Topics in Database Systems: Modern DBMS
(CS848 Spring 2022

David Toman

BASIC DESIGNS

(AND AN OVERVIEW OF STANDARD TECHNIQUES)

David Toman (University of Waterloo) CS848 Spring 2022 1/32

Big Picture

Definability and Rewriting
Queries range-restricted FOL (a.k.a. SQL)

Data CWA (complete information)

y [s k-----— © Logical Schema

and User Queries

,,,,,,,,,,,,,

Waterloo

B
& David Toman (et al.) CS848 Spring 2022 Motivation (recap) 2/32

Big Picture

Definability and Rewriting

Queries range-restricted FOL over S| definable w.r.t. ¥ and Sp
Schema range-restricted FOL ¥ := Y- Uy uxr

Data CWA (complete information for Sy symbols)
Y S, k-—-—-—--- © Logical Schema
‘ and User Queries
Yip (compilation)
Y SA CSpk — — — — — — Physical Schema
P@(v and Query Plans

[Borgida, de Bruijn, Franconi, Seylan, Straccia, Toman, Weddell: On Finding
Query Rewritings under Expressive Constraints. SEBD 2010: 426-437]

,,,,,,,,,,,,,

Waterloo

B
& David Toman (et al.) CS848 Spring 2022 Motivation (recap) 2/32

Big Picture

Definability and Rewriting

Queries range-restricted FOL over S| definable w.r.t. ¥ and Sp
Schema range-restricted FOL ¥ := Y- Uy uxr
Data CWA (complete information for Sy symbols)

m to users it looks like a single model (of the logical schema)
m implementation can pick from many models

but definable queries answer the same in each of them

’ Query (SL)
1) (Relational Algebra over SA)
’ Schema (S_ U Sp) Executable _Answers

,,,,,,,,,,,,,

Waterloo

@ David Toman (et al.) CS848 Spring 2022 Motivation (recap) 2/32

Big Picture

Definability and Rewriting

Queries range-restricted FOL over S definable
Schema range-restricted FOL ¥ := ¥ UYtP U
Data CWA (complete information for Sp symt

m to users it looks like a single model (of the logic
m implementation can pick from many models
but definable queries answe

MORGAN &CLAYPOOL PUBLISHERS
&€ &

Fundamentals of
Physical Design and
Query Compilation

David Toman
Grant Weddell

SYNTHESIS LECTURES ON DATA MANAGEMENT

M. Tarper s, Seri Edlity

’ Query (SL)
1) (Relational Algebra over SA)
’ Schema (S_ U Sp) Executable

‘(instance of) Sp

] Data (Sa C Sp) |

,,,,,,,,,,, of

Waterioo

|
@ David Toman (et al.) CS848 Spring 2022

Motivation (recap) 2/32

,,,,,,,,,,,

'S

QUERY COMPILATION

PART I: PLANS AS FORMULAE AND STANDARD DESIGN

David Toman (et al.) CS848 Spring 2022 Motivation (recap)

3/32

Queries over a Physical Design

Issues to resolve (today)

m What “formulas” do qualify as plans?

= how do we interpret logical connectives as programs?
m Why do the plans implement the user queries?
m Are all (desired) plans captured by appropriate formulas?

,,,,,,,,,,,,,

Waterloo

|
© David Toman (et al.) CS848 Spring 2022 Plans as Formulae 4/32

Outline

Iterator Protocols to communicate Sets
Atomic Plan Operations: Access Paths
Logical Connectives/Quantifiers as Plan Operators

Beyond Logical Operators: Dealing with Duplicates (not today)

University of

Waterloo

|
© David Toman (et al.) CS848 Spring 2022 Plans as Formulae 5/32

Creating Table(s) and Base File(s)

Specification:

[
% constraints
table(x,y,z) <-> ex(r,basetable(r,x,y,z)),

% query
q(x,y,z) <-> table(x,y,z)
]

Notes:

m access path: basetable/4/0;
m additional r attribute: address in physical storage

University of

Waterloo
2
& David Toman (et al.) CS848 Spring 2022 Plans as Formulae 6/32

Creating Table(s) and Base File(s)

Specification:

[
% constraints
table(x,y,z) <-> ex(r,basetable(r,x,y,z)),

% query
q(x,y,z) <-> table(x,y,z)
]

Notes:

m access path: basetable/4/0;
m additional r attribute: address in physical storage

Query Plan:
g(v0,vl,v2) <-> ex(v3,basetable(v3,v0,vl,v2))

Universi o
Waterioo

2

& David Toman (et al.) CS848 Spring 2022 Plans as Formulae 6/32

Access Path Code Templates

Array of records (C-structs)

Pseudo-code templates realizing a £irst/next protocol:

function basetable-next()

function basetable-first()
if (i> N) return false

i :=0

return basetable-next X := btarrayl[i].xname
y := btarrayl[i].yname
Z := btarrayl[i].zname

r := i++;

return true

= assuming struct { int xname, yname, zname } btarray[N]

= variable i renamed for each occurrence of basetable in a plan.

