occurrence of basetable in a plan.

Global state records bindings of (possible copies of) variables.
1 x , y and z to communicate the contents of btarray.
2 i (and N) record scanning status (and size) of btarray.

Note: AP code (templates) for access paths must be provided.
David Toman (et al.) CS848 Spring 2022 Plans as Formulae 7 / 32

Access Path Code Templates

Array of records (C-structs)

Pseudo-code templates realizing a first/next protocol:

function basetable-first()
i := 0
return basetable-next

function basetable-next()
if (i ≥ N) return false
x := btarray[i].xname
y := btarray[i].yname
z := btarray[i].zname
r := i++;
return true

⇒ assuming struct { int xname, yname, zname } btarray[N]

⇒ variable i renamed for each occurrence of basetable in a plan.

Global state records bindings of (possible copies of) variables.
1 x , y and z to communicate the contents of btarray.
2 i (and N) record scanning status (and size) of btarray.

Note: AP code (templates) for access paths must be provided.
David Toman (et al.) CS848 Spring 2022 Plans as Formulae 7 / 32

Access Path Code Templates

Array of records (C-structs)

Pseudo-code templates realizing a first/next protocol:

function basetable-first()
i := 0
return basetable-next

function basetable-next()
if (i ≥ N) return false
x := btarray[i].xname
y := btarray[i].yname
z := btarray[i].zname
r := i++;
return true

⇒ assuming struct { int xname, yname, zname } btarray[N]

⇒ variable i renamed for each occurrence of basetable in a plan.

Global state records bindings of (possible copies of) variables.
1 x , y and z to communicate the contents of btarray.
2 i (and N) record scanning status (and size) of btarray.

Note: AP code (templates) for access paths must be provided.
David Toman (et al.) CS848 Spring 2022 Plans as Formulae 7 / 32

(More Esoteric) Access Paths

1 Built-in “operations”:
arithmetic (plus/3/2, times/3/2, etc.)
string manipulation (concat/3/2, substr/4/3, etc.)
. . .

2 data type tests (is-integer/1/1)

3 pointer dereference and field extraction from records

4 (page) reads from external storage

5 . . .

David Toman (et al.) CS848 Spring 2022 Plans as Formulae 8 / 32

Conjunctive Query Plans: Semantics

function (Q1 ∧ Q2)-first
if not Q1-first return false
while not Q2-first do

if not Q1-next return false
return true

function (Q1 ∧ Q2)-next
if Q2-next return true
while Q1-next do

if Q2-first return true
return false

function (∃x .Q1)-first
return Q1-first

function (∃x .Q1)-next
return Q1-next

function {Q1}-first
if not exists store S

create S
if Q1-first

empty S
add 〈x1, . . . , xn〉 to S
return true

return false

function {Q1}-next
while Q1-next do

if not 〈x1, . . . , xn〉 ∈ S
add 〈x1, . . . , xn〉 to S
return true

return false

David Toman (et al.) CS848 Spring 2022 Plans as Formulae 9 / 32

Conjunctive Query Plans: Semantics

function (Q1 ∧ Q2)-first
if not Q1-first return false
while not Q2-first do

if not Q1-next return false
return true

function (Q1 ∧ Q2)-next
if Q2-next return true
while Q1-next do

if Q2-first return true
return false

function (∃x .Q1)-first
return Q1-first

function (∃x .Q1)-next
return Q1-next

function {Q1}-first
if not exists store S

create S
if Q1-first

empty S
add 〈x1, . . . , xn〉 to S
return true

return false

function {Q1}-next
while Q1-next do

if not 〈x1, . . . , xn〉 ∈ S
add 〈x1, . . . , xn〉 to S
return true

return false

David Toman (et al.) CS848 Spring 2022 Plans as Formulae 9 / 32

General Query Plans: Syntax

function (Q1 ∨ Q2)-first
(Q1 ∨ Q2)-flag := true
if Q1-first return true
(Q1 ∨ Q2)-flag := false
return Q2-first

function (Q1 ∨ Q2)-next
if (Q1 ∨ Q2)-flag

if Q1-next return true
(Q1 ∨ Q2)-flag := false
return Q2-next

function (¬Q1)-first
if Q1-first return false
return true

function (¬Q1)-next
return false

David Toman (et al.) CS848 Spring 2022 Plans as Formulae 10 / 32

What’s Missing?

