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Big Picture

Definability and Rewriting

Queries range-restricted FOL (a.k.a. SQL)
Schema range-restricted FOL Σ := ΣL ∪ ΣLP ∪ ΣP

Data CWA (complete information)

ΣL SL ϕoo Logical Schema
and User Queries

to users it looks like a single model (of the logical schema)
implementation can pick from many models

but definable queries answer the same in each of them

Query (SL)
ψ

��
Compiler

ψ (Relational Algebra over SA)

��
Schema (SL ∪ SP)

Σ

OO

Executable // Answers

Data (SA ⊆ SP)
(instance of) SA

OO
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��
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QUERY COMPILATION

PART I: PLANS AS FORMULAE AND STANDARD DESIGN
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Queries over a Physical Design

Issues to resolve (today)

What “formulas” do qualify as plans?
⇒ how do we interpret logical connectives as programs?
Why do the plans implement the user queries?
Are all (desired) plans captured by appropriate formulas?
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Outline

1 Iterator Protocols to communicate Sets

2 Atomic Plan Operations: Access Paths

3 Logical Connectives/Quantifiers as Plan Operators

4 Beyond Logical Operators: Dealing with Duplicates (not today)

David Toman (et al.) CS848 Spring 2022 Plans as Formulae 5 / 32



Creating Table(s) and Base File(s)

Specification:
[
% constraints
table(x,y,z) <-> ex(r,basetable(r,x,y,z)),

% query
q(x,y,z) <-> table(x,y,z)
].

Notes:
access path: basetable/4/0;
additional r attribute: address in physical storage

Query Plan:
q(v0,v1,v2) <-> ex(v3,basetable(v3,v0,v1,v2))
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Access Path Code Templates

Array of records (C-structs)

Pseudo-code templates realizing a first/next protocol:

function basetable-first()
i := 0
return basetable-next

function basetable-next()
if (i ≥ N) return false
x := btarray[i].xname
y := btarray[i].yname
z := btarray[i].zname
r := i++;
return true

⇒ assuming struct { int xname, yname, zname } btarray[N]

⇒ variable i renamed for each occurrence of basetable in a plan.

Global state records bindings of (possible copies of) variables.
1 x , y and z to communicate the contents of btarray.
2 i (and N) record scanning status (and size) of btarray.

Note: AP code (templates) for access paths must be provided.
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(More Esoteric) Access Paths

1 Built-in “operations”:
arithmetic (plus/3/2, times/3/2, etc.)
string manipulation (concat/3/2, substr/4/3, etc.)
. . .

2 data type tests (is-integer/1/1)

3 pointer dereference and field extraction from records

4 (page) reads from external storage

5 . . .
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Conjunctive Query Plans: Semantics

function (Q1 ∧ Q2)-first
if not Q1-first return false
while not Q2-first do

if not Q1-next return false
return true

function (Q1 ∧ Q2)-next
if Q2-next return true
while Q1-next do

if Q2-first return true
return false

function (∃x .Q1)-first
return Q1-first

function (∃x .Q1)-next
return Q1-next

function {Q1}-first
if not exists store S

create S
if Q1-first

empty S
add 〈x1, . . . , xn〉 to S
return true

return false

function {Q1}-next
while Q1-next do

if not 〈x1, . . . , xn〉 ∈ S
add 〈x1, . . . , xn〉 to S
return true

return false
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General Query Plans: Syntax

function (Q1 ∨ Q2)-first
(Q1 ∨ Q2)-flag := true
if Q1-first return true
(Q1 ∨ Q2)-flag := false
return Q2-first

function (Q1 ∨ Q2)-next
if (Q1 ∨ Q2)-flag

if Q1-next return true
(Q1 ∨ Q2)-flag := false
return Q2-next

function (¬Q1)-first
if Q1-first return false
return true

function (¬Q1)-next
return false
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What’s Missing?