,,,,,,,,,,, of

Waterioo

B
& David Toman (et al.) Plans as Formulae

CS848 Spring 2022

7/32

Access Path Code Templates

Array of records (C-structs)

Pseudo-code templates realizing a £irst/next protocol:

function basetable-next()

function basetable-first()
if (i> N) return false

i :=0

return basetable-next X := btarrayl[i].xname
y := btarrayl[i].yname
Z := btarrayl[i].zname

r := i++;

return true
= assuming struct { int xname, yname, zname } btarray[N]
= variable i renamed for each occurrence of basetable in a plan.

Global state records bindings of (possible copies of) variables.
X, y and z to communicate the contents of btarray.
i (and N) record scanning status (and size) of btarray.

........... of

Waterioo

B
@ David Toman (et al.) Plans as Formulae

CS848 Spring 2022

7/32

Access Path Code Templates

Array of records (C-structs)

Pseudo-code templates realizing a £irst/next protocol:

function basetable-first() function basetable-next()
i :=0 if (i> N) return false
return basetable-next X := btarrayl[i].xname
y := btarrayl[i].yname
Z := btarrayl[i].zname
r := f++;

return true

= assuming struct { int xname, yname, zname } btarray[N]
= variable i renamed for each occurrence of basetable in a plan.

Global state records bindings of (possible copies of) variables.
X, y and z to communicate the contents of btarray.
i (and N) record scanning status (and size) of btarray.

vvvvvvvvvvv of

Waterioo Note: AP code (templates) for access paths must be provided.

B
& David Toman (et al.) CS848 Spring 2022 Plans as Formulae 7/32

(More Esoteric) Access Paths

Built-in “operations”:
m arithmetic (p1us/3/2, times/3/2, etc.)
m string manipulation (concat/3/2, substr/4/3, etc.)
E...

data type tests (is—-integer/1/1)
pointer dereference and field extraction from records
(page) reads from external storage

University of

Waterloo

|
© David Toman (et al.) CS848 Spring 2022 Plans as Formulae 8/32

Conjunctive Query Plans: Semantics

function (Q A @Qx)-first function (Q A Qo)-next
if not @Qi-first return false if (p-next return true
while not Qo-first do while Qj-next do
if not Q@Qq-next return false if Qo-first return true
return true return false
function (Ix.Qp)-first function (3x.Q)-next
return @Q-first return Qq-next

University

Waterioo

I
& David Toman (et al.) CS848 Spring 2022 Plans as Formulae 9/32

Conjunctive Query Plans: Semantics

function (Q A @Qx)-first

if not @Qi-first return false

while not Qo-first do

if not Q@Qq-next return false

return true

function (Q A Qo)-next
if (p-next return true
while Qj-next do
if Qo-first return true
return false

function (Ix.Qp)-first
return @Q-first

function {Q@Qq}-first

if not exists store S
create S

if Qq-first
empty S
add (xy,...,Xxn) to S
return true

return false

Universi

Waterioo

<
@ David Toman (et al.) CS848 Spring 2022

function (3x.Q)-next
return Qq-next

function {Q}-next
while Qj-next do
if not (X{,...,Xn) €S
add (xq,...,xn) t0 S
return true
return false

Plans as Formulae

9/32

General Query Plans: Syntax

function (QqV Q)-first
(@) V Q)-flag := true
if @Qi-first return true
(@4 V Q)-flag := false
return Ch-first

function (Qp V Qu)-next
if (@) V Q)-flag
if @Q-next return true
(@ V Q)-flag := false
return (p-next

function (—Q4)-first
if Qi-first return false
return true

Waterioo

|
< David Toman (et al.)