1 binding patterns (a.k.a. usage restrictions on access paths)
2 dealing with extra-logical phenomena: duplicates/ordering
3 cost model

. . . we touch on many of these in subsequent lectures

David Toman (et al.) CS848 Spring 2022 Plans as Formulae 11 / 32

What’s Missing?

1 binding patterns (a.k.a. usage restrictions on access paths)
2 dealing with extra-logical phenomena: duplicates/ordering
3 cost model

. . . we touch on many of these in subsequent lectures

David Toman (et al.) CS848 Spring 2022 Plans as Formulae 11 / 32

Adding an (search) index

What about create index indexx(indexyy) on x(y) in table?

Specification:
[
% constraints
...
indexx(x,r) <-> ex([y,z],basetable(r,x,y,z)),
indexy(y,r) <-> ex([x,z],basetable(r,x,y,z)),
baselookup(r,x,y,z) <-> basetable(r,x,y,z),

% query
q(x,y) <-> ex([z,v,w],

table(x,v,z) and table(z,w,y))
].

Notes:
access paths: baselookup/4/1, indexx,indexy/2/1;

David Toman (et al.) CS848 Spring 2022 Plans as Formulae 12 / 32

Adding an (search) index (cont)

q(x,y) <-> ex([z,v,w],
table(x,v,z) and table(z,w,y))

Possible plans:
Table Scans:

q(vl1,vl2) <-> ex([vl3,vl4,vl5,vl6,vl7],
basetable(vl3,vl1,vl4,vl5) and
basetable(vl6,vl5,vl7,vl2))

Index lookup:
q(vl1,vl2) <-> ex([vl3,vl4,vl5,vl6,vl7],

basetable(vl3,vl1,vl4,vl5) and
indexx(vl5,vl6) and
baselookup(vl6,vl7,vl8,vl2))

David Toman (et al.) CS848 Spring 2022 Plans as Formulae 13 / 32

Adding an (search) index (cont)

q(x,y) <-> ex([z,v,w],
table(x,v,z) and table(z,w,y))

Possible plans:
Table Scans:

q(vl1,vl2) <-> ex([vl3,vl4,vl5,vl6,vl7],
basetable(vl3,vl1,vl4,vl5) and
basetable(vl6,vl5,vl7,vl2))

Index lookup:
q(vl1,vl2) <-> ex([vl3,vl4,vl5,vl6,vl7],

basetable(vl3,vl1,vl4,vl5) and
indexx(vl5,vl6) and
baselookup(vl6,vl7,vl8,vl2))

David Toman (et al.) CS848 Spring 2022 Plans as Formulae 13 / 32

Adding an (search) index (cont)

q(x,y) <-> ex([z,v,w],
table(x,v,z) and table(z,w,y))

Possible plans:
Table Scans:

q(vl1,vl2) <-> ex([vl3,vl4,vl5,vl6,vl7],
basetable(vl3,vl1,vl4,vl5) and
basetable(vl6,vl5,vl7,vl2))

Index lookup:
q(vl1,vl2) <-> ex([vl3,vl4,vl5,vl6,vl7],

basetable(vl3,vl1,vl4,vl5) and
indexx(vl5,vl6) and
baselookup(vl6,vl7,vl8,vl2))

David Toman (et al.) CS848 Spring 2022 Plans as Formulae 13 / 32

Adding an (search) index (cont)

q(x,y) <-> table(x,x,y)

(with a parameter x)

Possible plans:
Index lookup:

q(vl1,vl2) <-> ex([vl3,vl4],
indexx(vl1,vl3) and
baselookup(vl3,vl4,vl4,vl2))