1 binding patterns (a.k.a. usage restrictions on access paths)
2 dealing with extra-logical phenomena: duplicates/ordering
3 cost model

. . . we touch on many of these in subsequent lectures
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Adding an (search) index

What about create index indexx(indexyy) on x(y) in table?

Specification:
[
% constraints
...
indexx(x,r) <-> ex([y,z],basetable(r,x,y,z)),
indexy(y,r) <-> ex([x,z],basetable(r,x,y,z)),
baselookup(r,x,y,z) <-> basetable(r,x,y,z),

% query
q(x,y) <-> ex([z,v,w],

table(x,v,z) and table(z,w,y))
].

Notes:
access paths: baselookup/4/1, indexx,indexy/2/1;
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Adding an (search) index (cont)

q(x,y) <-> ex([z,v,w],
table(x,v,z) and table(z,w,y))

Possible plans:
Table Scans:

q(vl1,vl2) <-> ex([vl3,vl4,vl5,vl6,vl7],
basetable(vl3,vl1,vl4,vl5) and
basetable(vl6,vl5,vl7,vl2))

Index lookup:
q(vl1,vl2) <-> ex([vl3,vl4,vl5,vl6,vl7],

basetable(vl3,vl1,vl4,vl5) and
indexx(vl5,vl6) and
baselookup(vl6,vl7,vl8,vl2))
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Adding an (search) index (cont)

q(x,y) <-> table(x,x,y)

(with a parameter x)

Possible plans:
Index lookup:

q(vl1,vl2) <-> ex([vl3,vl4],
indexx(vl1,vl3) and
baselookup(vl3,vl4,vl4,vl2))

Index intersection:
q(vl1,vl2) <-> ex([vl3,vl4,vl5],

indexx(vl1,vl3) and
indexy(vl1,vl3) and
baselookup(vl3,vl4,vl5,vl2))
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Adding an (search) index (cont)
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Index-only Plans

q(x) <-> ex(y,table(x,x,y))

(with a parameter x)

Possible plans:
Index lookup:

q(vl1) <-> ex([vl2,vl3,vl4],
indexx(vl1,vl3) and
baselookup(vl3,vl4,vl4,vl2))

Index intersection:
q(vl1) <-> ex([vl2,vl3,vl4,vl5],

indexx(vl1,vl3) and
indexy(vl1,vl3))
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Column Store

Specification:
[
table(x,y,z) <-> ex(r,basetable(r,x,y,z)),

% indices
columnx(r,x) <-> ex([y,z],basetable(r,x,y,z)),
columny(r,y) <-> ex([x,z],basetable(r,x,y,z)),
columnz(r,z) <-> ex([x,y],basetable(r,x,y,z)),
% keys
basetable(r,x1,y1,z1) and basetable(r,x2,y2,z2)

->(x1=x2 and y1=y2 and z1=z2),
% query
q(x,y,z) <-> table(x,y,z)
].

Notes:
APs: columnx/2/0, columny/2/0, and columnz/2/0;
the key constraint is necessary (why?)
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Horizontal Partition (sharding)

Specification: [...
% horizontal partitions
hpp1(r,x,y,z) -> basetable(r,x,y,z),
hpp2(r,x,y,z) -> basetable(r,x,y,z),
hpp3(r,x,y,z) -> basetable(r,x,y,z),
basetable(r,x,y,z) -> (hpp1(r,x,y,z) or

hpp2(r,x,y,z) or hpp3(r,x,y,z)),

...].

Notes:
APs: hpp1/4/0, hpp2/4/0, and hpp3/4/0;
do we need “disjointness” of the partitions?
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Subclass/Complement

Specification: [ ...
% superclass and coverage
basetable(r,x,y,z) -> super(r,x,y,z),
complement(r,x,y,z) -> super(r,x,y,z),
super(r,x,y,z) -> (complement(r,x,y,z)

or basetable(r,x,y,z)),

% disjointness
complement(r,x,y,z) and basetable(r,x,y,z)

-> bot,

...].

Notes:
do we need “disjointness”? “keys”?
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QUERY COMPILATION

PART II: WHAT CAN IT DO?
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What can this do?