CS848 Spring 2022

function (—Qj)-next
return false

Plans as Formulae

10/32

What's Missing?

binding patterns (a.k.a. usage restrictions on access paths)
dealing with extra-logical phenomena: duplicates/ordering
cost model

University

Waterioo

|
& David Toman (et al.) CS848 Spring 2022 Plans as Formulae 11/32

What's Missing?

binding patterns (a.k.a. usage restrictions on access paths)
dealing with extra-logical phenomena: duplicates/ordering
cost model
...we touch on many of these in subsequent lectures

University

Waterioo

|
© David Toman (et al.) CS848 Spring 2022 Plans as Formulae 11/32

Adding an (search) index

What about create index indexx (indexyy) onXx(y)in table?

Specification:
[
% constraints

indexx (x,r) <> ex([y,z],basetable(r,x,y,2z)),
indexy (y,r) <-> ex([x,z],basetable(r,x,y,2z)),
baselookup (r,x,y,z) <—> basetable(r,x,v,2z),

% query
q(x,y) <=> ex([z,v,w],
table(x,v,z) and table(z,w,y))

Notes:
B access paths: baselookup/4/1, indexx, indexy/2/1;

,,,,,,,,,,, of

Waterioo

B
& David Toman (et al.) CS848 Spring 2022 Plans as Formulae 12/32

Adding an (search) index (cont)
q(x,y)

<-> ex([z,v,w],

table(x,v, z)

and table(z,w,y))

,,,,,,,,,, of
Waterloo

David Toman (et al.)

(CS848 Spring 2022

Adding an (search) index (cont)

q(x,y) <> ex([z,v,w],

table(x,v,z) and table(z,w,y))

Possible plans:

Table Scans:
g(vll,v1l2) <-> ex([v1l3,v14,vl5,vle,v17],
basetable (v13,v11l,v14,v15) and
basetable(vl6,vl5,v17,v12))
Waterioo

David Toman (et al.) CS848 Spring 2022 Plans as Formulae 13/32

Adding an (search) index (cont)

q(x,y) <=> ex(lz,v,w],
table(x,v,z) and table(z,w,y))

Possible plans:
Table Scans:
g(vll,v1l2) <-> ex([v1l3,v14,vl5,vle,v17],
basetable (v13,v11l,v14,v15) and
basetable (v16,v15,v17,v12))
Index lookup:
g(vll,v1l2) <-> ex([v1l3,v14,vl5,vle,v17],
basetable (v13,v11l,v14,v1l5) and
indexx (v15,v16) and
baselookup(vl6,v1l7,v18,v12))

University

Waterioo

|
& David Toman (et al.) CS848 Spring 2022 Plans as Formulae 13/32

Adding an (search) index (cont)
q(x,y)

<-> table(x,x,y)

(with a parameter x)

vvvvvvvvvv of

Waterloo

David Toman (et al.)

(CS848 Spring 2022

Adding an (search) index (cont)
a(x,y) <-> table(x,x,y)
(with a parameter x)

Possible plans:
Index lookup:

qg(vll,v1l2) <> ex([v13,v14],
indexx (v1l,v13) and
baselookup(v13,vl1d,v14,v12))

University of

Waterloo

|
& David Toman (et al.) CS848 Spring 2022 Plans as Formulae 14/32

Adding an (search) index (cont)

a(x,y) <-> table(x,x,y)

(with a parameter x)

Possible plans:
Index lookup:

qg(vll,v1l2) <> ex([v13,v14],
indexx (v1l,v13) and
baselookup(v13,vl1d,v14,v12))
Index intersection:

g(vll,v1l2) <-> ex([v1l3,v14,v1l5],
indexx (v1ll,v13) and
indexy (v1ll,v13) and
baselookup(vl3,v14d,v15,v12))

University

Waterioo

b
@ David Toman (et al.) CS848 Spring 2022 Plans as Formulae 14/32

Index-only Plans
aq(x)

<—> ex(y,table(x,x,vy))

(with a parameter x)

U

WaTS

David Toman (et al.)