Index intersection:
q(vl1,vl2) <-> ex([vl3,vl4,vl5],

indexx(vl1,vl3) and
indexy(vl1,vl3) and
baselookup(vl3,vl4,vl5,vl2))

David Toman (et al.) CS848 Spring 2022 Plans as Formulae 14 / 32

Adding an (search) index (cont)

q(x,y) <-> table(x,x,y)

(with a parameter x)

Possible plans:
Index lookup:

q(vl1,vl2) <-> ex([vl3,vl4],
indexx(vl1,vl3) and
baselookup(vl3,vl4,vl4,vl2))

Index intersection:
q(vl1,vl2) <-> ex([vl3,vl4,vl5],

indexx(vl1,vl3) and
indexy(vl1,vl3) and
baselookup(vl3,vl4,vl5,vl2))

David Toman (et al.) CS848 Spring 2022 Plans as Formulae 14 / 32

Adding an (search) index (cont)

q(x,y) <-> table(x,x,y)

(with a parameter x)

Possible plans:
Index lookup:

q(vl1,vl2) <-> ex([vl3,vl4],
indexx(vl1,vl3) and
baselookup(vl3,vl4,vl4,vl2))

Index intersection:
q(vl1,vl2) <-> ex([vl3,vl4,vl5],

indexx(vl1,vl3) and
indexy(vl1,vl3) and
baselookup(vl3,vl4,vl5,vl2))

David Toman (et al.) CS848 Spring 2022 Plans as Formulae 14 / 32

Index-only Plans

q(x) <-> ex(y,table(x,x,y))

(with a parameter x)

Possible plans:
Index lookup:

q(vl1) <-> ex([vl2,vl3,vl4],
indexx(vl1,vl3) and
baselookup(vl3,vl4,vl4,vl2))

Index intersection:
q(vl1) <-> ex([vl2,vl3,vl4,vl5],

indexx(vl1,vl3) and
indexy(vl1,vl3))

David Toman (et al.) CS848 Spring 2022 Plans as Formulae 15 / 32

Index-only Plans

q(x) <-> ex(y,table(x,x,y))

(with a parameter x)

Possible plans:
Index lookup:

q(vl1) <-> ex([vl2,vl3,vl4],
indexx(vl1,vl3) and
baselookup(vl3,vl4,vl4,vl2))

Index intersection:
q(vl1) <-> ex([vl2,vl3,vl4,vl5],

indexx(vl1,vl3) and
indexy(vl1,vl3))

David Toman (et al.) CS848 Spring 2022 Plans as Formulae 15 / 32

Index-only Plans

q(x) <-> ex(y,table(x,x,y))

(with a parameter x)

Possible plans:
Index lookup:

q(vl1) <-> ex([vl2,vl3,vl4],
indexx(vl1,vl3) and
baselookup(vl3,vl4,vl4,vl2))

Index intersection:
q(vl1) <-> ex([vl2,vl3,vl4,vl5],

indexx(vl1,vl3) and
indexy(vl1,vl3))

David Toman (et al.) CS848 Spring 2022 Plans as Formulae 15 / 32

Column Store

Specification:
[
table(x,y,z) <-> ex(r,basetable(r,x,y,z)),

% indices
columnx(r,x) <-> ex([y,z],basetable(r,x,y,z)),
columny(r,y) <-> ex([x,z],basetable(r,x,y,z)),
columnz(r,z) <-> ex([x,y],basetable(r,x,y,z)),
% keys
basetable(r,x1,y1,z1) and basetable(r,x2,y2,z2)

->(x1=x2 and y1=y2 and z1=z2),
% query
q(x,y,z) <-> table(x,y,z)
].

Notes:
APs: columnx/2/0, columny/2/0, and columnz/2/0;
the key constraint is necessary (why?)