GOAL

Generate query plans that compete with hand-written programs in C

1 linked data structures, pointers, . . .
2 access to search structures (index access and selection),
3 hash-based access to data (including hash-joins),
4 multi-level storage (aka disk/remote/distributed files), . . .
5 materialized views (FO-definable),
6 updates through logical schema (needs id invention!), . . .

. . . all without having to code (too much) in C/C++ !
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Lists and Pointers (example)
1 Logical Schema

employee works department

number oo // emp number//

name dept name
manager

oo

⇒ we merge works into employee as a dept attribute (to simplify)

2 Physical Design: a linked list of emp records pointing to dept records.

record emp of
integer num
string name
reference dept

record dept of
integer num
string name
reference manager

⇒ main difference: pointers rather than prinary key-based foreign keys

Exercise:

Modify the rest of the development to account for the works table.
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Lists and Pointers (record declarations)

% record layout of emp and dept records and fields for:
%
% struct emp { int num, char[20] name, struct dept* dept };
% struct dept { int num, char[20] name, struct mgr* emp };
%
% ea/da addresses of emp/dept records
% access paths: ea/1/0 (linked list of employee records),
% ea_num, ea_name, ea_dept, da_num, da_name,
% da_mgr/2/1 (field extractors "->" in C)
% all attributes functional, "num" is a key;
% "dept" and "mgr" are pointers;
%
ea(e) -> ex(y,ea_num(e,y)), ea_num(e,y) and ea_num(e,z)-> y=z,

ea_num(y,x) and ea_num(z,x)-> y=z,
ea(e) -> ex(y,ea_name(e,y)), ea_name(e,y) and ea_name(e,z)-> y=z,
ea(e) -> ex(y,ea_dept(e,y)), ea_dept(e,y) and ea_dept(e,z)-> y=z,

ea_dept(e,d) -> da(d),

. . . and the same for da et al.
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Lists and Pointers (logical tables)

%
% user predicates over records
%
employee(x,y,z) <-> ex(e,baseemployee(e,x,y,z)), % record addr
%
ea(e) <-> ex([x,y,z],baseemployee(e,x,y,z)),
ea_num(e,x) <-> ex([y,z],baseemployee(e,x,y,z)),
ea_name(e,y) <-> ex([x,z],baseemployee(e,x,y,z)),
ex(d,ea_dept(e,d) and da_num(d,z))

<-> ex([x,y],baseemployee(e,x,y,z)),

. . . and the same for department (we merged works into employee).

%
% business logic: managers work for their own departments
%
% employee(x,y,z) and department(u,v,x)-> z=u
da_mgr(x,e) and ea_dept(e,y) -> x=y % pointer-based version
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What can this do: navigating pointers
1 List all employee numbers and names (∃z.employee(x , y , z)):

∃a.ea(a) ∧ ea-num(a, x) ∧ ea-name(a, y)

2 List all department numbers with their manager names
(∃z,u, v .department(x , z,u) ∧ employee(u, y , v)):

.ea(e) ∧ ea-dept(e,d)
∧ da-num(d , x) ∧ da-mgr(d , f ) ∧ ea-name(f , y)

⇒ needs “departments have at least one employee”.
. . . needs duplicate elimination during projection.

.ea(e) ∧ ea-dept(e,d) ∧ ea-name(e, y)
∧ da-num(d , x) ∧ da-mgr(d , f ) ∧ compare(e, f )

⇒ needs “managers work in their own departments”.
. . . NO duplicate elimination during projection.
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What can it do: Hashing, Lists, et al.

Hash Index with (list-based) Separate Chaining

... D1

i : • // •

//

• // •

//

⊥

... D3

j : ⊥

...

n : • // •

//

⊥ D2

Hash Array Separate Chaining Linked Lists Dept Records
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What can it do: Hashing, Lists, et al.

Hash Index on department’s name:

Access paths:
SA ⊇ {hash/2/1,hasharraylookup/2/1,listscan/2/1}.