(CS848 Spring 2022

Index-only Plans

q(x) <-> ex(y,table(x,x,y))

(with a parameter x)

Possible plans:

Index lookup:
g(vll) <-> ex([vlz2,v13,v14],
indexx (v1l,v13) and
baselookup (v13,vl14,v14d,v12))
Waterioo

|
&2 David Toman (et al.) CS848 Spring 2022 Plans as Formulae 15/32

Index-only Plans

q(x) <-> ex(y,table(x,x,y))

(with a parameter x)

Possible plans:
Index lookup:
g(vll) <-> ex([vlz2,v13,v14],
indexx (v1l,v13) and
baselookup (v13,vl14,v14d,v12))
Index intersection:
g(vll) <-> ex([v1l2,v13,v14,v15],
indexx (v1ll,v13) and
indexy (v11l,v13))

University

Waterioo

|
&2 David Toman (et al.) CS848 Spring 2022 Plans as Formulae 15/32

Column Store

Specification:
[

table(x,vy,z) <-> ex(r,basetable(r,x,v,2z)),

% indices

columnx (r,x) <-> ex([y,z],basetable(r,x,vy,2)),

columny (r,y) <-> ex([x,z],basetable(r,x,vy,2)),

columnz (r,z) <-> ex([x,y],basetable(r,x,vy,2)),

% keys

basetable(r,x1,yl,z1) and basetable(r,x2,vy2,2z2)
> (x1=x2 and yl=y2 and zl=z2),

% query

qg(x,y,z) <> table(x,y,z)

1

Notes:

m APs: columnx/2/0, columny/2/0, and columnz/2/0;
m the key constraint is necessary (why?)

,,,,,,,,,

|
© David Toman (et al.) CS848 Spring 2022 Plans as Formulae 16/32

Horizontal Partition (sharding)

Specification: [...
% horizontal partitions
hppl(r,x,y,z) —> basetable(r,x,vy,2z),
hpp2 (r,x,y,z) —-> basetable(r,x,v,2),
hpp3(r,x,y,z) —-> basetable(r,x,v,2),
basetable (r,x,v,z) —-> (hppl(r,x,y,z) or
hpp2 (r,x,y,2z) or hpp3(r,x,v,z)),

Notes:
m APs: hppl/4/0, hpp2/4/0, and hpp3/4/0;
m do we need “disjointness” of the partitions?

University o
Waterloo

|
& David Toman (et al.) CS848 Spring 2022 Plans as Formulae 17/32

Subclass/Complement

Specification: [

o

% superclass and coverage

basetable (r,x,vy,2z) —-> super(r,x,vy,z),

complement (r,x,y,z) —> super(r,x,V,2z),
super (r,x,y,z) —> (complement (r,x,y,2z)

or basetable(r,x,y,z)),

Q

% disjointness

complement (r,x,y,z) and basetable(r,x,v,2z)
-> bot,

Notes:
m do we need “disjointness”? “keys”?

University o
Waterloo

15
& David Toman (et al.) CS848 Spring 2022

Plans as Formulae

18/32

,,,,,,,,,,,,,

'S

David Toman (et al.)

QUERY COMPILATION

PART Il: WHAT CAN IT DO?

CS848 Spring 2022

Plans as Formulae

19/32

What can this do?

GOAL

Generate query plans that compete with hand-written programs in C

linked data structures, pointers, ...

access to search structures (index access and selection),
hash-based access to data (including hash-joins),
multi-level storage (aka disk/remote/distributed files), . ..
materialized views (FO-definable),

@ updates through logical schema (needs id invention!), . ..

...all without having to code (too much) in C/C++ !

,,,,,,,,,,,,,

Waterloo

2
© David Toman (et al.) CS848 Spring 2022 What can it do? 20/32

Lists and Pointers (example)

Logical Schema

employee

number

name

L

works department
emp i number
dept —————)/—___> name
manager

= we merge works into employee as a dept attribute (to simplify)

& David Toman (et al.)

CS848 Spring 2022

What can it do?

21/32

Lists and Pointers (example)
Logical Schema

employee

number

name 1

works department
emp number
dept —————)/—___> name
manager

= we merge works into employee as a dept attribute (to simplify)

Physical Design: a linked list of emp records pointing to dept records.

,,,,,,,,,

'S

record emp of
integer
string
reference

record dept of

num
name
dept

integer num
string name
reference manager

= main difference: pointers rather than prinary key-based foreign keys

David Toman (et al.)