David Toman (et al.) CS848 Spring 2022 Plans as Formulae 16 / 32

Horizontal Partition (sharding)

Specification: [...
% horizontal partitions
hpp1(r,x,y,z) -> basetable(r,x,y,z),
hpp2(r,x,y,z) -> basetable(r,x,y,z),
hpp3(r,x,y,z) -> basetable(r,x,y,z),
basetable(r,x,y,z) -> (hpp1(r,x,y,z) or

hpp2(r,x,y,z) or hpp3(r,x,y,z)),

...].

Notes:
APs: hpp1/4/0, hpp2/4/0, and hpp3/4/0;
do we need “disjointness” of the partitions?

David Toman (et al.) CS848 Spring 2022 Plans as Formulae 17 / 32

Subclass/Complement

Specification: [...
% superclass and coverage
basetable(r,x,y,z) -> super(r,x,y,z),
complement(r,x,y,z) -> super(r,x,y,z),
super(r,x,y,z) -> (complement(r,x,y,z)

or basetable(r,x,y,z)),

% disjointness
complement(r,x,y,z) and basetable(r,x,y,z)

-> bot,

...].

Notes:
do we need “disjointness”? “keys”?

David Toman (et al.) CS848 Spring 2022 Plans as Formulae 18 / 32

QUERY COMPILATION

PART II: WHAT CAN IT DO?

David Toman (et al.) CS848 Spring 2022 Plans as Formulae 19 / 32

What can this do?

GOAL

Generate query plans that compete with hand-written programs in C

1 linked data structures, pointers, . . .
2 access to search structures (index access and selection),
3 hash-based access to data (including hash-joins),
4 multi-level storage (aka disk/remote/distributed files), . . .
5 materialized views (FO-definable),
6 updates through logical schema (needs id invention!), . . .

. . . all without having to code (too much) in C/C++ !

David Toman (et al.) CS848 Spring 2022 What can it do? 20 / 32

Lists and Pointers (example)
1 Logical Schema

employee works department

number oo // emp number//

name dept name
manager

oo

⇒ we merge works into employee as a dept attribute (to simplify)

2 Physical Design: a linked list of emp records pointing to dept records.

record emp of
integer num
string name
reference dept

record dept of
integer num
string name
reference manager

⇒ main difference: pointers rather than prinary key-based foreign keys

Exercise:

Modify the rest of the development to account for the works table.

David Toman (et al.) CS848 Spring 2022 What can it do? 21 / 32

Lists and Pointers (example)
1 Logical Schema

employee works department

number oo // emp number//

name dept name
manager

oo

⇒ we merge works into employee as a dept attribute (to simplify)

2 Physical Design: a linked list of emp records pointing to dept records.

record emp of
integer num
string name
reference dept

record dept of
integer num
string name
reference manager

⇒ main difference: pointers rather than prinary key-based foreign keys

Exercise:

Modify the rest of the development to account for the works table.

David Toman (et al.) CS848 Spring 2022 What can it do? 21 / 32

Lists and Pointers (example)
1 Logical Schema

employee works department

number oo // emp number//

name dept name
manager

oo

⇒ we merge works into employee as a dept attribute (to simplify)

2 Physical Design: a linked list of emp records pointing to dept records.

record emp of
integer num
string name
reference dept

record dept of
integer num
string name
reference manager

⇒ main difference: pointers rather than prinary key-based foreign keys

Exercise:

Modify the rest of the development to account for the works table.

David Toman (et al.) CS848 Spring 2022 What can it do? 21 / 32

Lists and Pointers (record declarations)

% record layout of emp and dept records and fields for:
%
% struct emp { int num, char[20] name, struct dept* dept };
% struct dept { int num, char[20] name, struct mgr* emp };
%
% ea/da addresses of emp/dept records
% access paths: ea/1/0 (linked list of employee records),
% ea_num, ea_name, ea_dept, da_num, da_name,
% da_mgr/2/1 (field extractors "->" in C)
% all attributes functional, "num" is a key;
% "dept" and "mgr" are pointers;
%
ea(e) -> ex(y,ea_num(e,y)), ea_num(e,y) and ea_num(e,z)-> y=z,

ea_num(y,x) and ea_num(z,x)-> y=z,
ea(e) -> ex(y,ea_name(e,y)), ea_name(e,y) and ea_name(e,z)-> y=z,
ea(e) -> ex(y,ea_dept(e,y)), ea_dept(e,y) and ea_dept(e,z)-> y=z,

ea_dept(e,d) -> da(d),

. . . and the same for da et al.