Physical Constraints:
ΣLP ⊇ {∀x , y .((deptfile(x) ∧ dept-name(x , y))→ ∃z,w .(hash(y , z)

∧ hasharraylookup(z,w) ∧ listscan(w , x))),
∀x , y .(hash(x , y)→ ∃z.hasharraylookup(y , z)),
∀x , y .(listscan(x , y)→ deptfile(y)) }

Query:
∃y , z.(department(x1,p, y) ∧ employee(y , x2, z)){p}.

ex(x6.Hash(p,x6) and ex(x5.(hasharraylookup(x6,x5)
and ex(x4.listscan(x5,x4) and da-name(x4,p)
and da-num(x4,x1) and ex(x3.(da-mgr(x4,x3)

and ea-name(x3,x2)))))))
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QUERY COMPILATION

PART III: CASE STUDY (TO THINK ABOUT . . . )
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The LINUX-INFO System: A Case Study

GOAL:

to develop the LINUX-INFO system to monitor the operating systems deployed
in their organization.

david@david-ryzen:/mnt/david/itb/itb2$ ps -efaux | head
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 2 0.0 0.0 0 0 ? S May07 0:00 [kthreadd]
root 3 0.0 0.0 0 0 ? I< May07 0:00 \_ [rcu_gp]
root 4 0.0 0.0 0 0 ? I< May07 0:00 \_ [rcu_par_gp]
root 6 0.0 0.0 0 0 ? I< May07 0:00 \_ [kworker/0:0H-kblockd]
root 9 0.0 0.0 0 0 ? I< May07 0:00 \_ [mm_percpu_wq]
root 10 0.0 0.0 0 0 ? S May07 0:07 \_ [ksoftirqd/0]
root 11 0.0 0.0 0 0 ? I May07 5:31 \_ [rcu_sched]
root 12 0.0 0.0 0 0 ? S May07 0:01 \_ [migration/0]
...
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LINUX-INFO System: Data and Metadata

Example of LINUX-INFO data important to APS.
1 process gcc is running
2 gcc’s process number is 1234.
3 the user running gcc is 145.
4 gcc uses file “foo.c”

Example of LINUX-INFO metadata specified by APS.
4 There entities called process and file.
5 There are attributes called pno, pname, uname, and fname.
6 Each process entity has attributes pno, pname and uname.
7 Each file entity has attribute fname.
8 Processes are identified by their pno.
9 Files are identified by their fname.
10 There is a relationship uses between processes and files.
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The LINUX System: Physical Design

A physical design for LINUX (selected by Linus Torvalds).
8 There are process records called task-struct.
9 Each task-struct record has record fields pid, uid, comm, and
file-struct.

10 All task-structs is organized as a tree data structure.
11 The task-struct records correspond one-to-one to process entities.
12 Record fields in task-struct encode the corresponding attribute

values for process entities, for example, pid encodes an pno, etc.
13 Similarly, fss correspond appropriately to (open) file entities.
14 file-struct field of task-struct is an array of fds; an entry in this

array indicates that the process corresponding to this task-struct is
using the file represented by the fd record in the array.
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LINUX-INFO System: Queries and Query Plans

A LINUX-INFO user query specified by APS.
14 Find the files used by process invoked by user 145.

A query plan selected by a query compiler.
15 Scan tree of task-structs, for each check if its uid attribute is 145

and, if so scan the file-struct array in the task-struct and print
out the names of files described by non-NULL file descriptors (fd).

Question:

Does the physical design allow APS to list all files known to the Linux system?
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Take Home

Lots of open issues:

1 DB engine vs. Compilation aproaches
2 Main memory data organization
⇒ pointers and records accommodated natively
⇒ coded as combination of AP and physical tables

3 Data structures can be (commonly) decomposed to primitives (hash)
4 . . .

To try at Home

1 more query examples against employee-department schema
2 description of LINUX-info using constraints/APs

Project Idea(s)

code generation from templates
(e.g., ...as array generates code similar to the code on s.7)
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