CS848 Spring 2022

What can it do? 21/32

Lists and Pointers (example)
Logical Schema

employee works department
number emp number
name ‘I\ dept —~——¢//444>- name
manager

= we merge works into employee as a dept attribute (to simplify)

Physical Design: a linked list of emp records pointing to dept records.

record emp of record dept of
integer num integer num
string name string name
reference dept reference manager

= main difference: pointers rather than prinary key-based foreign keys

Exercise:

Madify the rest of the development to account for the works table.
Waterloo

B
© David Toman (et al.) CS848 Spring 2022 What can it do? 21/32

Lists and Pointers (record declarations)

record layout of emp and dept records and fields for:

struct emp { int num, char[20] name, struct deptx dept };
struct dept { int num, char[20] name, struct mgr* emp };

ea/da addresses of emp/dept records
access paths: ea/1/0 (linked list of employee records),
ea_num, ea_name, ea_dept, da_num, da_name,
da_mgr/2/1 (field extractors "->" in C)
all attributes functional, "num" is a key;
"dept" and "mgr" are pointers;

o° A° o° o° A o° A° o° A° o o° oe

ea(e) —> ex(y,ea_num(e,vy)), ea_num(e,y) and ea_num(e,z)—-> y=z,
ea_num(y,x) and ea_num(z,x)-> y=z,

ea(e) —> ex(y,ea_name(e,y)), ea_name(e,y) and ea_name(e,z)—-> y=z,

ea(e) —> ex(y,ea_dept(e,y)), ea_dept(e,y) and ea_dept(e,z)-> y=z,

ea_dept (e,d) —> da(d),

...and the same for da et al.

David Toman (et al.) CS848 Spring 2022 What can it do? 22/32

Lists and Pointers (logical tables)

user predicates over records

o° o° o

employee (x,y,2z) <-> ex(e,baseemployee(e,x,y,2z)), % record addr

o

©

ea (e) <> ex([x,vy,z],baseemployee(e,x,vy,2)),
ea_num (e, x) <-> ex(ly,z],baseemployee(e,x,vy,2)),
ea_name (e, V) <-> ex([x,z],baseemployee(e,x,vy,2)),

ex (d,ea_dept (e,d) and da_num(d, z))
<> ex([x,v],baseemployee(e,x,vy,2)),

...and the same for department (we merged works into employee).

business logic: managers work for their own departments

o° o° o° o°

employee (x,vy,z) and department (u,v,x)-> z=u
da_mgr (x,e) and ea_dept(e,y) —> x=y % pointer-based version

David Toman (et al.) CS848 Spring 2022 What can it do? 23/32

What can this do: navigating pointers
List all employee numbers and names (3z.employee(X, y, 2)):
Ja.ea(a) A ea—num(a, x) A ea—name(a, y)

,,,,,,,,,,,,,

|
& David Toman (et al.) CS848 Spring 2022 What can it do?

24/32

What can this do: navigating pointers

List all employee numbers and names (3z.employee(X, y, 2)):
Ja.ea(a) A ea—num(a, x) A ea—name(a, y)

or, in C-like syntax: for a in ea do
X := a—->num,
Yy := a->name;

University o
Waterioo
2

& David Toman (et al.) CS848 Spring 2022 What can it do?

24/32

What can this do: navigating pointers

List all employee numbers and names (3z.employee(X, y, 2)):
Ja.ea(a) A ea—num(a, x) A ea—name(a, y)

List all department numbers with their manager names
(3z,u, v.department(x, z, u) A employee(u,y, v)):

University of

Waterloo

B
@ David Toman (et al.) CS848 Spring 2022 What can it do? 24/32

What can this do: navigating pointers

List all employee numbers and names (3z.employee(X, y, 2)):
Ja.ea(a) A ea—num(a, x) A ea—name(a, y)

List all department numbers with their manager names
(3z,u, v.department(x, z, u) A employee(u,y, v)):
Jde,d,f.ea(e) A ea—dept(e,d)
A da-num(d, X) A da-mgr(d, f) A ea—name(f, y)
= needs “departments have at least one employee”.

University of

Waterloo

B
@ David Toman (et al.) CS848 Spring 2022 What can it do? 24/32

What can this do: navigating pointers

List all employee numbers and names (3z.employee(X, y, 2)):
Ja.ea(a) A ea—num(a, x) A ea—name(a, y)

List all department numbers with their manager names
(3z,u, v.department(x, z, u) A employee(u,y, v)):
Jde,d,f.ea(e) A ea—dept(e,d)
A da-num(d, X) A da-mgr(d, f) A ea—name(f, y)
= needs “departments have at least one employee”.

Jde,d,f.ea(e) N ea-dept(e,d) A ea—name(e, y)
A da-num(d, x) A da-mgr(d, f) A compare(e,f)
= needs “managers work in their own departments”.