David Toman (et al.) CS848 Spring 2022 What can it do? 22 / 32

Lists and Pointers (logical tables)

%
% user predicates over records
%
employee(x,y,z) <-> ex(e,baseemployee(e,x,y,z)), % record addr
%
ea(e) <-> ex([x,y,z],baseemployee(e,x,y,z)),
ea_num(e,x) <-> ex([y,z],baseemployee(e,x,y,z)),
ea_name(e,y) <-> ex([x,z],baseemployee(e,x,y,z)),
ex(d,ea_dept(e,d) and da_num(d,z))

<-> ex([x,y],baseemployee(e,x,y,z)),

. . . and the same for department (we merged works into employee).

%
% business logic: managers work for their own departments
%
% employee(x,y,z) and department(u,v,x)-> z=u
da_mgr(x,e) and ea_dept(e,y) -> x=y % pointer-based version

David Toman (et al.) CS848 Spring 2022 What can it do? 23 / 32

What can this do: navigating pointers
1 List all employee numbers and names (∃z.employee(x , y , z)):

∃a.ea(a) ∧ ea-num(a, x) ∧ ea-name(a, y)

2 List all department numbers with their manager names
(∃z,u, v .department(x , z,u) ∧ employee(u, y , v)):

.ea(e) ∧ ea-dept(e,d)
∧ da-num(d , x) ∧ da-mgr(d , f) ∧ ea-name(f , y)

⇒ needs “departments have at least one employee”.
. . . needs duplicate elimination during projection.

.ea(e) ∧ ea-dept(e,d) ∧ ea-name(e, y)
∧ da-num(d , x) ∧ da-mgr(d , f) ∧ compare(e, f)

⇒ needs “managers work in their own departments”.
. . . NO duplicate elimination during projection.

David Toman (et al.) CS848 Spring 2022 What can it do? 24 / 32

What can this do: navigating pointers
1 List all employee numbers and names (∃z.employee(x , y , z)):

∃a.ea(a) ∧ ea-num(a, x) ∧ ea-name(a, y)

or, in C-like syntax: for a in ea do
x := a->num;
y := a->name;

2 List all department numbers with their manager names
(∃z,u, v .department(x , z,u) ∧ employee(u, y , v)):

.ea(e) ∧ ea-dept(e,d)
∧ da-num(d , x) ∧ da-mgr(d , f) ∧ ea-name(f , y)

⇒ needs “departments have at least one employee”.
. . . needs duplicate elimination during projection.

.ea(e) ∧ ea-dept(e,d) ∧ ea-name(e, y)
∧ da-num(d , x) ∧ da-mgr(d , f) ∧ compare(e, f)

⇒ needs “managers work in their own departments”.
. . . NO duplicate elimination during projection.

David Toman (et al.) CS848 Spring 2022 What can it do? 24 / 32

What can this do: navigating pointers
1 List all employee numbers and names (∃z.employee(x , y , z)):

∃a.ea(a) ∧ ea-num(a, x) ∧ ea-name(a, y)

2 List all department numbers with their manager names
(∃z,u, v .department(x , z,u) ∧ employee(u, y , v)):

.ea(e) ∧ ea-dept(e,d)
∧ da-num(d , x) ∧ da-mgr(d , f) ∧ ea-name(f , y)

⇒ needs “departments have at least one employee”.
. . . needs duplicate elimination during projection.

.ea(e) ∧ ea-dept(e,d) ∧ ea-name(e, y)
∧ da-num(d , x) ∧ da-mgr(d , f) ∧ compare(e, f)

⇒ needs “managers work in their own departments”.
. . . NO duplicate elimination during projection.

David Toman (et al.) CS848 Spring 2022 What can it do? 24 / 32

What can this do: navigating pointers
1 List all employee numbers and names (∃z.employee(x , y , z)):

∃a.ea(a) ∧ ea-num(a, x) ∧ ea-name(a, y)

2 List all department numbers with their manager names
(∃z,u, v .department(x , z,u) ∧ employee(u, y , v)):

∃e,d , f .ea(e) ∧ ea-dept(e,d)
∧ da-num(d , x) ∧ da-mgr(d , f) ∧ ea-name(f , y)

⇒ needs “departments have at least one employee”.
. . . needs duplicate elimination during projection.

.ea(e) ∧ ea-dept(e,d) ∧ ea-name(e, y)
∧ da-num(d , x) ∧ da-mgr(d , f) ∧ compare(e, f)

⇒ needs “managers work in their own departments”.
. . . NO duplicate elimination during projection.

David Toman (et al.) CS848 Spring 2022 What can it do? 24 / 32

What can this do: navigating pointers
1 List all employee numbers and names (∃z.employee(x , y , z)):

∃a.ea(a) ∧ ea-num(a, x) ∧ ea-name(a, y)

2 List all department numbers with their manager names
(∃z,u, v .department(x , z,u) ∧ employee(u, y , v)):

∃e,d , f .ea(e) ∧ ea-dept(e,d)
∧ da-num(d , x) ∧ da-mgr(d , f) ∧ ea-name(f , y)

⇒ needs “departments have at least one employee”.
. . . needs duplicate elimination during projection.

∃e,d , f .ea(e) ∧ ea-dept(e,d) ∧ ea-name(e, y)
∧ da-num(d , x) ∧ da-mgr(d , f) ∧ compare(e, f)

⇒ needs “managers work in their own departments”.
. . . NO duplicate elimination during projection.

David Toman (et al.) CS848 Spring 2022 What can it do? 24 / 32

What can this do: navigating pointers
1 List all employee numbers and names (∃z.employee(x , y , z)):

∃a.ea(a) ∧ ea-num(a, x) ∧ ea-name(a, y)

2 List all department numbers with their manager names
(∃z,u, v .department(x , z,u) ∧ employee(u, y , v)):

∃e,d , f .ea(e) ∧ ea-dept(e,d)
∧ da-num(d , x) ∧ da-mgr(d , f) ∧ ea-name(f , y)

⇒ needs “departments have at least one employee”.
. . . needs duplicate elimination during projection.

∃e,d , f .ea(e) ∧ ea-dept(e,d) ∧ ea-name(e, y)
∧ da-num(d , x) ∧ da-mgr(d , f) ∧ compare(e, f)

⇒ needs “managers work in their own departments”.
. . . NO duplicate elimination during projection.

David Toman (et al.) CS848 Spring 2022 What can it do? 24 / 32

What can it do: Hashing, Lists, et al.

Hash Index with (list-based) Separate Chaining

... D1

i : • // •

//

• // •

//

⊥

... D3

j : ⊥

...

n : • // •

//

⊥ D2

Hash Array Separate Chaining Linked Lists Dept Records

David Toman (et al.) CS848 Spring 2022 What can it do? 25 / 32

What can it do: Hashing, Lists, et al.

Hash Index on department’s name:

Access paths:
SA ⊇ {hash/2/1,hasharraylookup/2/1,listscan/2/1}.