University of

Waterloo

2
© David Toman (et al.) CS848 Spring 2022 What can it do? 24/32

What can this do: navigating pointers

List all employee numbers and names (3z.employee(X, y, 2)):
Ja.ea(a) A ea—num(a, x) A ea—name(a, y)

List all department numbers with their manager names
(3z,u, v.department(x, z, u) A employee(u,y, v)):
Jde, d, f.ea(e) A ea—dept (e, d)
A da-num(d, X) A da-mgr(d, f) A ea—name(f, y)
= needs “departments have at least one employee”.
...needs duplicate elimination during projection.
Je.d.f.ea(e) N ea—dept(e,d) A ea—name(e,y)
A da-num(d, x) A da-mgr(d, f) A compare(e,f)
= needs “managers work in their own departments”.
...NO duplicate elimination during projection.

University of

Waterloo

2
© David Toman (et al.) CS848 Spring 2022 What can it do? 24/32

What can it do: Hashing, Lists, et al.

Hash Index with (list-based) Separate Chaining

: [@
i ey [—{ ¢ [2]

53]

n: [i 1] ‘ D2 |

Hash Array Separate Chaining Linked Lists Dept Records

,,,,,,,,,,,,,

Waterloo

2
© David Toman (et al.) CS848 Spring 2022 What can it do? 25/32

What can it do: Hashing, Lists, et al.

Hash Index on department’s name:

Access paths:

Sa 2 {hash/2/1,hasharraylookup/2/1,listscan/2/1}.
Physical Constraints:

Yip 2 {Vx,y.((deptfile(x) A dept—name(x,y)) — 3z, w.(hash(y, 2)
Ahasharraylookup(z,w) A listscan(w,Xx))),
VX, y.(hash(x,y) — 3z.hasharraylookup(y, Z)),
Vx,y.(listscan(x,y) — deptfile(y)) }

University of

Waterloo

2
© David Toman (et al.) CS848 Spring 2022 What can it do? 26/32

What can it do: Hashing, Lists, et al.

Hash Index on department’s name:

Access paths:

Sa 2 {hash/2/1,hasharraylookup/2/1,listscan/2/1}.
Physical Constraints:

Yip 2 {Vx,y.((deptfile(x) A dept—name(x,y)) — 3z, w.(hash(y, 2)
Ahasharraylookup(z,w) A listscan(w,Xx))),
VX, y.(hash(x,y) — 3z.hasharraylookup(y, Z)),
Vx,y.(listscan(x,y) — deptfile(y)) }
Query:

3y, z.(department(xy,p, y) A employee(y, Xo, 2)){p}.

ex (x6.Hash(p,x6) and ex(x5. (hasharraylookup (x6,x5)

and ex (x4.listscan (x5,x4) and da-name (x4, p)
and da-num(x4,x1) and ex(x3. (da-mgr (x4,x3)
and ea-name (x3,x2)))))))

University of

Waterloo

2
© David Toman (et al.) CS848 Spring 2022 What can it do? 26/32

,,,,,,,,,,,,,

'S

QUERY COMPILATION

PART Ill: CASE STUDY (TO THINK ABOUT ...)

David Toman (et al.) CS848 Spring 2022 What can it do?

27/32

The LINUX-INFO System: A Case Study

to develop the LINUX-INFO system to monitor the operating systems deployed
in their organization.

david@david-ryzen:/mnt/david/itb/itb2$ ps -efaux

USER
root
root
root
root
root
root
root
root

,,,,,,,,,,, of

Waterioo

'S

PID %CPU
2 0.0

3 0.0

4 0.0

6 0.0

9 0.0
10 0.0
11 0.0
12 0.0

David Toman (et al.)

SMEM VSZ RSS

0.

O O O O O O o

0

O O O O O o o

0

O O O O O o o

0

O O O O O oo

TTY STAT
S

I<
I<
I<
I<

S

I

S

[REEEC RN AV AR IV IR SV IR AV IR BV]

CS848 Spring 2022

START
MayQ7
MayQ7
MayO07
MayQ7
MayO07
MayO07
MayQ7
MayO07

TIME

0:
:00
:00
:00
:00
:07
:31
:01

O U1 O O O O o

00

head

COMMAND
[kthreadd]

[rcu_gpl
[rcu_par_gp]
[kworker/0:0H-
[mm_percpu_wq]
[ksoftirgd/0]
[rcu_sched]
[migration/0]

What can it do? 28/32

LINUX-INFO System: Data and Metadata

|
Example of LINUX-INFO data important to APS.

process gcc is running

gcc’s process number is 1234.
the user running gcc is 145.
gcc uses file “foo.c”

,,,,,,,,,,,,,

Waterloo

2
© David Toman (et al.) CS848 Spring 2022 What can it do? 29/32

LINUX-INFO System: Data and Metadata

|
Example of LINUX-INFO data important to APS.

process gcc is running

gcc’s process number is 1234.
the user running gcc is 145.
gcc uses file “foo.c”

|
Example of LINUX-INFO metadata specified by APS.