Physical Constraints:
ΣLP ⊇ {∀x , y .((deptfile(x) ∧ dept-name(x , y))→ ∃z,w .(hash(y , z)

∧ hasharraylookup(z,w) ∧ listscan(w , x))),
∀x , y .(hash(x , y)→ ∃z.hasharraylookup(y , z)),
∀x , y .(listscan(x , y)→ deptfile(y)) }

Query:
∃y , z.(department(x1,p, y) ∧ employee(y , x2, z)){p}.

ex(x6.Hash(p,x6) and ex(x5.(hasharraylookup(x6,x5)
and ex(x4.listscan(x5,x4) and da-name(x4,p)
and da-num(x4,x1) and ex(x3.(da-mgr(x4,x3)

and ea-name(x3,x2)))))))

David Toman (et al.) CS848 Spring 2022 What can it do? 26 / 32

What can it do: Hashing, Lists, et al.

Hash Index on department’s name:

Access paths:
SA ⊇ {hash/2/1,hasharraylookup/2/1,listscan/2/1}.

Physical Constraints:
ΣLP ⊇ {∀x , y .((deptfile(x) ∧ dept-name(x , y))→ ∃z,w .(hash(y , z)

∧ hasharraylookup(z,w) ∧ listscan(w , x))),
∀x , y .(hash(x , y)→ ∃z.hasharraylookup(y , z)),
∀x , y .(listscan(x , y)→ deptfile(y)) }

Query:
∃y , z.(department(x1,p, y) ∧ employee(y , x2, z)){p}.

ex(x6.Hash(p,x6) and ex(x5.(hasharraylookup(x6,x5)
and ex(x4.listscan(x5,x4) and da-name(x4,p)
and da-num(x4,x1) and ex(x3.(da-mgr(x4,x3)

and ea-name(x3,x2)))))))

David Toman (et al.) CS848 Spring 2022 What can it do? 26 / 32

QUERY COMPILATION

PART III: CASE STUDY (TO THINK ABOUT . . .)

David Toman (et al.) CS848 Spring 2022 What can it do? 27 / 32

The LINUX-INFO System: A Case Study

GOAL:

to develop the LINUX-INFO system to monitor the operating systems deployed
in their organization.

david@david-ryzen:/mnt/david/itb/itb2$ ps -efaux | head
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 2 0.0 0.0 0 0 ? S May07 0:00 [kthreadd]
root 3 0.0 0.0 0 0 ? I< May07 0:00 _ [rcu_gp]
root 4 0.0 0.0 0 0 ? I< May07 0:00 _ [rcu_par_gp]
root 6 0.0 0.0 0 0 ? I< May07 0:00 _ [kworker/0:0H-kblockd]
root 9 0.0 0.0 0 0 ? I< May07 0:00 _ [mm_percpu_wq]
root 10 0.0 0.0 0 0 ? S May07 0:07 _ [ksoftirqd/0]
root 11 0.0 0.0 0 0 ? I May07 5:31 _ [rcu_sched]
root 12 0.0 0.0 0 0 ? S May07 0:01 _ [migration/0]
...

David Toman (et al.) CS848 Spring 2022 What can it do? 28 / 32

LINUX-INFO System: Data and Metadata

Example of LINUX-INFO data important to APS.
1 process gcc is running
2 gcc’s process number is 1234.
3 the user running gcc is 145.
4 gcc uses file “foo.c”

Example of LINUX-INFO metadata specified by APS.
4 There entities called process and file.
5 There are attributes called pno, pname, uname, and fname.
6 Each process entity has attributes pno, pname and uname.
7 Each file entity has attribute fname.
8 Processes are identified by their pno.
9 Files are identified by their fname.
10 There is a relationship uses between processes and files.

David Toman (et al.) CS848 Spring 2022 What can it do? 29 / 32

LINUX-INFO System: Data and Metadata

Example of LINUX-INFO data important to APS.
1 process gcc is running
2 gcc’s process number is 1234.
3 the user running gcc is 145.
4 gcc uses file “foo.c”

Example of LINUX-INFO metadata specified by APS.
4 There entities called process and file.
5 There are attributes called pno, pname, uname, and fname.
6 Each process entity has attributes pno, pname and uname.
7 Each file entity has attribute fname.
8 Processes are identified by their pno.
9 Files are identified by their fname.
10 There is a relationship uses between processes and files.

David Toman (et al.) CS848 Spring 2022 What can it do? 29 / 32

The LINUX System: Physical Design

A physical design for LINUX (selected by Linus Torvalds).
8 There are process records called task-struct.
9 Each task-struct record has record fields pid, uid, comm, and
file-struct.

10 All task-structs is organized as a tree data structure.
11 The task-struct records correspond one-to-one to process entities.
12 Record fields in task-struct encode the corresponding attribute

values for process entities, for example, pid encodes an pno, etc.
13 Similarly, fss correspond appropriately to (open) file entities.
14 file-struct field of task-struct is an array of fds; an entry in this

array indicates that the process corresponding to this task-struct is
using the file represented by the fd record in the array.

David Toman (et al.) CS848 Spring 2022 What can it do? 30 / 32

LINUX-INFO System: Queries and Query Plans

A LINUX-INFO user query specified by APS.
14 Find the files used by process invoked by user 145.

A query plan selected by a query compiler.
15 Scan tree of task-structs, for each check if its uid attribute is 145

and, if so scan the file-struct array in the task-struct and print
out the names of files described by non-NULL file descriptors (fd).

Question:

Does the physical design allow APS to list all files known to the Linux system?

David Toman (et al.) CS848 Spring 2022 What can it do? 31 / 32

LINUX-INFO System: Queries and Query Plans

A LINUX-INFO user query specified by APS.
14 Find the files used by process invoked by user 145.

A query plan selected by a query compiler.
15 Scan tree of task-structs, for each check if its uid attribute is 145

and, if so scan the file-struct array in the task-struct and print
out the names of files described by non-NULL file descriptors (fd).

Question:

Does the physical design allow APS to list all files known to the Linux system?

David Toman (et al.) CS848 Spring 2022 What can it do? 31 / 32

LINUX-INFO System: Queries and Query Plans

A LINUX-INFO user query specified by APS.
14 Find the files used by process invoked by user 145.

A query plan selected by a query compiler.
15 Scan tree of task-structs, for each check if its uid attribute is 145

and, if so scan the file-struct array in the task-struct and print
out the names of files described by non-NULL file descriptors (fd).

Question:

Does the physical design allow APS to list all files known to the Linux system?

David Toman (et al.) CS848 Spring 2022 What can it do? 31 / 32

Take Home

Lots of open issues:

1 DB engine vs. Compilation aproaches
2 Main memory data organization
⇒ pointers and records accommodated natively
⇒ coded as combination of AP and physical tables

3 Data structures can be (commonly) decomposed to primitives (hash)
4 . . .

To try at Home

1 more query examples against employee-department schema
2 description of LINUX-info using constraints/APs

Project Idea(s)

code generation from templates
(e.g., ...as array generates code similar to the code on s.7)

David Toman (et al.) CS848 Spring 2022 What can it do? 32 / 32

Take Home

Lots of open issues:

1 DB engine vs. Compilation aproaches
2 Main memory data organization
⇒ pointers and records accommodated natively
⇒ coded as combination of AP and physical tables

3 Data structures can be (commonly) decomposed to primitives (hash)
4 . . .

To try at Home

1 more query examples against employee-department schema
2 description of LINUX-info using constraints/APs

Project Idea(s)

code generation from templates
(e.g., ...as array generates code similar to the code on s.7)

David Toman (et al.) CS848 Spring 2022 What can it do? 32 / 32

Take Home

Lots of open issues:

1 DB engine vs. Compilation aproaches
2 Main memory data organization
⇒ pointers and records accommodated natively
⇒ coded as combination of AP and physical tables

3 Data structures can be (commonly) decomposed to primitives (hash)
4 . . .

To try at Home

1 more query examples against employee-department schema
2 description of LINUX-info using constraints/APs

Project Idea(s)

code generation from templates
(e.g., ...as array generates code similar to the code on s.7)

David Toman (et al.) CS848 Spring 2022 What can it do? 32 / 32