There entities called process and file.
There are attributes called pno, pname, uname, and fname.
A Each process entity has attributes pno, pname and uname.
Each file entity has attribute fname.
B Processes are identified by their pno.
El Files are identified by their fname.

waldliod here is a relationship uses between processes and files.

O
'O David Toman (et al.) CS848 Spring 2022 What canitdo? 29/32

The LINUX System: Physical Design

|
A physical design for LINUX (selected by Linus Torvalds).

B There are process records called task-struct.

El Each task-struct record has record fields pid, uid, comm, and
file-struct.

All task-structs is organized as a tree data structure.

The task-struct records correspond one-to-one to process entities.

Record fields in task—-struct encode the corresponding attribute
values for process entities, for example, pid encodes an pno, etc.

Similarly, £ss correspond appropriately to (open) £i1le entities.

file—-struct field of task—-struct is an array of £ds; an entry in this
array indicates that the process corresponding to this task—struct is
using the £i1le represented by the £d record in the array.

vvvvvvvvvvvvv]

Waterlos

B
& David Toman (et al.) CS848 Spring 2022 What can it do? 30/32

LINUX-INFO System: Queries and Query Plans

|
A LINUX-INFO user query specified by APS.

Find the £iles used by process invoked by user 145.

,,,,,,,,,,,

Waterloo

2
© David Toman (et al.) CS848 Spring 2022 What can it do? 31/32

LINUX-INFO System: Queries and Query Plans

|
A LINUX-INFO user query specified by APS.

Find the £iles used by process invoked by user 145.

|
A query plan selected by a query compiler.
Scan tree of task-structs, for each check if its uid attribute is 145
and, if so scan the file-struct array inthe task-struct and print
out the names of files described by non-NULL file descriptors (£d).

,,,,,,,,,,,,,

Waterloo

2
& David Toman (et al.) CS848 Spring 2022 What can it do? 31/32

LINUX-INFO System: Queries and Query Plans

A LINUX-INFO user query specified by APS.
Find the £iles used by process invoked by user 145.

A query plan selected by a query compiler.
Scan tree of task-structs, for each check if its uid attribute is 145
and, if so scan the file-struct array inthe task-struct and print
out the names of files described by non-NULL file descriptors (£d).

Question:
Does the physical design allow APS to list all files known to the Linux system?

vvvvvvvvvvvvv

Waterloo

2
& David Toman (et al.) CS848 Spring 2022 What can it do? 31/32

Take Home

Lots of open issues:

DB engine vs. Compilation aproaches
Main memory data organization

= pointers and records accommodated natively
=- coded as combination of AP and physical tables

Data structures can be (commonly) decomposed to primitives (hash)

,,,,,,,,,,,,,

Waterloo

2
& David Toman (et al.) CS848 Spring 2022 What can it do? 32/32

Take Home

Lots of open issues:

DB engine vs. Compilation aproaches
Main memory data organization

= pointers and records accommodated natively
=- coded as combination of AP and physical tables

Data structures can be (commonly) decomposed to primitives (hash)

more query examples against employee-department schema
description of LINUX-info using constraints/APs

vvvvvvvvvvvvvv

Waterloo

s
& David Toman (et al.) CS848 Spring 2022 What can it do? 32/32

Take Home

Lots of open issues:

DB engine vs. Compilation aproaches
Main memory data organization

= pointers and records accommodated natively
=- coded as combination of AP and physical tables

Data structures can be (commonly) decomposed to primitives (hash)

To try at Home

more query examples against employee-department schema
description of LINUX-info using constraints/APs

Project Idea(s)

m code generation from templates
Watetioo (e.g., .. .as array generates code similar to the code on s.7)

i
& David Toman (et al.) CS848 Spring 2022 What can it do? 32/32

